

1. a) Solve the following simultaneous equations for v_1 and v_2 :

$$3v_1 - 4v_2 = 14$$

$$\frac{4(v_1 - v_2)}{7} + \frac{v_1}{2} = 29$$

b) Solve the following simultaneous equations for R_1 and R_2 :

$$\sqrt{R_1^2 + R_2} = 3$$

$$\frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} = \frac{10}{7}$$

2. Complete the following table showing products of prefixes for engineering units:

•	n	μ	m		k	M	
n		f					
μ	f			μ			
m		n				k	
			m				
k				k	M		
M	m				G		

Note:
$$a = 10^{-18}$$
, $f = 10^{-15}$, $p = 10^{-12}$, $n = 10^{-9}$, $\mu = 10^{-6}$, $m = 10^{-3}$, $blank = 10^0$, $k = 10^3$, $M = 10^6$, $G = 10^9$, $T = 10^{-12}$

- 3. Compute the power as a function of time consumed by a battery-powered device that draws the following current from a 1.5 volt battery.
 - a) Compute the power as a function of time consumed by a battery-powered device that draws the following current from a 1.5 volt battery.

$$i(t) = 1 \text{ mA} + 2\cos(2\pi t + 30^{\circ}) \text{ mA}$$

b) Find the energy consumed by the device described in (a) in the first minute. Note: Convert the 30° to radians before integrating.

- 4. Perform the following calculations, and write the answers with appropriate prefixes (such as μ , m, k, etc.) for engineering units:
 - a) $v = 5.6 \text{ mA} \cdot 0.5 \text{ k}\Omega$ Note: $V = A \cdot \Omega$
 - b) $R = 1.2 \text{ k}\Omega + 700 \Omega$

5.

Using the passive sign convention, complete the labeling of all currents and voltages for the resistors in the above circuit.