Ex:

After being open for a long time, the switch closes at $t=0$. Find $v_{1}(t)$ for $t>0$.

Solis: $t=0^{-}$model. f to find $w_{\mathrm{c}}\left(0^{-}\right)$) $c^{+}=$open circuit

The total current flowing cut of top node equals zero, and there is no current flowing in the $1 M \Omega$, the C, and the dependent source. It foilons that the current in the $2 M \Omega$ is $C A$. By Ohm's lan, the voltage drop across the $2 M-2$ is $0.2 \mathrm{H}=\mathrm{c}=\mathrm{c} \%$ This is also the voltage across the C.

$$
\therefore V_{C}\left(\mathrm{O}^{-}\right)=O \mathrm{~V}
$$

and

$$
v_{c}\left(o^{+}\right)=v_{c}\left(0^{-}\right)=o v
$$

We use tins value of $v_{c}\left(t=c^{+}\right)$as a voltage source in the $t=o^{+}$model to find $v,\left(0^{1}\right)$.

$$
t=c^{+} \text {model: }
$$

From a voltage bop on the left side, we have $v_{1}\left[0^{+}\right]=5 V$. Note: the components to the right of C are in parallel with the sirduitty on the left and directly across the same voltage source, (namely on).
$t \rightarrow \infty$ model: (to find $V_{1}(t+\infty)$) $C=$ open cire

The dependent sire is off and effectively disappears. This leaves a voltage divider:

$$
v_{1}(t \rightarrow \infty)=5 V \cdot \frac{1 M \Omega}{1 M B+2 M L i}=\frac{5}{3} V
$$

Finally, we have $\tau=R_{T h} C$ where $R_{T h}$ is the Thevenin equivalent resistance seen looking into the terminals where d is connected.

Because there is a dependent source, we find $R_{\text {Th }}$ from $R_{T h}=\frac{1 / T_{\text {Th }}}{i_{\text {S }}}$.
NTh 1 as always, equals the voltage across the output terminals when nothing is connected across them. Since $i_{x}=0$ and ai $i_{x}=0$, 'Th is given by a voltage divider formula:

If we short out the output terminals, we have oD across the $2 M \Delta 2$ resistor. This, there $i s$ no current in the $2 M a R$.

A current summation for the top node reveals that the current in the $1 M \Omega$ must be 103^{2}. From a v-loop on the left side, we also have $5 V$ across the IVAn R. Thus, the current in the $/ M \Omega$ R is $5 V / M \operatorname{lin}=5 \mu A$. Thus, we have

$$
5_{\mu A}=1 c i_{x} \text { or } i_{x}=0,5 \mu A
$$

From the schematic diagram, we see that

$$
\begin{aligned}
i_{S C}=i_{x} & =0.5 \mu A . \\
\therefore R_{T h}=\frac{V_{T h}}{i_{S C}} & =\frac{\frac{10}{3} V}{0.5, \mu A}=\frac{20}{3} \mathrm{M} \Omega
\end{aligned}
$$

$$
\text { Thus, } t=f_{T h}^{C}=\frac{20}{3} M \Omega \cdot 15 p F=100 \mu \mathrm{H} \text {. }
$$

Using the general form of solution, we have

$$
v_{1}(t)=v_{1}(t \rightarrow \infty)+\left[v_{1}\left(t=0^{t}\right)-v_{1}(t \rightarrow \infty)\right] e^{-t / \tau}
$$

$$
v_{1}(t)=\frac{5}{3} v+\left[5 v-\frac{5}{3} v\right] e^{-t / 100 \mu 5}, \quad t>0
$$

$$
\text { or } v_{1}(t)=\frac{5}{3} v+\frac{10}{3} V e^{-t / 100,4 s}, \quad t>0
$$

Note: A much simpler way to solve this problem is to observe the $q_{i x}$ dependent source acts like a capacitor that is 9 times C. Since the C and 96 are in parallel, we have an equivalent capacitance of $10 \mathrm{C}=10 \cdot 15 \mathrm{pF}=150 \mathrm{pF}$. The dependent source is now gone, and the sol'n is easier to find. The solution, of course is the same as above. $P_{7 h} C$ is the same, but $R_{T h}=1 M_{\Omega \Omega} \sqrt{ } 2 M \Omega$ and $C_{a / 50 p H}$ $v_{1}\left(0^{+}\right)$and $v_{1}(t \rightarrow \infty)$ are the same as before.

