

Ex:

After being closed for a long time, the switch opens at t = 0. Find $i_1(t)$ for t > 0.

go(n: t=0] model: (to find $i_L(o^-)$) Lacts like wire

We see that the IZV source is across the 20 mJz and the 4 mJz.

$$i_b = \frac{12V}{20m\Omega} = 600 A$$

and $100i_{b} = 100 \cdot 600A = 60 \text{ kA}$.

$$i_1 = \frac{12V}{4m \cdot 2} = 3kA$$

We find it from a current sum at the center nade.

$$-100i_b + i_1 - i_1(0^-) = 0 A$$

 $-60 kA + 3kA = i_1(0^-)$
or $i_1(0^-) = -57 kA$

 $t=0^+$ model: $i_1(0^+)=i_1(0^-)=-57$ KA L modeled as current source

Because of the open circuit on the left, we have $i_0 = 0$ and $100i_0 = 0$.

From a current summation at the center node, we have $i_1(0^+) = i_2(0^+) = -57kA$.

 $t \rightarrow \infty$ model: (to find $i_1(t \rightarrow \infty)$) Lasts (ike wire

We have 12V across the 4 m.s.

model for T= L/RTh:

We observe that the Thevenin equivalent seen from the terminals where the L is connected is just the 4ms and 12V:

We find R_{Th} by turning off the IZV source, causing it to be a wire. We see $R_{Th} = 4 \text{ M} \Omega$. (The circuit is already a Thevenin equivalent.)

Now we use the general form of solution: $i_1(t)=i_1(t+\infty)+\left[i_1(0^{\dagger})-i_1(t+\infty)\right]e^{-t/t}$ or $i_1(t)=3kA+\left[-57kA-3kA\right]e^{-t/1.2\mu s}$ or $i_1(t)=3kA+-60kAe^{-t/1.2\mu s}$