1. Rail voltage = $\pm 9 \text{ V}$ The above circuit operates in linear mode. Derive a symbolic expression for v_0 . The expression must contain not more than the parameters i_s , v_s , R_1 , R_2 , and R_3 . - 2. a) If $v_s = 0$ V, find the value of R_2 that will yield an output voltage of $v_0 = 1$ V when $i_s = 1$ mA. - b) Using the value of R_2 from part (a), find the value of v_s that will yield $v_0 = 1$ V when $i_s = 0$ A. - 3. Using the value of R_2 from above, calculate the input resistance, $R_{in} = v_1/i_s$, seen by the i_s source. 4. Find the Thevenin equivalent of the above circuit relative to terminals **a** and **b**. - 5. a) Calculate the value of R_L that would absorb maximum power. - b) Calculate that value of maximum power $R_{\rm L}$ could absorb.