solution

1.

Rail voltages = ±9 V

- a) The above circuit operates in linear mode. Derive a symbolic expression for v_0 . The expression must contain not more than the parameters v_{s1} , v_{s2} , R_1 , R_2 , and R_2
- b) If $v_{s2} = 0$ V, find the value of R_2 that will yield an output voltage of $v_0 = -1$ V when $v_{s1} = 10$ mV.
- c) Derive a symbolic expression for ν₀ in terms of common mode and differential input voltages:

$$v_{\Sigma} = \frac{v_{s1} + v_{s2}}{2}$$
 and $v_{\Delta} = \frac{v_{s1} - v_{s2}}{2}$

The expression must contain not more than the parameters ν_{Σ} , ν_{Δ} , R_1 , R_2 , and R_3 . Write the expression as ν_{Σ} times a gain term plus ν_{Δ} times a gain term. Hint: write ν_{s1} and ν_{s2} in terms of ν_{Σ} and ν_{Δ} .

d) Using the value of R_2 from part (b), if necessary, calculate the input resistance, $R_{in} = v_{s2}/i_{s2}$, seen by the v_{s2} source.

soln: a) Using superposition, we turn on one v-source at a time.

case I: Vsi on, vs2 off (= wire)

R3 is bypassed by a wire and may be ignored. The circuit is then seen to be a simple negative-gain amplifier:

$$V_{pl} = OV$$
 $V_{nl} = V_{pl} = OV$

$$i \sharp_1 = \frac{v_{s_1} - ov}{R_1}$$
 on left side

$$i_{S1} = \frac{OV - Vol}{R_2}$$
 on right side

$$\frac{1}{R_2} = \frac{V_{01}}{R_1} = \frac{V_{01}}{R_1}$$
 or $V_{01} = -V_{01} = \frac{R_2}{R_1}$

case II: Vsi off (-wire), V+2 on

Since R_3 is across V-source $V_{\pm 2}$, we may ignore it. The circuit is then seen to be a simple positive-gain amplifier:

$$L_{S12} = \frac{0 - V_{NZ}}{R_1} = -\frac{V_{SZ}}{R_1}$$

$$i_{S12} = \frac{v_{m_2} - v_{o2}}{R_2} = \frac{v_{S2} - v_{o2}}{R_2}$$

$$\frac{V_{S2} - V_{OZ}}{R_2} = -\frac{V_{SZ}}{R_1}$$

$$V_{o2} = V_{52} \left(1 + \frac{R_2}{R_1} \right)$$

Summing results gives $V_0 = V_{01} + V_{02} = -V_{S1} \frac{R_2}{R_1} + V_{S2} \left(1 + \frac{R_2}{R_1} \right)$

b) Using $v_{s2}=ov$ and $v_{s1}=1omV$ in the formula from (a), we have

or
$$R_2 = \frac{-1V}{-10 \,\text{mV}} \cdot 3 \,\text{kp} = 300 \,\text{kp}$$

c) We have $V_{S1} = V_{\Sigma} + V_{\Delta}$ and $V_{SZ} = V_{\overline{\Sigma}} - V_{\Delta}$.

Substituting these into the formula for Vo from (a) yields the following:

$$v_o = - \left(v_{\mathcal{I}} + v_{\Delta} \right) \frac{R_z}{R_1} + \left(v_{\mathcal{Z}} - v_{\Delta} \right) \left(1 + \frac{R_z}{R_1} \right)$$

$$v_0 = v_{\Sigma} \begin{pmatrix} 1 + \frac{R}{K_1} - \frac{R}{K_1} \\ \hline K_1 & \overline{K_1} \end{pmatrix} - V_{\Delta} \begin{pmatrix} \overline{K_2} + 1 + \underline{K_2} \\ \overline{K_1} & \overline{K_1} \end{pmatrix}$$

$$V_0 = V_{\Sigma} - V_{\Delta} \left(1 + 2 \frac{R_2}{R_1} \right)$$

d)
$$R_{ih} = \frac{v_{62}}{i_{52}} = \frac{v_{52}}{v_{52}/R_3}$$
 (no current flows into op-amp, so $i_{52} = v_{52}/R_3$)

2.

Rail voltages = ±9 V

After being open for a long time, the switch closes at time $t = t_0$.

- a) Choose either an L or a C to go in box a to produce the $v_0(t)$ shown above. Specify what component goes in the box and its value.
- b) Sketch $v_1(t)$, showing numerical values appropriately.
- Sketch v₂(t), showing numerical values appropriately.
- d) Sketch v₃(t). Show numerical values for t < t₀, for t₀ < t < t₀ + 1.92 ms, and for t > t₀ + 1.92 ms. Use the ideal model of the diode: when forward biased, its resistance is zero; when reverse biased, its resistance is infinite.

soln: a) The op-amp acts as a comparator since their is no feedback. It measures the voltage drop across the inputs with the polarity as indicated by the + and - signs. If the voltage is positive, the output is + Vrail. If the voltage is negative, the output is - Vrail.

To produce the waveform shown in the problem, we must have $v_2 > v_1$ for $t < t_0$ and $t > t_0 + 1.92$ ms, and we must have $v_2 < v_1$ for $t_0 < t < t_0 + 1.92$ ms.

Vi is constant. The value of vi is

 $V_1 = I MA \cdot Z.2 kJL = Z.2V.$

For v_z , we consider the behavior with q=L and a=C in turn. (Assume to=0.)

At t=0, L= wire and i_(0) = 0 A, v2=5V.

At $t=0^+$, $i_L(0^+)=i_L(0^-)=0$ A = open. 30K.R ROKES

We have v-divider, with

$$V_2(0^+)=5V \cdot \frac{120k}{120k+30k} = 4V.$$

For $t \to \infty$, $L = wire and <math>V_2(t \to \infty) = OV$.

Using the general form of solution, we write an expression for v2 (4>0):

$$V_2$$
 ($\pm \langle 0 \rangle = 5 V$ from earlier

The time constant, L/RTh, is unknown, but the shape of the curve is exponential. We see that vz > v, for to and tot, and vz < v, for t>t,. Thus, this is not a viable waveform for vz to achieve the desired output pulse. Rather than proceeding with this solution, we consider the case of a=C.

At t=0, C= open and v2(0)=0V, v2=5V.

At $t=0^+$, $v_c(0^+) = v_c(0^-) = 0V = wire$.

We have vz shorted to reference. : v2 (0+) = OV

for t-> 0, C = open and we have V-divider:

Using the general form of solution, we write an expression for $v_2(t>0)$:

$$v_2(t>0) = v_2(t\rightarrow \infty) + [v_t(0^+) - v_2(t\rightarrow \infty)] e^{-t/R_{H}t}$$

$$V_2(t>0) = 4V - 4Ve$$
 $V_2(t<0) = 5V$ from earlier

The time constant, RTAC, is unknown at this point, but the curve is exponential.

We see that $v_z > v_1$ for t<0 and t>t₁, and $v_z < v_1$ for 0<t<t₁. Thus, this is a viable waveform for v_z to achieve the desired output pulse.

We choose C to make $t_1 = 1.92$ ms for proper pulse width. To find R_{Th} , we remove C and look into the terminals where C was connected—and turn off 51/50.

For t = 1.92 ms, we want v2(t1)= V1.

or
$$\frac{1.8V}{4V} = e^{-\frac{1}{4}\sqrt{R_{Th}}C}$$

or
$$en \frac{1.8V}{4V} = -t_1/R_{Th}C$$

or
$$R_{Th}C = -t_1/\ln\left(\frac{1.8}{4}\right) = \frac{-1.92 \text{ ms}}{\ln\left(1.8/4\right)}$$

or
$$C = \frac{2.4 \,\text{ms}}{R_{\text{Th}}} = \frac{2.4 \,\text{ms}}{24 \,\text{k.s.}}$$

b) From part (a), we have $v_1 = 2.2 V$ always.

c) From part (a), we have Vz(t) as follows:

d) When vo is high, the top diode will conduct and the bottom diode will be off.

we have a v-divider:

Note:
$$1.2 \text{ k} \Omega \parallel 2 \text{ k} \Omega = 0.2 \cdot 6 \parallel 10 \text{ k} \Omega$$

= $0.4 \cdot 3 \parallel 5 \text{ k} \Omega = 0.4 \cdot \frac{15}{8} \text{ k} \Omega$
= $\frac{6}{8} \text{ k} \Omega = 750 \Omega$

:.
$$V_3 = 9V \cdot \frac{750 + 750}{750 + 750 + 3k} \frac{\mathfrak{L}}{\mathfrak{L}}$$

$$= 9V \cdot \frac{1.5k}{4.5k}$$

$$V_3 = 3V \quad \text{when} \quad V_0 = +9V$$

When $v_0 = -9V$, the top diode will be off and the bottom diode will be on. Thus, the bottom diode will act like a wire shorting v_3 to ref.

$$v_3 = oV$$
 when $v_0 = -qV$

$$v_3(t)$$

$$0V$$

$$v_0 = 0$$

$$v_$$

3.

- a) Find the Thevenin equivalent of the above circuit relative to terminals a and b.
- b) If we attach R_L to terminals a and b, find the value of R_L that will absorb maximum power.
- c) Calculate the value of that maximum power absorbed by R_1 .

sol'n: a) The dependent source and 1.2ks resistor together produce a voltage drop of $-v_x + v_x = 0v$. Thus, they act like a wire and may be replaced by a wire:

This simplified circuit is the Thevenin equivalent.

b) $R_L = R_{Th}$ for max power transfer $R_L = 2.4 \text{ k.}\Omega$

c)
$$P_{\text{max}} = \frac{V_{\text{Th}}^2}{4R_{\text{Th}}} = \frac{(12V)^2}{4(2.4k\Omega)}$$
$$= \frac{12}{4} \cdot \frac{12}{2.4k} \quad W$$
$$= 3.5 \quad \text{mW}$$
$$P_{\text{max}} = 15 \quad \text{mW}$$

4.

Rail voltages = ±9 V

- a) A frequency-domain circuit is shown above. Write the value of phasor current \mathbf{I}_1 in rectangular form.
- b) Given $\omega = 20k \ rad/s$, write a numerical time-domain expression for $i_1(t)$, the inverse phasor of I_1 .

sol'n: a) First, we observe that $\mathbb{L}_{\times}=0$ since the 3 ks. resistor is shorted out by wires.

Thus, the dependent source = OV, and we may ignore the 3k.s. resistor. j24mA

Second, we observe that the -j10 k.s. and j10ks. in parallel act like an open circuit:

$$= jlok\left(\frac{-1}{0}\right) \Omega$$

Thus, we may ignore the -jloks and jloks:

Third, we observe that the ZKR is in series with a current source and may be ignored.

Fourth, we observe that the current source is shorted by a wire that isolates it from the loop on the right. Thus, we may ignore the current source.

The circuit now consists of a voltage source and two resistors.

 $|0k = \frac{1}{2} |10k = \frac{1}{2} |1+\frac{1}{2}|10V$ $|10k = \frac{1}{2} |1+\frac{1}{2}|10k = \frac{1}{2} |1+\frac{1}{2}|10k = \frac{1}{2} |1+\frac{1}{2}|1+$

In rectangular form i,(t) is a sum of a pure cos() and a pure sin():

i,(t) = 1 mA cos(20kt) - 1 mA sin(20kt)

Note: P'[j] = - sin(wt)

In polar form, I, = 1 12 245° mA

 $i(t) = \frac{\sqrt{2}}{2} mA \cos (20kt + 45°)$

5