Ex:

After being open for a long time, the switch closes at $t=0 . i_{\mathrm{L}}\left(t=0^{-}\right)=0 \mathrm{~A}$. Find $i_{\mathrm{L}}(t)$ for $t>0$.
solon: Since i_{i} is an energy variable, it cannot change instant ll.

$$
\therefore \quad i_{L}\left(t=0^{t}\right)=i_{L}(t=0)=O A
$$

This is one of the values we need for the general solution that describes $i_{L}(t)$:

$$
i_{2}(t)=i_{L}(t \rightarrow \infty)+\left[i_{L}\left(t=0^{+}\right)-i_{L}(t \rightarrow \infty)\right] e^{-t / \tau}
$$

where $\tau=L / R_{T h}$.

Note: $R_{\text {Th }}$ in the Theremin equivalent resistance seen looking into the terminals where L is connected. Since the dircact seen booking into the terminals is a Norton equivalent, and $E_{N}=R_{r h}$, we have

$$
R_{T h}=2 K .2 \text { and } \Psi^{2}=\frac{25 \mu H}{2 K \cdot L_{2}}=12.5 n \mathrm{n}
$$

The value we lack for a complete solon is $i_{L}(t \rightarrow \infty)$, To find this value, we
employ the idea that, as $t \rightarrow \infty$, the currents and voltages become constant, we have $t_{L}=L \frac{d i}{d t}=L \cdot 0=0 \mathrm{~V}$.

Thus, the L acts like a wire.
$t \rightarrow \infty$ model:

Since the $z k \Omega$ resistor is shorted out, it has ob across, meaning that the current in the $2 k \Omega$ is ov/2kr $=0 A$.
\therefore All the $0.1 \mathrm{~m} A$ from the source flows thea the L.

Thu $\leqslant_{1} \quad i_{L}(t \rightarrow \infty)=0.1 \mathrm{~mA}$.
Pinging values into the general sol's yields

$$
\begin{aligned}
& i_{L}(t)=0.1 \mathrm{~mA}+[0-0.1 \mathrm{~m} A] e^{-t / 12.5 n s} \\
& \text { or } i_{L}(t)=0.1 \mathrm{~mA}\left[1-e^{-t / 12.5 n s}\right]
\end{aligned}
$$

