

Ex:

After being open for a long time, the switch closes at t = 0. Calculate the energy stored on the capacitor as $t \rightarrow \infty$.

soln: We use the general solution-approach and treat C as an open circuit as t->-.

We observe that v_c is the same as the voltage across the $2k\Omega$ resistor, $i_2 \cdot 2k\Omega$.

$$v_{d}(t \rightarrow \infty) = i_{2} \cdot 2k \cdot 2k$$

To find i_2 , we use a current divider: $i_2 = 30 \text{ mA} \cdot \frac{1 \text{ k} 2}{1 \text{ k} 2} = 7.5 \text{ mA}$ $\frac{1 \text{ k} 2}{1 \text{ k} 2} = 7.5 \text{ mA}$ $\frac{1 \text{ k} 2}{1 \text{ k} 2} = 15 \text{ V}$

Energy on $C = w_c = \frac{1}{2} C v_c^2 = \frac{1}{2} \frac{1}{4} MF \cdot (15V)^2$ $w_c = 28.125 \text{ mJ}$