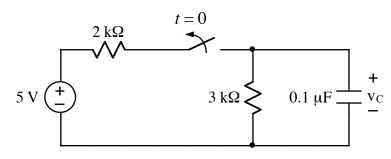


Ex:



After being closed for a long time, the switch opens at t = 0. Find $v_C(t)$ for t > 0. Hint: use a Thevenin equivalent for the voltage source and resistors for t < 0.

soln: The general soln for
$$v_c(t)$$
 is
$$-t/2$$

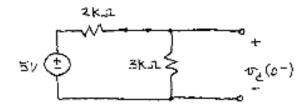
$$v_c(t) = v_c(t \rightarrow \infty) + \left[v_c(t = 0^+) - v_c(t \rightarrow \infty)\right] = 0$$

where $\mathcal{T} = R_{T_{k}}C$.

Note: R_{Th} is the Thevenin equivalent resistance seen looking into the terminals where C is attached.

To find $v_c(o^+)$, we consider $t=o^$ when the circuit has reached equilibrium. This means currents and voltages are not changing, $dv_c = 0$, and $i_c = C \, dv_c = 0$. At $dt|_{t=0}$. Since $i_c = 0$ at time t = 0, C acts like an open circuit at t = 0.

This yields the following circuit model at t=0":



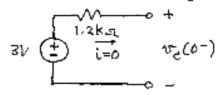
Note that the switch is closed at t=0.

If we use a Thevenin equivalent for the circuit, we have a voltage divider formed by the 5V, $2k\Omega$, and $3k\Omega$.

Thus, $V_{Th} = 5V \cdot 3k\Omega$, = 3V. $2k\Omega + 3k\Omega$

To find R_{Th} , we turn off the 5V source and find that $2k\Omega[3k\Omega = 1.2k\Omega]$ is the resistance seen looking in from the terminals where we measure $v_{C}(0^{-})$.

t=0 model using Thevenin equivalent:



Since no current can flow in the circuit owing to the open circuit, the v-drop across the $1.2k\Omega$ resistor is $C \cdot R = 0 \cdot V$.

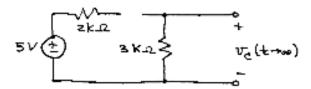
It follows that $\sigma_{\mathcal{C}}(o^-) = \nu_{Th} = 3\nu$.

Since to is an energy variable, it cannot change instantly. Thus,

To find $v_c(t\rightarrow \infty)$, we again employ the assumption that the circuit is in a state where currents and voltages are no longer changing. Thus, is = $\frac{c}{dt}$ =0.

In other words, Cacts like an open direuit.

+>∞ model:



With the switch open, the 5V source and 2ks resistor disconnected from the C. Since there is power source in the part of the Circuit connected to the C, $v_c(t \rightarrow \infty) = 0V$. Note that this satisfies Kirchhoff's voltage law for the loop consisting of the 3ks resistor, (with zero current and a zero-volt drop), and the C.

For the time constant, we use the Thevenin equivalent seen looking into the terminals where the C is connected. (Note that we use the circuit for t>0.) Here, the Thevenin equivalent is just 3kx R.

$$\tau = R_{Th}C = 3k\Omega \cdot 0.1\mu F$$

or $\tau = 0.3 \,\text{ms}$ or $300 \,\mu S$
 $\therefore v_c(t) = 0V + [3V - 0V]e^{-t/300 \,\mu S}$, $t \ge 0$

or $v_c(t) = 3Ve^{-t/300 \,\mu S}$, $t \ge 0$