

1.

Rail voltage = $\pm 9 \text{ V}$

The above circuit operates in linear mode. Derive a symbolic expression for v_0 . The expression must contain not more than the parameters i_s , v_s , R_1 , R_2 , and R_3 .

- 2. a) If $v_s = 0$ V, find the value of R_2 that will yield an output voltage of $v_0 = 1$ V when $i_s = 1$ mA.
 - b) Using the value of R_2 from part (a), find the value of v_s that will yield $v_0 = 1$ V when $i_s = 0$ A.
- 3. Using the value of R_2 from above, calculate the input resistance, $R_{in} = v_1/i_s$, seen by the i_s source.

4.

Find the Thevenin equivalent of the above circuit relative to terminals **a** and **b**.

- 5. a) Calculate the value of R_L that would absorb maximum power.
 - b) Calculate that value of maximum power $R_{\rm L}$ could absorb.