Ex:

After being closed for a long time, the switch opens at $t=0$. Find $i_{1}(t)$ for $t>0$.

Foin: $t=0^{-}$model: (to find $i_{L}\left(0^{-}\right)$) Lasts Like wire

Wee see that the $I 2 V$ source is across the 20 mis and tie $4 \mathrm{~m} \sim 2$.

$$
\therefore i_{b}=\frac{12 \mathrm{~V}}{20 \mathrm{~m} \mathrm{\Omega}}=600 \mathrm{~A}
$$

and $100 i_{b}=100 \cdot 600 \mathrm{~A}=60 \mathrm{kA}$.

$$
i_{1}=\frac{12 V}{4 m \sqrt{2}}=3 \mathrm{kA}
$$

We find i_{L} from a current sum at the center node.

Because of the open circuit on the left, we have $i_{b}=0$ and $100 i_{0}=0$.

From a current summation at the center node, we have $i_{1}\left(0^{+}\right)=i_{i}\left(0^{*}\right)=-57 k A$.

$$
i_{1}\left(0^{+}\right)=-57 \mathrm{kA}
$$

$t \rightarrow \infty$ model: (to find $i_{1}(t \rightarrow \infty)$) Lacks like wire

We have $12 V$ across the $4 m$.

$$
i_{1}(t \rightarrow \infty)=\frac{12 v}{4 m i^{2}}=3 \mathrm{kA}
$$

We observe that the Theremin equivalent seen from the terminals where the L is connected is just the $4 m s$ and $I 2 V$:

$4 \mathrm{~m} \Omega$

We find $R_{\text {Th }}$ by turning off the in source, causing it to be a wire. wee see $A_{\text {Th }}=4$ A13. (The circuit is already a Theremin equivalent.)

$$
\therefore \tau=\frac{L_{n}}{R_{T h}}=\frac{5 n H^{2}}{4 \mathrm{~m} \Omega}=1.2 \mu \delta
$$

Now we use the general form of solution:

$$
\begin{aligned}
i_{1}(t) & =i_{1}(t \rightarrow \infty)+\left[i_{1}\left(0^{t}\right)-i_{1}(t \rightarrow \infty)\right] e^{-t / t} \\
\text { or } i_{1}(t) & =3 k A+[-57 k A-3 k A] e^{-t / 1.2 \mu s} \\
\text { or } i_{1}(t) & =3 k A+-60 k A e^{-t / 1.2 \mu s}
\end{aligned}
$$

