Ex:

After being open for a long time, the switch closes at $t=0$.
Write a numerical expression for $i(t)$ for $t>0$.
sol'm: we use the general form of solution:

$$
i(t)=i(t \rightarrow \infty)+\left[i\left(t=c^{t}\right)-i(t \rightarrow \infty)\right] e^{-t / k_{T h} C}, \quad t>0
$$

$$
t=0^{-} \text {model: } c=o \text { pen circuit, find } v_{e}\left(0^{-}\right)
$$

$$
\begin{gathered}
\text { switch } \\
k, \Omega \\
k
\end{gathered}
$$

Since there is no power source and there is a resistor across C to discharge it, we must have

$$
\hat{v}_{\mathrm{c}}\left(\mathrm{o}^{-}\right)=0 \mathrm{~V}
$$

Note: No current can flow in the single wire to the left since that would cause charge to accumulate in that part of the circuit. There is as complete circuit.
$t=0^{+}=v_{c}\left(t=0^{+}\right)=v_{c}\left(\frac{1}{t}=0^{-}\right)$since the energy variable va cannot change instantly. we model c as a v-src for the instant in tine $t=0^{+}$. $v_{e}\left(0^{+}\right)=v_{c}\left(0^{-}\right)=O V$ acts like a wire.

We have a current divider with $R=1 k \Omega$ on both sides:
wire shorts out $2 \mathrm{k} \Omega$ \therefore ob across ike and ne current flows in 2 kg 2 by Ohm's law.

$$
i\left(0^{+}\right)=30 \mathrm{~mA} \cdot \frac{1 \mathrm{k} \Omega}{1 \mathrm{k} \Omega+1 \mathrm{k} \Omega}=15 \mathrm{~mA}
$$

$t \rightarrow \infty: \quad$ c ants like open circuit

We have a current divider with $1 k \Omega$ on left and $1 k \Omega+2 k \Omega=3 k \Omega$ on right.

$$
\therefore i(t \rightarrow \infty)=30 \mathrm{~mA}+\frac{3 k \Omega}{3 k \Omega+3 k \Omega}=22.5 \mathrm{~mA}
$$

$t=\dot{R}_{T h} C=$ we find $R_{\text {Th }}$ looking into terminals where c is connected.

In this circuit, we need only turn off the independent source and look unto the circuit from the terminals where the C is connected to find $F_{T h}$.

We may redraw the circuit as follows:

We have

$$
\begin{aligned}
& \mathrm{R}_{\text {Th }}=2 \mathrm{k} \text { 渞 } \|(1 \mathrm{k} \Omega+1 \mathrm{k} \Omega)=1 \mathrm{k} \Omega \\
& \mathrm{R}_{\text {Th }} \mathrm{C}=1 \mathrm{k} \Omega \cdot 0.25 \mathrm{mF}=0.25 \mathrm{~s}
\end{aligned}
$$

Combining results, we have our final answer:
$i(t)=22.5 \mathrm{~mA}+(15 \mathrm{~mA}-22.5 \mathrm{~mA}) \mathrm{e}^{-t / 0.25 \mathrm{~s}}, \quad t>0$

