ECE1270
Introduction to Electrical and Computer Engineering
Professor Angela Rasmussen
What is an Electrical Engineer

- Signal Processing
- Power Engineering
- Microelectronics
- Instrumentation Engineering
- Electronics
- Control Engineer
- Computer Engineer
- Communications
UNIVERSITY OF UTAH
Department of Electrical and Computer Engineering
ECE 1270 - Introduction to Electrical and Computer Engineering

Instructor: Dr. Angela Rasmussen
Office: MEB 3254
Phone: 971-1096 (cell phone)
Email: ece1270@comcast.net

Office hours: Wed. 10:35-11:35am, by appt.

Class Website: http://www.ece.utah.edu/~ece1270

Prerequisite: MATH 1210 or 1270
Co-requisite: ECE 1020, MATH 1220 or 1280, and PHYCS 2210

Required Text: Electric Circuits, 8th Edition
James W. Nilsson and Susan A. Riedel
Prentice Hall: Upper Saddle River, NJ

Required Packets: ECE 1270 Study Guide
Carl H. Durney and Neil E. Cotter
Available from Campus Copy Center in Union Building

ECE 1270 Conceptual Tools
Neil E. Cotter et al.
Available at Copy Center

Homework: Due before class Wednesday’s or on day indicated in syllabus.
No late HW accepted.
Turn in to locker on 3rd floor of MEB near southeast stairway.

Cheating: Any form of cheating will result in an "E" grade. Students are encouraged to discuss assignments, but each student must do all their own work on assignments.

Equal Access: The University of Utah seeks to provide equal access to its programs, services and activities for people with disabilities. If you will need accommodations in this class, reasonable prior notice needs to be given to the instructor and to the Center for Disability Services, 162 Olpin Union Building, 518-5020 (V/TDD) to make arrangements for accommodations.

All written information in this course can be made available in alternative format with prior notification.

Any questions of concerns about the above information may be directed to:
Olga Nadeau
Director, CDS
162 Olpin Union Building
581-5020

Julene Persinger
ADA Coord/Assoc Director, OEO/ER
135 Park Building
581-8365
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Jan. 7</td>
<td>Course Procedures, Intro, Basic DC Circuits: Algebra, Passive Sign Convention, Units, Voltage v, Current i, Power p, Sources, Kirchhoff’s Laws, Ohm’s Law</td>
</tr>
<tr>
<td></td>
<td>Jan. 9</td>
<td>Passive Sign Convention, Sources-voltage, current, independent and dependent, Kirchhoff’s Laws, Ohm’s Law</td>
</tr>
<tr>
<td></td>
<td>Jan. 11</td>
<td>Kirchhoff’s Laws, Ohm’s Law (cont)</td>
</tr>
<tr>
<td></td>
<td>Jan. 14</td>
<td>Circuits: Resistor Networks (parallel/series), voltage and current dividers, power dissipation, Op Amps</td>
</tr>
<tr>
<td></td>
<td>Jan. 16</td>
<td>HW1 due Op Amps: Ideal Amplifiers</td>
</tr>
<tr>
<td></td>
<td>Jan. 18</td>
<td>Op Amps: Ideal Amplifiers</td>
</tr>
<tr>
<td></td>
<td>Jan. 21</td>
<td>HW2 due Review</td>
</tr>
<tr>
<td></td>
<td>Jan. 23</td>
<td>Martin Luther King Day</td>
</tr>
<tr>
<td>3</td>
<td>Jan. 25</td>
<td>Midterm #1</td>
</tr>
<tr>
<td>4</td>
<td>Jan. 28</td>
<td>Node Voltage Method</td>
</tr>
<tr>
<td></td>
<td>Jan. 30</td>
<td>Node Voltage, Mesh Current Method</td>
</tr>
<tr>
<td></td>
<td>Feb. 1</td>
<td>Mesh Current, Thevenin Equivalent</td>
</tr>
<tr>
<td>5</td>
<td>Feb. 4</td>
<td>Thevenin Equivalent</td>
</tr>
<tr>
<td></td>
<td>Feb. 6</td>
<td>HW3 due Review</td>
</tr>
<tr>
<td></td>
<td>Feb. 8</td>
<td>HW4 due Review</td>
</tr>
<tr>
<td>6</td>
<td>Feb. 11</td>
<td>Midterm #2</td>
</tr>
<tr>
<td></td>
<td>Feb. 13</td>
<td>RC/RL Circuits: C(Capacitor Equations), L (Inductor Equations), General Solution</td>
</tr>
<tr>
<td></td>
<td>Feb. 15</td>
<td>RC/RL Circuits: C(Capacitor Equations), L (Inductor Equations), General Solution (Cont.)</td>
</tr>
<tr>
<td>7</td>
<td>Feb. 18</td>
<td>President’s Day</td>
</tr>
<tr>
<td></td>
<td>Feb. 20</td>
<td>RC/RL Examples</td>
</tr>
<tr>
<td></td>
<td>Feb. 22</td>
<td>HW5 due Examples</td>
</tr>
<tr>
<td>8</td>
<td>Feb. 25</td>
<td>Maximum Power Transfer, Superposition</td>
</tr>
<tr>
<td></td>
<td>Feb. 27</td>
<td>HW6 due Examples</td>
</tr>
<tr>
<td></td>
<td>Feb. 29</td>
<td>Review</td>
</tr>
<tr>
<td>9</td>
<td>March 3</td>
<td>Review</td>
</tr>
<tr>
<td></td>
<td>March 5</td>
<td>Midterm #3</td>
</tr>
<tr>
<td></td>
<td>March 10</td>
<td>Complex Analysis – Basic Math (properties of complex number, rationalization, add, subtract) (Cont.)</td>
</tr>
<tr>
<td></td>
<td>March 12</td>
<td>Complex Analysis – Impedance, Phasors, Ohms Law</td>
</tr>
<tr>
<td></td>
<td>March 14</td>
<td>Impedance Circuits – Superposition</td>
</tr>
<tr>
<td>11</td>
<td>March 17-22</td>
<td>Spring Break</td>
</tr>
<tr>
<td>12</td>
<td>March 24</td>
<td>Examples</td>
</tr>
<tr>
<td></td>
<td>March 26</td>
<td>HW7 due Examples</td>
</tr>
<tr>
<td></td>
<td>March 28</td>
<td>Examples</td>
</tr>
<tr>
<td>13</td>
<td>March 31</td>
<td>Examples</td>
</tr>
<tr>
<td>14</td>
<td>April 2</td>
<td>HW8 due Examples</td>
</tr>
<tr>
<td></td>
<td>April 4</td>
<td>Examples</td>
</tr>
<tr>
<td>15</td>
<td>April 7</td>
<td>Review</td>
</tr>
<tr>
<td>16</td>
<td>April 9</td>
<td>Midterm #4</td>
</tr>
<tr>
<td></td>
<td>April 11</td>
<td>Review</td>
</tr>
<tr>
<td>17</td>
<td>April 14</td>
<td>Review</td>
</tr>
<tr>
<td></td>
<td>April 16</td>
<td>HW9 due</td>
</tr>
<tr>
<td></td>
<td>April 18</td>
<td>Review</td>
</tr>
<tr>
<td>18</td>
<td>April 21</td>
<td>HW10 due</td>
</tr>
<tr>
<td></td>
<td>April 23</td>
<td>Review</td>
</tr>
<tr>
<td>Wed</td>
<td>April 30</td>
<td>Final Exam, 8-10am (Comprehensive)</td>
</tr>
</tbody>
</table>
Text Reading and Example Problems with Answers

Unit 1:
Ch. 1 Units, Voltage, Current, Power, Passive Sign Convention (Summary pg. 17)
Ch. 2 Analysis of circuits - Dependent sources, power, Kirchhoff’s Law’s, Ohm’s Law (Summary pg. 47)
Assessments: (pg. 28, 32, 42, 46) 2.1-2.5, 2.8-2.10
Back of Chapter Problems: (pg. 48-53) Pr. 2.2-2.3, 2.6, 2.8, 2.14, 2.17-2.19, 2.24, 2.28
Ch. 3 (3.1-3.4) Resistors in parallel and series, Voltage Divider, Current Divider
Assessments: (pg. 62, 65, 67) 3.1-3.4
Back of Chapter Problems: (pg. 80-84) Pr. 3.1, 3.2, 3.5, 3.6, 3.13, 3.15, 3.21-3.23
Ch. 5 (5.1-5.2) Op Amps
Assessments: (pg. 161) 5.1
Back of Chapter Problems: (pg. 176) Pr. 5.1-5.3
Examples: 2.1, 2.2, 2.6-2.8, 2.10-2.11, 3.1-3.4

Unit 2:
Ch. 4 (4.1-4.11) Definitions, Node Voltage, Supernode, Mesh current, Supermesh, Thevenin Equivalent
Assessments: (pg. 99-101, 104. 107, 109, 112, 116, 123, 125) 4.1-4.14, 4.16, 4.18-4.20
Back of Chapter Problems: (pg. 139-149) Pr. 4.6, 4.9, 4.10, 4.12, 4.13, 4.19-4.21, 4.26, 4.27, 4.31, 4.32, 4.37, 4.38, 4.41, 4.42, 4.47, 4.50, 4.54-4.56, 4.63, 4.67a, 4.71, 4.77
Examples: 4.1-4.3, 4.4-4.7, 4.10, 4.11

Unit 3:
Ch. 6 (6.1-6.3) – Inductors, Capacitors (Summary pg. 217)
Ch. 7 (7.1-7.4) - 1st order response, RL switch, RC switch, General Solution
Assessments: (pg. 195, 199, 203, 236, 240, 245, 248) 6.1-6.5, 7.1(a-d), 7.2a, 7.3(a-d), 7.4-7.6
Sections 4.12, 4.13 Maximum Power Transfer, Superposition
Assessments: (pg. 129) 4.12-4.22;
Back of Chapter Problems: (pg. 149) Pr. 4.79, 4.80
Examples: 7.1-7.3, 7.4-7.6, 7.7-7.9, 4.12, 4.13

Unit 4:
Ch. 9 Complex Numbers, Sinusoidal Signals, Phasors, Frequency Domain Analysis
Lecture #1

Units

<table>
<thead>
<tr>
<th>Current</th>
<th>Amps</th>
<th>A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>Volts</td>
<td>V</td>
</tr>
<tr>
<td>Resistance</td>
<td>Ohms</td>
<td>Ω</td>
</tr>
<tr>
<td>Capacitance</td>
<td>Farads</td>
<td>F</td>
</tr>
<tr>
<td>Inductance</td>
<td>Henrys</td>
<td>H</td>
</tr>
<tr>
<td>Power</td>
<td>Watts</td>
<td>W</td>
</tr>
</tbody>
</table>

Values

<table>
<thead>
<tr>
<th>G</th>
<th>Giga</th>
<th>10^9</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>Mega</td>
<td>10^6</td>
</tr>
<tr>
<td>K</td>
<td>Kilo</td>
<td>10^3</td>
</tr>
<tr>
<td>m</td>
<td>Milli</td>
<td>10^-3</td>
</tr>
<tr>
<td>μ</td>
<td>Micro</td>
<td>10^-6</td>
</tr>
<tr>
<td>n</td>
<td>Nano</td>
<td>10^-9</td>
</tr>
<tr>
<td>p</td>
<td>Pico</td>
<td>10^-12</td>
</tr>
<tr>
<td>f</td>
<td>Femto</td>
<td>10^-15</td>
</tr>
</tbody>
</table>

Conversions:

\[
\begin{align*}
I = & 1 \text{ Q/V} \\
A = & 1 \text{ Q/sec} \\
\Omega = & V/A \\
\text{H} = & V^2/A
\end{align*}
\]

Circuit Elements

- Voltage
- Current
- Resistor
- Capacitor
- Inductor
- Source
- Waterfall
- Pump
- Pipe
- Storage tank
- Paddle wheel

Passive Sign Convention

Current arrow always points from plus to minus.

Kirchoff's Current Law (KCL):
- If you have water flowing into and out of a junction of several pipes, water flowing into the junction must equal water flowing out.
- The same applies to electric currents.

The algebraic sum of the currents into a node at any instant is zero

\[
I_T - I_1 - I_2 = 0 \text{ or } -I_T + I_1 + I_2 = 0
\]

Kirchoff's Voltage Law (KVL):

The algebraic sum of the voltages around any closed path is zero

\[
-V + V_{R1} + V_{R2} + V_{R3} = 0
\]
Voltage

waterfall

\[V = \text{Voltage} \leftrightarrow \text{altitude} \]

Volts: 10V typ 1mV small

Lift charge \(\Delta q \)

\[V = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} \]

change energy \(\Delta W \)

\[\frac{\Delta W}{\Delta q} = \text{indicates polarity of measurement} \]

\[\Delta W = \alpha \Delta q \]

\[V\text{-source} \]

\[\begin{align*}
\text{independent} & \quad \pm V_g \\
\text{dependent} & \quad \sqrt[3]{x} = 3i_g
\end{align*} \]

Current

\[i = \text{Current} \leftrightarrow \text{flow rate} \]

Amps: 1A large 1mA typ

\[i = \lim_{\Delta t \to 0} \frac{\Delta q}{\Delta t} \]

\[i\text{-source} \]

\[\begin{align*}
\text{independent} & \quad \pm i \\
\text{dependent} & \quad \sqrt[3]{i_x} = 3V_x
\end{align*} \]

Power

\[\text{Watts} \quad \frac{1}{4} W \text{ typ} \quad 100 W \text{ med} \]

\[\begin{align*}
\text{change energy by } \Delta W & \quad p = \lim_{\Delta t \to 0} \frac{\Delta w}{\Delta t} \\
\text{in time } \Delta t & \quad \frac{\Delta W}{\Delta t} = \frac{dw}{dt}
\end{align*} \]

\[\text{chain rule} \quad p = \frac{dw}{dt} \frac{dg}{dt} \quad \text{tot pow in circuit} = 0 \]
EX: In the circuit below, label currents in each element and then label potential differences according to the passive sign convention.

ANS:

(SOL'N: The answer is not unique. We may choose either direction for the + and - of the voltage measurement for each resistor and then label the current measurement with an arrow pointing from the + sign to the - sign. Or we may choose either direction for the current measurement arrow for each resistor and then label the voltage measurement with the + and - sign such that the current measurement arrow points toward the - sign. What matters is the consistency of voltage and current measurements with each other, not the actual direction of current flow or the sign of actual voltage.

When we deal with a source, we normally leave it as is and avoid adding labels to it. Sometimes, however, we may wish to calculate the power dissipation for a source. In that case, we take the + and - sign or the arrow as the direction of one measurement, and we make the other measurement consistent with it.)
Thus, if we were to measure current in the voltage sources for the above circuit, the arrows would all point down. If we were to measure voltage in the current source for the above circuit, the + sign would be on top and the - sign would be on the bottom.

It often turns out to be convenient to label resistors with the current measurement arrow pointing to the right or pointing down. This often matches the direction of the physical current flow and is often the direction we would measure the output voltage for a circuit. Later on, we will usually designate the bottom wire on a circuit diagram as the "reference" which is where the minus sign of every voltage measurement will be located.

Note: we normally add voltage and current measurement labels for only the resistors in a circuit.
EX: In the circuit below, the currents in each element are labeled as shown. Using the passive sign convention, label the potential difference across each element and show its polarity.

ANS:

SOL'N: The passive sign convention dictates that the current measurement arrow always points away from the + sign and toward the - sign of the voltage measurement. Note that the current arrow and + and - sign for voltage indicate only the Polarity Of current and voltage Measurements—NOT the direction of the physical flow of current or the sign of the actual voltage. In other words, the arrows and + and - sign tell us how to connect the leads of a multimeter to make a measurement. We do not know, (nor do we have to know), in advance which direction current is flowing or what the actual sign of the voltage will be.
DEF: A loop is any continuous path (that may even cross gaps across open space) that ends where it starts.

NOTE: The goal of writing current summation and voltage loop equations is to obtain n equations in n unknowns that we can solve to find all the currents and voltages in a circuit.

TOOL: Loops that cross over themselves may always be treated as two smaller loops. (Smaller loops yield simpler equations.)

NOTE: We may proceed in either direction around a loop when we write a voltage loop equation, (but we must continue in the same direction all the way around the loop).

TOOL: We set the sum of voltage drops around a loop to zero. If we exit a circuit element from the + sign of the voltage measurement as we proceed around the loop, then that voltage appears with a plus sign in the loop equation. If we exit a circuit element from the – sign of the voltage measurement as we proceed around the loop, then that voltage appears with a minus sign in the loop equation.

NOTE: Using a + sign for a voltage term if we enter a circuit element from the + sign of the voltage measurement, and using a – sign for a voltage term if we enter a circuit element from the – sign of the voltage measurement yields an equation equivalent to using the opposite sign convention (as stated in the preceding tool). Multiplying one equation by -1 on both sides yields the other equation.

TOOL: We skip voltage loops where we would be forced to define a voltage for a current source. Writing an equation for such a loop adds a new variable and a new equation. Thus, we merely create more equations in more unknowns rather than moving closer to the goal of writing n equations in n unknowns.

TOOL: We write voltage loops for all inner loops, if appropriate. If we are able to write an equation for each inner loop, we have all the voltage loop equations we need. When we must skip an inner loop equation (because we would have to define a voltage for a current source), we write a voltage-loop equation for the next larger voltage loop containing some portion of that inner loop. If we must skip that next larger loop, we proceed to the next larger loop, and so on recursively. If we must skip even the largest voltage loop, then that voltage loop is unnecessary. (In that case, the other voltage-loop and current-summation equations will be sufficient to solve the circuit.)

TOOL: When necessary, we supplement voltage-loop equations with equations that equate voltages across circuit elements that are in parallel.
DEF: A circuit node is any point to which three or more circuit elements are attached.

NOTE: The goal of writing current summation and voltage loop equations is to obtain \(n \) equations in \(n \) unknowns that we can solve to find all the currents and voltages in a circuit.

TOOL: Nodes connected by wires are considered to be a single node.

TOOL: We set the sum of currents measured as flowing out of a node to zero. If the current measurement arrow points toward a node, that current appears with a minus sign in the current-sum equation.

TOOL: We skip current sums for nodes where we would be forced to define a current for a voltage source. Writing an equation for such a node adds a new variable and a new equation. Thus, we merely create more equations in more unknowns rather than moving closer to the goal of writing \(n \) equations in \(n \) unknowns.

TOOL: There is always at least one node we may skip when writing current-sum equations. The equation for that node would be redundant.

TOOL: When necessary, we supplement current sum equations with equations that equate currents flowing in circuit elements that are in series.

NOTE: Summing the currents flowing into a node yields an equation that is equivalent to the equation for summing the currents flowing out of that node. Multiplying one equation by \(-1\) on both sides yields the other equation.

NOTE: Summing currents measured as flowing into a node and setting that sum equal to currents measured as flowing out of that node yields an equation equivalent to setting the sum of all currents measured as flowing out of the node to zero.
Example 1

Diagram:

- **Find:** \(V_1, V_2, I_1, I_2. \)

Solution:

\[V_1 = 10V \] from closed loop involving 10V source and \(R \) for \(V_1. \) True even with intervening \(R. \)

\[10V - V_1 = 0V \]

\[2V - V_2 = 0V \]

\[2V_1 + V_2 = 0V \]

\[V_2 = 20V \]

\[V_1 = 10V \]

\[I_1 = 2A \]

\[I_1 = 2A \] because resistor for \(I_1 \) is in series with 2A source.

\[0A \] net current flows out of the dotted boxes.

\[I_2 = 3I_1 = 6A \]

\[I_2 = 3I_1 \] because resistor for \(I_2 \) is in series with dependent source that creates \(I_1 = 6A. \)

Current flow into dotted box = 6A

Current flow out of dotted box = 6A.
EX: In the circuit below, use Kirchhoff's voltage and current laws to write equations relating voltages and currents.

\[+ v_1 - \]
\[v_g \]
\[R_1 \]
\[+ v_2 - \]
\[i_1 \]
\[i_2 \]
\[i_g \]

ANSWER: \[-i_1 + i_2 - i_g = 0\]
\[v_g - v_1 - v_2 = 0\]

SOL'N: We sum the currents flowing out of the top center node. Writing an equation for the bottom node would be redundant. Recall that we always have one extra node.

Because writing a v-loop equation for the right inner loop would require defining a voltage for a current source, we write a v-loop equation for only the left loop. Note that the only larger loop containing the right inner loop would also require defining a voltage for the current source. Thus, a voltage loop equation for the right side is unnecessary.

Our voltage loop on the left starts from the lower left and proceeds in a clockwise direction. We may start voltage loops wherever we desire, but being consistent tends to improve accuracy.
EX: In the circuit below, use Kirchhoff’s voltage and current laws to write equations relating voltages and currents.

![Circuit Diagram]

ANSWER:

\[-i_1 - i_g + i_3 + i_4 = 0\]
\[+v_g - v_1 - v_3 - v_2 = 0\]
\[+v_3 - \alpha v_1 - v_4 = 0\]

SOL’N: We avoid labels defining the current for a voltage source or the voltage for a current source. Thus, we look for nodes where every branch has a labeled current, (i.e., contains at least one resistor or current source, as opposed to only v-sources), and v-loops where the loop where every element has a labeled voltage, (i.e., without current sources).

We sum the currents flowing out of the top center node. (Writing an equation for the bottom node would be redundant.) Note that, because a wire connects them, we consider the two top-center nodes as a single node. (We may redraw the circuit with the wire collapsed to a point.) Note also that current \(i_1\) continues around the loop to flow through \(R_1\) from left to right, and current \(i_4\) flows through the dependent source.

Because writing v-loop equations for the left or center inner loops would require defining a voltage for a current source, we write a v-loop equation for the next larger loop that goes around the current source. We also write a v-loop equation for the inner loop on the right.

Our voltage loops start from the lower left and proceed in a clockwise direction. We may start voltage loops wherever we desire, but being consistent tends to improve accuracy.
Ref: Nilsson & Riedel, Rev 6, Prob 3.6a

Find equivalent resistance R_{ab} looking into a-b.

\[\begin{align*}
R_{ab} & \Rightarrow \frac{2\Omega}{12\Omega} = \frac{12\Omega \cdot 24\Omega}{12\Omega \cdot \frac{1}{2}} = \frac{12\Omega \cdot 12\Omega}{14\Omega} \\
& = 12\Omega \cdot \frac{2}{3} = 8\Omega \\
& \Rightarrow R_{ab} = 2\Omega + 8\Omega + 6\Omega = 16\Omega
\end{align*} \]
a) Use V-divider to find V_i.

Sol'n: We are given 100V drop across R to left of 1kΩ and 3kΩ. :: we have 100V drop across 1kΩ and 3kΩ in series.

By V-divider formula,

\[
V_i = \frac{100V \cdot 1k\Omega}{1k\Omega + 3k\Omega} = \frac{100V \cdot 1}{4} = 25V
\]

b) Use i-divider to find i_i.

Sol'n: We are given 10A thru 200Ω in parallel with 300Ω.

By i-divider formula,

\[
i_i = \frac{10A \cdot 200\Omega}{200\Omega + 300\Omega} = \frac{20A}{5} = 4A
\]
1.

\[\begin{align*}
\text{12 A} & \quad \text{1} \ \Omega \\
& \quad \text{i}_1 \mid \text{12 } \Omega \\
& \quad + \frac{v_0}{-3} \Omega \\
& \quad \text{i}_2 \mid \text{2} \ \Omega \
\end{align*} \]

a) Calculate \(\text{i}_1, \text{i}_2, \) and \(v_0. \)

b) Find the power dissipated for every component, including the current source.

2.

\[\begin{align*}
\text{240 V} & \quad + \mid \text{i}_1 \mid - \\
& \quad \text{1} \ \Omega \\
& \quad \text{i}_2 \mid \text{15 } \Omega \\
& \quad \text{30 } \Omega \\
& \quad \text{30 } \Omega \\
& \quad + \frac{v_0}{-} \\
\end{align*} \]

Calculate \(\text{i}_1, \text{i}_2, \) and \(v_0. \)

3.

\[\begin{align*}
\text{20 mA} & \quad + \mid \text{i}_1 \mid - \\
& \quad \text{10 } \Omega \\
& \quad \text{2v}_x \\
& \quad 10 \ \kappa \Omega \\
& \quad \text{5 } \kappa \Omega \\
\end{align*} \]

Find \(v_x, i_1, \) and the power dissipated by the dependent source.
Ex:

![Circuit Diagram]

a) Calculate i_1, i_2, and v_0.

b) Find the power dissipated for every component, including the current source.

Sol'n: a) We first label current and voltage for each resistor. We follow the passive sign convention: the arrow for the direction of current measurement points toward the - sign of the voltage measurement.

For the 1Ω resistor, we may define the current measurement in either direction. For the sake of illustration, we define the direction of current measurement in a way that is somewhat awkward.
Now we write eq's for voltage loops. We try to write v-loop eq's for inner loops, but we avoid loops that include a current source. (The reason we do so is to avoid defining a new variable that requires another eq.) In this problem, there is only one v-loop without a current source. Going around the inner loop on the right side in a clockwise direction and using the sign where we exit a component, we have

$$+v_1 + v_3 - v_0 - v_2 = 0V$$

Next, we write eq's for current summations at nodes. We sum the currents measured flowing away from the top center node.

$$-12A + i_1 - i_3 = 0A$$

There is always one redundant node. So we only need this one eq.

Now we look for components in series that carry the same current:

$$i_3 = -i_0 \quad \text{(minus sign because currents measured in opposite directions)}$$

$$i_0 = i_2$$
Our last set eg’ns comes from Ohm’s Law for each resistor.

\[v_1 = i_1 \cdot 12\Omega \]
\[v_0 = i_0 \cdot 3\Omega \]
\[v_2 = i_2 \cdot 2\Omega \]

To solve the simultaneous eq’ns, we substitute \(i_2 \) for \(i_0 \) and \(-i_2\) for \(i_3 \). Then we substitute for \(v’\)s using the Ohm’s law eq’ns.

Our \(v\)-loop eq’n becomes

\[i_1 \cdot 12\Omega - i_2 \cdot 1\Omega - i_2 \cdot 3\Omega - i_2 \cdot 2\Omega = 0V. \]

Our \(i\)-sum eq’n becomes

\[-12A + i_1 + i_2 = 0A. \]

Solving the second eq’n, we have, for \(i_2 \),

\[i_2 = 12A - i_1. \]

Substituting for \(i_2 \) in the \(v\)-loop eq’n:

\[i_1 \cdot 12\Omega - (12A - i_1)(\frac{1\Omega + 3\Omega + 2\Omega}{6\Omega}) = 0V \]

or \[i_1 \cdot (12\Omega + 6\Omega) = 12A - 6\Omega \]

or \[i_1 = \frac{12A \cdot 6\Omega}{18\Omega} = 4A \]
Using an earlier eqn:

\[i_2 = 12A - i_1 = 12A - 4A = 8A \]

From earlier eqn:

\[V_0 = i_0 \cdot 3 \Omega = i_2 \cdot 3 \Omega = 8A \cdot 3 \Omega = 24V \]

b) Power dissipated: \(p = i \cdot v = i^2 R \) for \(R_5 \)

12Ω: \[p = i_1^2 \cdot 12\Omega = 4A^2 \cdot 12\Omega = 192W \]

1Ω: \[p = i_3^2 \cdot 1\Omega = (-8A)^2 \cdot 1\Omega = 64W \]

3Ω: \[p = i_0^2 \cdot 3\Omega = (8A)^2 \cdot 3\Omega = 192W \]

2Ω: \[p = i_2^2 \cdot 2\Omega = (8A)^2 \cdot 2\Omega = 128W \]

For the current source, we find the voltage drop from a v-loop on the left side.

\[\text{We have} \quad -V_q - V_1 = -V_q - i_1 \cdot 12\Omega = 0V \]

\[V_q = -i_1 \cdot 12\Omega = -4A \cdot 12\Omega = -48V \]

Power for 12A src: \(p = 12A \cdot V_q = 12A \cdot (-48V) \)

\[p = -576W \]
Homework #1 Examples

1.

(a) Calculate i_1, i_2, and v_o.
(b) Find the power dissipated for every component including the current source.
EX:

$$\begin{align*}
\begin{array}{c}
+ & v_1 - \\
\text{1 } & \Omega
\end{array}
\end{align*}$$

\[i_1 \]

\[15 \Omega \]

\[i_2 \]

\[30 \Omega \]

\[30 \Omega \]

\[+ & v_0 - \\
\end{align*}$$

240 V

Calculate \(i_1, i_2, \) and \(v_0 \).

solution: First, we label \(R \)'s.

\[\begin{align*}
\begin{array}{c}
+ & v_1 - \\
\text{1 } & \Omega
\end{array}
\end{align*} \]

\[i_1 \]

\[15 \Omega \]

\[i_2 \]

\[30 \Omega \]

\[30 \Omega \]

Second, we write \(v \)-loop eqns. We write eqns for both inner loops.

\[+240V - v_1 - v_3 - v_2 = 0V \]

\[+v_2 - v_0 = 0V \]

Third, we write current-sum eqns for all but one node. For the node between \(R \)'s on the right side we have

\[-i_1 + i_2 + i_0 = 0A\]
Fourth, we equate currents for components in series. We have already done this, however, by using i_1 for both the 1.2 and 15.2 Ω.

Fifth, we write Ohm's law eqns for every R:

$$v_1 = i_1 \cdot 1.2$$
$$v_3 = i_1 \cdot 15.2$$
$$v_2 = i_2 \cdot 30.2$$
$$v_0 = i_0 \cdot 30.2$$

Now we use the Ohm's law eqns to substitute for v's:

$$+ 240V - i_1 \cdot 1.2 - i_1 \cdot 15.2 - i_2 \cdot 30.2 = 0V$$
$$+ i_2 \cdot 30.2 - i_0 \cdot 30.2 = 0V$$

Our current sum eqn is unchanged:

$$-i_1 + i_2 + i_0 = 0A$$

From the 2nd of the above 3 eqns we have

$$i_0 = i_2$$

Using this in the 3rd eqn gives
\[i_1 = 2i_2 \]

Using this in the 1st eqn gives
\[+240V = 2i_2 (1\Omega + 15\Omega) - i_2 \cdot 30\Omega = 0V \]

or \[i_2 (2 \cdot 16\Omega + 30\Omega) = 240V \]

or \[i_2 = \frac{240V}{62\Omega} = \frac{120}{31} A \approx 3.87A \]

or \[i_1 = 2i_2 = \frac{240}{31} A \approx 7.74A \]

\[v_o = i_o \cdot 30\Omega = i_2 \cdot 30\Omega = \frac{120(30)}{31} V \]

or \[v_o = \frac{3600}{31} V \approx 116V \]
Calculate i_1, i_2, and v_o.
Find v_x, i_1, and the power dissipated by the dependent source.

\textit{Sol'n:} We find i_1, the current for the dependent V-src \underline{after} we solve the circuit.

First, label i_1's and V's for R's:

Second, write v-loop eq's for loops not containing current src's. There is only one such loop, indicated by the dotted line:

\[+v_x + 2v_x - v_2 - v_3 = 0V \]

Third, write current-sum eq's for nodes (unless nodes are connected only by v src's). We don't use the nodes on top since they are connected by only the $2v_x$ source.
For the node on the bottom, left of center, we have

\[+20mA - i_x - i_3 = 0A \] \hspace{1cm} (1)

For the node on the bottom, right of center, we have

\[i_3 + 20mA - i_2 = 0A \] \hspace{1cm} (2)

Fourth, we look components in series carrying the same current. Here, we lack any such components.

Fifth, we write Ohm's Law eqns for all the R's:

\[V_x = i_x \cdot 10k\Omega \]

\[V_2 = i_2 \cdot 5k\Omega \]

\[V_3 = i_3 \cdot 15k\Omega \]

Now substitute Ohm's Law for V's in V-loop eqn:

\[i_x \cdot 10k\Omega + 2i_x \cdot 10k\Omega - i_2 \cdot 5k\Omega - i_3 \cdot 15k\Omega = 0V \] \hspace{1cm} (3)

Solve one the three eqns (1-3) for a current:

\[i_3 = i_2 - 20mA \]

Substitute this in eqns (1) and (2):
\[20 \text{ mA} - i_x - (i_2 - 20 \text{ mA}) = 0 \text{ A} \]

\[i_x (10k\Omega + 20k\Omega) - i_2 (5k\Omega) - (i_2 - 20 \text{ mA}) 15k\Omega = 0 \text{ V} \]

Solving the first of these equations for \(i_2 \) gives

\[i_2 = 40 \text{ mA} - i_x \]

Using this in the second of the two equations gives:

\[i_x (30k\Omega) - (40 \text{ mA} - i_x) (5k\Omega + 15k\Omega) = -20 \text{ mA} \cdot 15k\Omega \]

or

\[i_x (30k\Omega + 20k\Omega) = 40 \text{ mA} (20k\Omega) - 20 \text{ mA} \cdot 15k\Omega \]

or

\[i_x (50k\Omega) = 500 \text{ V} \]

or

\[i_x = \frac{500 \text{ V}}{50k\Omega} = 10 \text{ mA} \]

Now we can find \(i_1 \) from a current sum at the node on top to the left of center:

\[-20 \text{ mA} + i_x - i_1 = 0 \text{ mA} \]

or

\[i_1 = -20 \text{ mA} + i_x = -20 \text{ mA} + 10 \text{ mA} = -10 \text{ mA} \]

The power dissipated by the dependent source is

\[p = i_1 \cdot 2v_x = -10 \text{ mA} \cdot 2 \cdot \frac{10 \text{ mA} \cdot 10k\Omega}{1k\Omega} \]

or

\[p = -2 \text{ W} \]
Find \(v_x \), \(i_1 \), and the power dissipated by the dependent source.
a) Calculate i_A and v_o. Use Ohm's law, Kirchhoff's laws.

Left-side V loop (Ohm's law): $12V - 2i_o - i_A \cdot 5\Omega = 0V$

Center V loop (Ohm's law, as always): $v_o + 6i_o - i_A \cdot 5\Omega = 0V$

but $v_o = i_A \cdot 2\Omega$, so center loop eqn is: $i_A \cdot 2\Omega + 6i_o - i_A \cdot 5\Omega = 0V$

Now we have 2 eqns in two unknowns. Eliminate i_o.

$10i_o - i_A \cdot 5\Omega = 0 \quad (2nd \text{ eqn}) \quad \Rightarrow \quad i_o = \frac{i_A \cdot 5}{10} = \frac{i_A}{2}$

Substitute into 1st eqn $12V - 2\frac{i_A}{2} - i_A \cdot 5\Omega = 0V$

$i_A = \frac{12V}{6\Omega} = 2A \quad (i_o = 1A)$

and $v_o = i_A \cdot 2\Omega = \frac{i_A \cdot 2\Omega}{2} = 1A \cdot 2\Omega = 2V$

Consistency check: put all i's and v's on circuit diagram and verify that it abides Kirchhoff's laws and Ohm's law.

Left loop $V = 0$ and $10V$ across 5Ω gives $2AV$

Center loop $V = 0$ and $2V$ across 2Ω gives $1AV$
b) Show power delivered = power absorbed for sol'n to (a).

Consistency check diagram for (a) shows u's and i's we get from solution plus what we deduce from Kirchoff's laws and Ohm's law. (We make sure total current into nodes = 0 and V drops around loops sum to 0V.)

An element develops power if positive current flows out of terminal labeled + for voltage. An element absorbs power if positive current flows into terminal labeled + for voltage. These definitions are for V drop > 0. Reverse them if V drop < 0 from terminal labeled + to terminal labeled -.

<table>
<thead>
<tr>
<th>Element</th>
<th>Power Developed = I x V</th>
<th>Power Absorbed = I x V</th>
</tr>
</thead>
<tbody>
<tr>
<td>12V src</td>
<td>19A x 12V = 228 W</td>
<td></td>
</tr>
<tr>
<td>2V src</td>
<td>19A x 2V = 38 W</td>
<td></td>
</tr>
<tr>
<td>5Ω</td>
<td>2A x 10V = 20 W</td>
<td></td>
</tr>
<tr>
<td>8Ω src</td>
<td>17A x 8V = 136 W</td>
<td></td>
</tr>
<tr>
<td>2Ω</td>
<td>1A x 2V = 2 W</td>
<td></td>
</tr>
<tr>
<td>8Ω src</td>
<td>16A x 10V = 160 W</td>
<td></td>
</tr>
<tr>
<td>AV src</td>
<td>16A x 8V = 128 W</td>
<td>356 W</td>
</tr>
</tbody>
</table>

Total 356 W
i) Apply Kirchhoff's laws to find an expression for i_3.

iii) Given $V_g = 1\,\text{V}$, $R_2 = 100\,\Omega$, and $R_3 = 10\,\Omega$, find R_1 so that $i_3 = 0$.

iv) For $V_g = 1\,\text{V}$, $R_3 = 10\,\Omega$, and $R_1 = $ value found in part iii, find i_3 when $R_2 = 200\,\Omega$ and when $R_2 = 50\,\Omega$.

\textbf{Ans:}

i) $i_3 = \frac{V_g}{R_2 - R_3}$

\textbf{ii) see sol'n, various possibilities}

\textbf{iii) } $R_1 = 100\,\Omega$

\textbf{iv) } $i_3 = 4.35\,\text{mA}$ for $R_2 = 200\,\Omega$, $i_3 = -7.69\,\text{mA}$ for $R_2 = 50\,\Omega$

\textbf{sol'n: i) } We first label voltages and currents. By the passive sign convention, the current measurement arrow must point from the + sign of the voltage measurement toward the − sign of the voltage measurement.

\textbf{Note:} If we follow the passive sign convention, we still have two choices for the direction of the current arrow and the corresponding voltage measurement:

\[i \quad | \quad + \quad \quad \quad \quad \quad \quad i \quad | \quad - \]

In both cases the current measurement arrow points from + to −. The direction of the physical current flow is, of course, unchanged. If, for example, the physical current is flowing downward, then we would get a negative value when we solve for i. If we use the measurement scheme on the right.
Now we apply Kirchhoff's laws:

1) Sum of currents flowing out of node = 0.

At top node at the junction of R_1, R_2, and R_3 we have

$$i_1 + i_2 + i_3 = 0 \text{ A}$$

All the terms appear with plus signs because all three current measurement arrows point out from the node. If a current measurement arrow points toward a node, we subtract the current.

Thus, for the bottom node we have

$$-i_1 - i_2 - i_3 = 0 \text{ A}$$

We observe that is just $i_1 + i_2 + i_3 = 0 \text{ A}$ multiplied by -1 on both sides. Consequently, this 2nd eqn doesn't give us any new constraints that help us solve the problem.

moral: At most, we have one less current eqn than the number of circuit nodes, (where three or more elements connect).

2) Sum of voltage drops around any loop = 0.

We have a loop on the left and a loop on the right. There is also an outer loop.
The outer loop, it turns out, is redundant. If we add the eqn's for the smaller loops together, we obtain the eqn for the outer loop.

This observation is typical. We normally just need the smallest loops. Current sources complicate the picture somewhat, however.

If current sources are present, we avoid using loops that include them. The reason we do so is that the voltage drop across a current source creates a new unknown that we must solve for. Thus, we fail to gain ground in our effort to find as many eqn's as we have unknowns.

Here, we have no current sources and we can write two loop eqn's.

Left loop: \(V_g + V_1 - V_3 = 0 \mathrm{~V} \)

Right loop: \(V_3 - V_2 + V_g = 0 \mathrm{~V} \)

Note: I usually travel clockwise around the loop, but the other direction may be used. I treat a voltage drop as positive if I exit the circuit element at the + sign. In other words, I add that v-drop to the total. I subtract that v-drop from the total if I exit the circuit element at the - sign. The Text does the opposite.

Now we apply Ohm's law to obtain 3 more eqn's:

\(V_1 = i_1 R_1 \quad V_2 = i_2 R_2 \quad V_3 = i_3 R_3 \)

Substitute for voltages and solve for \(i_3 \).
Our three equations become:

\[i_1 + i_2 + i_3 = 0 \text{A} \] \hspace{1cm} (1)

\[v_g + i_1 R_1 - i_3 R_3 = 0 \text{V} \] \hspace{1cm} (2)

\[i_3 R_3 - i_2 R_2 + v_g = 0 \text{V} \] \hspace{1cm} (3)

Using the first eqn (which has the fewest terms)
we solve for \(i_1 \):

\[i_1 = -(i_2 + i_3) \]

Substituting into the 2nd and 3rd eqns, we have:

\[v_g + -(i_2 + i_3) R_1 - i_3 R_3 = 0 \text{V} \] \hspace{1cm} (2)

\[i_3 R_3 - i_2 R_2 + v_g = 0 \text{V} \]

new

We now solve for \(i_2 \) using the third eqn (which has the fewest terms):

\[i_2 = \frac{i_3 R_3 + v_g}{R_2} \]

Substituting into the 2nd eqn, we have:

\[v_g - \left(\frac{i_3 R_3 + v_g + i_3}{R_2} \right) R_1 - i_3 R_3 = 0 \text{V} \]

We solve this eqn for \(i_3 \):

\[i_3 \left(\frac{R_2 R_1 + R_1 + R_3}{R_2} \right) = v_g \left(1 - \frac{R_1}{R_2} \right) \]

\[i_3 = \frac{v_g (R_2 - R_1)}{R_1 R_3 + R_1 R_2 + R_2 R_3} \quad \text{units consistent} \]
Consider $V_g = 0$: No energy sources $\Rightarrow i_3 = 0$

Agrees with our formula.

Consider $V_g = 0V$ on right side: $V_g = 0V \Rightarrow$ short circuit.

Total current, $-i_1 = \frac{V_g}{R_1 + R_2 \parallel R_3}$

By current-divider formula, $i_3 = -i_1 \frac{R_2 \parallel R_3}{R_2 + R_3}$.

Now a trick: By symmetry, if we set $V_g = 0V$
on the right side (instead of the left) and turnit upside down (as in the original circuit), we must have

\[
i_3 = -V_g \frac{R_1}{R_2 (R_1 + R_3) + R_1 R_3}
\]

If we add these two i_3 values together, we get our formula for i_3 from part (i).

This is a preview of the idea of superposition.

More on this later on in the course.

Consider $R_3 = \infty$: $i_3 = 0A$ since open circuit for R_3.

Agrees with our formula.
ii) (cont.) Consider \(R_1 = 0 \Omega \) and \(R_2 = \infty \Omega \). Just \(V_3 \) and \(R_3 \)

\[i_3 = \frac{V_3}{R_3} \]

Our formula with \(R_1 = 0 \): \(i_3 = \frac{V_3 R_2}{R_2 + R_3} = \frac{V_3}{R_3} \)

\[\lim_{R_2 \to \infty} \frac{V_3}{R_3} = \frac{V_3}{R_3} \checkmark \]

Note: It actually doesn't matter what \(R_2 \) is if \(R_1 = 0 \Omega \). The voltage across \(R_3 \) will be \(V_3 \), and the current thru \(R_3 \) must be \(V_3/R_3 \).

iii) If \(R_2 = 100 \Omega \) then \(i_3 = 0 \) when \(R_1 = R_2 = 100 \Omega \)

iv) Given: \(R_1 = 100 \Omega, R_3 = 10 \Omega, V_3 = 1V \). If \(R_2 = 200 \Omega \), then

\[i_3 = \frac{1V \times (200 \Omega - 100 \Omega)}{100 \Omega + 10 \Omega + 200 \Omega + 200 \Omega + 10 \Omega} \]

or \(i_3 = 1V \times \frac{100 \Omega}{230 \Omega} \approx \frac{1V}{2.30 \Omega} \approx 0.435 \text{ mA} \)

If \(R_2 = 50 \Omega \), then

\[i_3 = \frac{1V \times (50 \Omega - 100 \Omega)}{100 \Omega + 10 \Omega + 50 \Omega + 50 \Omega + 10 \Omega} \]

or \(i_3 = \frac{1V \times (-50 \Omega)}{130 \Omega} \approx \frac{-1V}{130 \Omega} \approx -0.00769 \text{ mA} \)
Explain how \(i_3 \) would change as \(R_1 \) ranged from 0 to \(\infty \).

"" "" "" "" "" "" ""

Solution: \(R_1 \) and \(R_2 \) form a current divider for current \(i_3 \).

\[
\begin{align*}
 i_1 &= i_3 \cdot \frac{R_2}{R_1 + R_2} \\
 i_2 &= i_3 \cdot \frac{R_1}{R_1 + R_2}
\end{align*}
\]

Also, \(i_3 = \frac{V_9}{R_1/R_2 + R_3} \).

Now, \(R_1/R_2 = 0 \) \((R_1 = 0) \) \(R_1/R_2 + R_3 = R_3 \) \((R_1 = 0) \)
\[
\begin{align*}
 &= \frac{R_3}{2} \quad (R_1 = R_2) \\
 &= R_3 \quad (R_1 = \infty)
\end{align*}
\]

Thus,

\[
\begin{align*}
 i_3 &= \frac{V_9}{R_3} \quad (R_1 = 0) \\
 &= \frac{V_9}{R_2 + R_3} \quad (R_1 = R_2) \\
 &= \frac{V_9}{R_2 + R_3} \quad (R_1 = \infty)
\end{align*}
\]

\[
\begin{align*}
 i_1 &= i_3 \cdot \frac{R_2}{R_1 + R_2} = 1 \cdot i_3 \quad (R_1 = 0) \\
 &= \frac{i_3}{R_1 + R_2} \quad (R_1 = 0) \\
 &= 0 \quad (R_1 = 0)
\end{align*}
\]

\[
\begin{align*}
 i_2 &= i_3 \cdot \frac{R_2}{R_1 + R_2} = \frac{i_3}{R_1 + R_2} \quad (R_1 = R_2) \\
 &= \frac{i_3}{R_2 + R_2} \quad (R_1 = \infty) \\
 &= \frac{i_3}{\infty + R_2} \quad (R_1 = \infty)
\end{align*}
\]

\[
\begin{align*}
 i_1 &= i_3 \cdot \frac{R_2}{\infty + R_2} = 0 \quad (R_1 = \infty) \\
 &= \frac{i_3}{\infty + R_2} \quad (R_1 = \infty)
\end{align*}
\]

Use L'Hôpital's rule.
Derive expression for v_o in terms of not more than v_s, i_s, R_1, and R_2.

Sol'n: Replace op-amp with v_0 source and assume 0V across $+_{-}$ inputs.

Use v-loop on left that includes 0V drop across $+_{-}$ inputs.

$$+i_1 R_1 + v_s + 0V = 0V$$

or

$$i_1 = -\frac{v_s}{R_1}$$

Use v-loop on right that includes 0V drop across $+_{-}$ inputs.

$$-ov - i_2 R_2 - v_0 = 0V$$

or

$$v_0 = -i_2 R_2$$
Op Amp sol'n: cont.

Use current sum at node next to - input.

\[i_1 + i_2 + i_S = 0 \ A \]

or \[i_2 = -(i_1 + i_S) = -\left(-\frac{v_S}{R_1} + i_S \right) = \frac{v_S - i_S}{R_1} \]

Use this in 2nd \(v \)-loop eq'n.

\[v_o = -i_2 R_2 = -\left(\frac{v_S}{R_1} - i_S \right) R_2 \]

\[v_o = \left(i_S - \frac{v_S}{R_1} \right) R_2 \]

Consistency check:

If \(R_2 = 0 \) then 2nd \(v \)-loop implies

\[v_o = 0 \ V, \quad v_o = \left(i_S - \frac{v_S}{R_1} \right) R_2 = 0 \ V \checkmark \]

If \(i_S = 0 \ A \) and \(v_S = 0 \ V \), we should

get \(v_o = 0 \ V, \quad v_o = \left(0 - \frac{0}{R_1} \right) R_2 = 0 \ V \checkmark \]
Op Amp Examples

5. The op-amp operates in the linear mode. Using an appropriate model of the op amp, derive an expression for v_o in terms of not more than v_s, i_a, R_1, and R_2.

![Diagram of an op-amp circuit with R_1, R_2, v_s, i_a, and v_o.]
Calculate \(v_1 \).

sol’n: We can use a voltage divider consisting of the 28V src, the 2Ω resistor, and the two 24Ω resistors in parallel:

\[
v_1 = -28V \cdot \frac{2\Omega}{2\Omega + 24\Omega} = -28V \cdot \frac{2\Omega}{2\Omega + 24\Omega} = -28V \cdot \frac{2\Omega}{1\Omega + 1\Omega} = -28V \cdot \frac{2\Omega}{14\Omega}
\]

\[
v_1 = -4V
\]

Note: We have a minus sign whenever the + sign of the resistor voltage measurement is on the side away from the + sign of the \(v \) src.
Note: We have a voltage divider when the following conditions are met:

i) The voltage across two or more R's in series is known.

ii) The current thru the R's in series is the same.

Note: We can verify that we have a v-divider in this circuit be redrawing it.

The 20A affects the current in the 28V source, but we still have 28V across the R's. The 20A just circulates in the bottom half of the circuit.
HW #2 Examples

1. Calculate v_1.

\begin{center}
\begin{circuitikz}

\draw (0,0) to [v, l=$2 \text{ k}\Omega$, v1=v_1, label=below:v_1] (2,0);
\draw (2,0) to [v, l=$14 \text{ k}\Omega$, i=7 mA] (4,0);
\draw (4,0) to [v, l=$5 \text{ k}\Omega$] (6,0);
\draw (6,0) to [v, l=14 V] (2,0);
\end{circuitikz}
\end{center}
Calculate i_1.

Sol'n: We have a current divider consisting of the 10A src and the 40Ω and 10Ω Rs in parallel.

To verify that we have a current divider, we observe that the circuit satisfies the following conditions:

i) The 10A is the total current flowing into one end of the 40Ω and 10Ω resistors, and

ii) The opposite ends of the 40Ω and 10Ω Rs are connected so that the v-drop across the 10Ω and 40Ω resistors is the same.

Using the current-divider formula (with a minus sign because i_1 is measured in a direction opposite to the 10A src):

$$ i_1 = -10A \cdot \frac{40Ω}{40Ω + 10Ω} = -8A $$
2. Calculate i_1.

[Diagram of a circuit with resistors and a current source]
EX:

![Circuit Diagram]

Derive an expression for i_0. The expression must not contain more than the circuit parameters $v_a, v_s, i_a, R_1, $ and R_2.

Sol'n: Label R's first.

![Node Analysis Diagram]

V-Loops: $(v_a$ and $R_1, R_2; v_s$ and $R_1)$

- $v_a - v_2 + v_1 = 0V$
- $-v_1 - v_s = 0V$
We observe that we can solve these 2 eqns in 2 unknowns without proceeding further.

\[v_1 = -v_3 \quad \text{from 2nd eq'n} \]

\[v_2 = -v_a + v_1 = -v_a - v_3 \quad \text{from 1st eq'n} \]

Note: If we try to write current-sum eqns, we find that the left node and right node and connected by only v-src \(v_3 \). Thus, we should not write \(i \)-sum eqns. (And we don't need them!)

Note: We also have no components in series that carry the same current, (except v-src \(v_a \) and \(R_2 \)).

We now use Ohm's law:

\[v_1 = i_1 R_1 \]

\[v_2 = i_2 R_2 \]

Using \(v \)-eqns:

\[i_1 = \frac{v_1}{R_1} = \frac{-v_3}{R_1} \]

\[i_2 = \frac{v_2}{R_2} = \frac{-v_a - v_3}{R_2} \]
Now that we have solved the circuit, we can find i_o from an i-sum eq'n for the node on the right.

$-i_2 - i_1 - i_a + i_o = 0A$

or $i_o = i_1 + i_2 + i_a$

or $i_o = -\frac{v_S}{R_1} - \frac{v_a + v_S}{R_2} + i_a$
HW #2 Examples

3. Derive an expression for i_1. The expression must not contain more than the circuit parameters V_a, V_b, i_a, R_1, and R_2.
EX:

\[\begin{align*}
\text{a)} & \quad \text{Derive an expression for } i_b. \text{ The expression must not contain more than} \nonumber \\
& \quad \text{the circuit parameters } \alpha, i_a, v_a, R_1, \text{ and } R_2. \text{ (Make sure to eliminate } i_1 \
& \quad \text{from the answer.)} \\
\text{b)} & \quad \text{Make at least one consistency check (other than a units check) on your} \\
& \quad \text{expression. Explain the consistency check clearly.}
\end{align*} \]

Sol'n: a) Label \[R_1 \]

Only v-loop without current source is thru \[v_q \text{ and } R_2, \text{ (dotted line).} \]
\[-v_q - v_1 = 0V\]

We look for nodes where we can write i-sum eqns. Here, however, we really only have two nodes, and they are connected by only v-src \(v_q\).

Thus, we have no i-sum eqns.

We look for components in series carrying the same current.

\[i_0 = i_q\]

From Ohm's law:

\[v_0 = i_0 R_1 = i_q R_1\]
\[v_1 = i_1 R_2\]

Substituting for \(v_1\) in our v-loop eqn:

\[-v_q - i_1 R_2 = 0V\]

or

\[i_1 = -\frac{v_q}{R_2}\]

It follows that \(\bar{w}i_1 = -\frac{v_q}{R_2}\).

Now we write i-sum eqn (for node consisting of wire on right side) to find \(i_9\).
\[i_S - \alpha i_I - i_I - i_Q = 0A \]
or \[i_S = \alpha i_I + i_I + i_Q \]
or \[i_S = (\alpha + 1) \left(-\frac{V_Q}{R_2} \right) + i_Q \]
or \[i_S = i_Q - (\alpha + 1) \frac{V_Q}{R_2} \]

b) Many consistency checks are possible. The idea is to pick component values that make the circuit so simple that we can solve it by inspection.

One example is to eliminate current sources:

Let \(i_Q = 0A \) and \(\alpha = 0 \):

![Circuit Diagram]

We have \(i_S = i_I = -\frac{V_Q}{R_2} \).

Now we verify that our eg/h from (a) agrees:
\[i_S = 0 - (0 + 1) \frac{V_Q}{R_2} = -\frac{V_Q}{R_2} \]

Another example is to set \(V_Q = 0V, \alpha = 0 \).
Then \(i_S = i_Q \). Our eg/h gives \(i_S = i_Q - (0 + 1) \cdot \frac{0}{R_2} = i_Q \).
HW #2 Examples

4. Derive an expression for i_1. The expression must not contain more than the circuit parameters α, V_a, i_a, R_1, and R_2.

\[
\alpha v_2 \quad R_1 \quad i_1 \quad R_2 \quad v_2
\]

Make at least one consistency check (other than a units check) on your expression for problem 4. Explain the consistency check clearly.
EX:

The op-amp operates in the linear mode. Using an appropriate model of the opamp, derive an expression for v_0 in terms of not more than v_a, v_b, i_a, R_1, R_2, R_3, R_4 and R_5.

soln: Replace op-amp with src called v_0 and assume v-drop across $+$ and $-$ terminals is $0V$. We also combine R_2 and R_3.

\[
R_2 \parallel R_3
\]

\[
R_4 R_5
\]

\[
V_a \quad V_b \quad V_0
\]

\[
R_4 \quad R_5
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]

\[
\]
Write v-loops passing thru OV across + and - terminals:

\[+ v_4 + v_a + ? \quad \text{Don't use left-side v-loop because of current src.} \]

\[+ v_5 - v_3 - v_v - v_1 - v_2 - v_o = 0v \]

Write current sums at nodes. The only true node is on the bottom.

\[-i_4 - i_5 - i_2 = 0A \]

Look for components in series carrying the same current:

\[i_4 = -i_a \]

\[i_1 = i_a \]

\[i_2 = i_1 = i_a \]

\[i_5 = 0A \text{ (since it is in series with an open circuit)} \]

We see that \(i_a \) flows all the way around the outer loop.

We need only substitute for \(v \)'s in v-loop using \(i_a \) and Ohm's law for each resistor:

\[v_1 = i_a R_1 = i_a R_1 \]
\[v_2 = i_2 \cdot R_2 \parallel R_3 = i_a \cdot R_2 \parallel R_3 \]
\[v_5 = i_5 \cdot R_5 = 0 \cdot R_5 = 0V \]

Our \(v \)-loop becomes:
\[0V - v_5 - 0V = i_a R_1 - i_a R_2 \parallel R_3 - v_o = 0V \]

Solving \(v_o \) gives the expression we seek:
\[v_o = -v_5 = i_a (R_1 + R_2 \parallel R_3) \]
The op amp operates in the linear mode. Using an appropriate model of the op amp, derive an expression for v_0 in terms of not more than i_s, R_1, R_2, and R_3.
1. a. i

Calculate v_1.

![Diagram](attachment:image.png)

Calculate i_1.

![Diagram](attachment:image.png)
2. Derive an expression for i_1. The expression must not contain more than the circuit parameters v_a, i_a, R_1, R_2, and R_3.
3.

a. **Derive an expression for** i_a. The expression must not contain more than the circuit parameters α, v_a, R_1, and R_2.

![Circuit Diagram]

b. Make at least one consistency check (other than a units check) on your expression. Explain the consistency check clearly.
The op-amp operates in the linear mode. Using an appropriate model of the op
amp, derive an expression for v_o in terms of not more than v_s, i_a, R_1, and R_2.

\[R_2 \]

\[v_s \]

\[R_1 \]

\[i_a \]

\[v_o \]
a) Solve following eqns for \(V_1 \) and \(V_2 \) in terms of \(R_3 \):

\[
V_1 \left(\frac{1}{R_2} + \frac{1}{R_1} + \frac{1}{R_3} \right) - \frac{V_2}{R_3} = 10
\]

\[
\frac{V_1 - V_2}{R_3} = \frac{V_2}{R_4}
\]

Solt: Rewrite 2nd eqn as:

\[
\frac{V_1}{R_3} = \frac{V_2}{R_4}, \quad \frac{1}{R_3} = \frac{1}{R_4}
\]

Use parallel R notation:

\[
\frac{1}{R_{\parallel}} = \frac{1}{R_1} + \frac{1}{R_2}
\]

Our two eqns become:

\[
\frac{V_1}{R_{1\parallel R_2\parallel R_3}} = \frac{10}{R_3}
\]

\[
\frac{V_1}{R_3} - \frac{V_2}{R_3\parallel R_4} = 0
\]

Now use 2nd eqn to write \(V_2 \) in terms of \(V_1 \):

\[
V_2 = V_1 \frac{R_3\parallel R_4}{R_3} = V_1 \frac{R_3R_4}{R_3 + R_4} = V_1 \frac{R_4}{R_3 + R_4} = V_1 \frac{R_4}{R_3 \parallel R_4}
\]

Now substitute this into first eqn:

\[
\frac{V_1}{R_{1\parallel R_2\parallel R_3}} - \frac{V_1}{R_3} \frac{R_4}{R_3 \parallel R_4} = 10
\]

\[
\frac{V_1}{R_{1\parallel R_2\parallel R_3}} = \frac{10}{R_3}\left(\frac{1}{R_{1\parallel R_2\parallel R_3}} - \frac{R_4}{R_3} \frac{1}{R_3 + R_4} \right)
\]

\[
V_1 = 10 \left(\frac{1}{R_{1\parallel R_2\parallel R_3}} - \frac{R_4}{R_3} \frac{1}{R_3 + R_4} \right) = 10 \left(\frac{R_{1\parallel R_2\parallel R_3}}{R_3 \parallel R_3 + R_4} - \frac{R_4}{R_3} \frac{1}{R_3 + R_4} \right)
\]

\[
V_2 = V_1 \frac{R_3\parallel R_4}{R_3} = 10 \left(\frac{R_{3\parallel R_4}}{R_3} \left(\frac{1}{R_{3\parallel R_4}} - \frac{R_4}{R_4 + R_4} \right) \right)
\]

\[
V_2 = 10 \left(\frac{R_{3\parallel R_4}}{R_3} \left(\frac{R_{3\parallel R_4}}{R_3} \left(\frac{1}{R_{3\parallel R_4}} - \frac{R_4}{R_3 + R_4} \right) \right) \right)
\]

\[
V_2 = 10 \left(\frac{R_{3\parallel R_4}}{R_3} \left(\frac{R_{3\parallel R_4}}{R_3} \left(\frac{1}{R_{3\parallel R_4}} - \frac{R_4}{R_3 + R_4} \right) \right) \right) = 10 \frac{R_3}{R_3\parallel R_4 - 1}
\]
b) Make at least two consistency checks on answer to (a).

嘛！呢！：

\[v_1 = A \left(\frac{1}{R_1} - \frac{1}{R_3} \right) = A : \Delta = V \checkmark \]

\[v_2 = A \Delta \left(\frac{R_2}{R_2 - 1} \right) = A : \Delta = V \checkmark \]

When \(R_2 \to 0 \), 2nd eqn gives \(v_2 = 0 \), 1st eqn gives

\[v_1 = 10 A \left(\frac{1}{R_1} + \frac{1}{R_2} \right) \]

In our v1 eqn with \(R_2 \to 0 \) we get \(R_1 || R_2 || R_3 = R_1 || R_2 \)

\[
\frac{R_4}{R_3 + R_4} = \frac{R_4}{0} = 0
\]

\[\therefore v_1 = 10 \cdot \frac{1}{R_1 || R_2} = 10 \cdot \frac{1}{\frac{1}{R_1} + \frac{1}{R_2}} \]

\[v_2 = 10 \left(\frac{R_2}{R_1 || R_2} \right) \to \infty = 10 \cdot \frac{1}{R_2} \to \infty \]

Make another consistency check.

\(R_4 \to \infty \) gives \(v_1 = v_2 \) from 2nd eqn, and \(R_3 || R_4 = R_3 \).

Our eqns:

\[v_1 = 10 \left(\frac{1}{R_1 || R_2} \right) \to \infty = 10 \left(\frac{1}{R_1 || R_2 || R_3} \right) \]

\[v_2 = 10 \left(\frac{R_2}{R_1 || R_2} \right) \to \infty = 10 \left(\frac{1}{R_1 || R_2 || R_3} \right) \]

One more check. \(R_1 = \infty \), \(R_2 = \infty \), \(R_3 = R_4 \). Then \(v_1 = 2 v_2 \).

\[v_2 = \frac{v_1}{2}, \quad v_1 - v_2 = 10 \cdot R_3, \quad v_1 - \frac{v_1}{2} = 10 R_3, \quad v_1 = 2 \cdot 10 R_3 \]

Our eqns:

\[v_1 = 10 \left(\frac{R_3 - \frac{R_3}{2}}{R_3^2} \right) = 10 \left(\frac{1}{2 R_3} = 2 \cdot 10 R_3 \right) \]

\[v_2 = 10 \left(\frac{\frac{R_3}{2}}{R_3 - \frac{R_3}{2}} \right) = 10 \left(\frac{1}{R_3} = 10 R_3 = \frac{v_1}{2} \right) \]
Use Node-Voltage method to find how much power the 2A source extracts from circuit.

First we use terminology:

- nodes = 4 (two or more circuit elements join)
- essential nodes = 2 (three or more circuit elements join; they are nodes for 4Ω resistor, top & bottom)

paths: 2A → 4Ω, 4Ω → 2Ω → 55V → 3Ω → 2Ω → 55V,
2A → 2Ω → 55V are a few examples (trace of connected circuit elements without passing thru any element twice)

branch: (path that connect 2 nodes) 2A, 4Ω, 2Ω, 3Ω,
2Ω → 55V, 55V → 3Ω, 3Ω → 55V (with direction 06),
55V, 2Ω → 55V → 3Ω

essential branch: (path connecting essential node w/o passing thru essential node) 2A, 4Ω, 2Ω → 55V → 3Ω,
or 3Ω → 55V → 2Ω

loops: (path with last node = start node) 2A → 4Ω,
2A → 2Ω → 55V → 3Ω, 3Ω → 2Ω → 55V → 3Ω

mesh: (loop not enclosing any other loop) 2A → 4Ω, 4Ω → 2Ω → 55V → 3Ω, but not, 2A → 2Ω → 55V → 3Ω

planar circuit: (can draw circuit w/o crossover branches) is planar

For Node-V method, we use all but 1 essential nodes after we define a ref node.

Choose node at bottom of 4Ω as ref node (i.e. 0V)

Node at top of 4Ω is the other essential node. Label it V_1.

\[
\begin{align*}
V_1 & \quad 2A \quad 4Ω \quad 55V \\
& \quad \downarrow \quad \quad \quad \quad \quad \downarrow \\
& \quad 3Ω \quad \quad \quad \quad \quad \quad 0V
\end{align*}
\]
Although we call it the Node-V method, because we get an equation that we solve for voltage, we are writing an equation for sum of currents out of node = 0.

\[
2A + \frac{v_1 - 0V}{4\Omega} + \frac{v_1 - 55V}{2.5\Omega + 3.5\Omega} = 0A
\]

Note that current thru 2A is equal to total V-drop (i.e. \(v_1 - 55V\)) across the \(2.5\Omega\) and \(3.5\Omega\) R's.

or \(v_1 \left(\frac{1}{4\Omega} + \frac{1}{5\Omega}\right) = -2A + 55V\)

or \(v_1 = \frac{11A - 2A}{4\Omega + 5\Omega} = \frac{9A}{9\Omega} = 1A\)

or \(v_1 = 9A \cdot \frac{4\Omega}{4\Omega + 5\Omega} = \frac{9A \cdot 4\Omega}{9\Omega} = 4\Omega\)

or \(V = \frac{9A \cdot 5\Omega}{4\Omega + 5\Omega} = 20V\)

Check: \(v_1 = 20V = 5A\)

\[
\frac{v_1 - 55V}{2.5\Omega + 3.5\Omega} = \frac{-35V}{5.5\Omega} = -7A
\]

Check: current out of top node for 4.0 is \(2A + 5A - 7A = 0\ V\)

Calculate power for 2A source: \(p = i \cdot v = 2A \cdot 2V = 4W\)

\(p > 0 \Rightarrow \text{power absorbed.}\)
Use Node-V method to find V_1 & V_2.

Solve: nodes are marked by dots. Essential nodes are marked by \odot. Note that node under 3A source is considered to be part of essential node under 10Ω Resistor, because they are connected by a wire.

3 essential nodes $\Rightarrow 3-1=2$ equations needed.

Put ref V of OV (i.e. \odot) at bottom so top nodes are V_1 and V_2.

Node-V gives sum of currents out of node = 0:

node 1: $V_1 - \frac{144V}{4\Omega} + \frac{V_1 - 0V}{10\Omega} + \frac{V_1 - V_2}{80\Omega} = 0A$

node 2: $V_2 - V_1 + \frac{-3A}{80\Omega} + \frac{V_2 - 0V}{5\Omega} = 0A$

or node 1: $V_1 \left(\frac{1}{4\Omega} + \frac{1}{10\Omega} + \frac{1}{80\Omega} \right) - \frac{V_2}{80\Omega} = \frac{144V}{4\Omega}$

node 2: $-\frac{V_1}{80\Omega} + \frac{V_2}{80\Omega} \left(\frac{1}{80\Omega} + \frac{1}{5\Omega} \right) = 3A$

or node 1: $\frac{V_1}{4\Omega} + \frac{10\Omega}{10\Omega} + \frac{80\Omega}{80\Omega} - V_2 = 144V$

node 2: $-\frac{V_1}{80\Omega} + \frac{V_2}{80\Omega} = 3A$
\[4 \, \Omega \parallel 10 \, \Omega \parallel 80 \, \Omega = \left(\frac{4 \, \Omega \parallel 10 \, \Omega}{2} \right) \parallel 80 \, \Omega \]

\[= \frac{4 \, \Omega}{14} \parallel 80 \, \Omega \]

\[= \frac{4 \, \Omega}{14} \parallel \frac{1}{2} \]

\[= \frac{4 \, \Omega}{14} \cdot \frac{2}{14} = \frac{2}{29} \]

\[= \frac{80 \, \Omega}{29} \]

\[80 \, \Omega \parallel 5 \, \Omega = \frac{5 \Omega + 16}{5 \Omega + 16} = \frac{80 \, \Omega}{17} \]

Thus, we have:

Node 1: \[v_1 - \frac{29}{80 \, \Omega} = \frac{36 \, A}{80 \, \Omega} \]

Node 2: \[-v_1 + v_2 = \frac{3 \, A}{80 \, \Omega} \]

or

Node 1: \[29v_1 - v_2 = 2880 \, V \]

Node 2: \[-v_1 + 17v_2 = 240 \, V \]

From node 1: \[-v_2 = 2880 \, V - 29v_1 \]

Substitute this into node 2:

Node 2: \[-v_1 = 17(2880 \, V - 29v_1) = 240 \, V \]

\[492v_1 = 240 \, V + 48960 \]

\[v_1 = 100 \, V \]

\[v_2 = \frac{240 \, V + v_1}{17} = \frac{340 \, V}{17} = 20 \, V \]
For the circuit shown, write three independent equations for the node voltages v_1, v_2, and v_3. The quantity v_x must not appear in the equations.

b. Make a consistency check on your equations for problem 1 by setting resistors and sources to values for which the values of v_1, v_2, and v_3 are obvious. State the values of resistors, sources, and v_1, v_2, v_3 for your consistency check, and show that your equations for problem 1(a) are satisfied for these values. (In other words, plug the values into your equations for problem 1(a).)
EX:

\[\begin{align*}
4 \text{ mA} & \quad 300 \Omega \\
1.8 \text{ V} & \quad 250 \Omega \quad v_1 \\
1.5 \text{ k}\Omega & \quad 7.5 \text{ k}\Omega \quad i_2
\end{align*} \]

a) Use the node-voltage method to calculate \(v_1 \) and \(i_2 \).
b) Calculate the power in the 300 \(\Omega \) resistor.
EX:

Use the node-voltage method to find \(v_1, v_2, \) and \(v_3. \)

SOL': We first write the variable for the dependent source, \(i_x, \) in terms of node \(v's. \)

\[
i_x = \frac{31V - v_3}{110 \text{k} \Omega}
\]

We have a super node for \(v_1 \) and \(v_2 \) since these nodes are connected only by a \(V \)-src. Thus, we sum all the currents flowing out of a bubble drawn around \(v_1, v_2, \) and the \(V \)-src between them.

\[
v_{1,2 \text{ node}}: 100 \mu A + \frac{v_1 - v_3 + v_2}{50 \text{k} \Omega} + 40 \mu A = 0A
\]
we also write a voltage eqn for v_1 & v_2:

$$v_1 = v_2 + 50k\Omega \cdot i_x = v_2 + 50k\Omega \cdot \left(\frac{31V - v_3}{110k\Omega}\right)$$

(remember to use only node v's in eqns.)

For the v_3 node, we only have a current sum.

$$v_3 \text{ node: } v_3 - v_1 + -40\mu A + v_3 - 31V = 0A \underbrace{\frac{110k\Omega}{110k\Omega}}_{55k\Omega}$$

Now we solve the 3 eqns. We put terms multiplying v_1, v_2, and v_3 on the left side and constant terms on the right side.

$$v_1 \left(\frac{1}{50k\Omega}\right) + v_2 \left(\frac{1}{30k\Omega}\right) + v_3 \left(\frac{-1}{50k\Omega}\right) = -100\mu A - 40\mu A$$

$$v_1 - v_2 + v_3 \frac{50k\Omega}{110k\Omega} = \frac{31V}{110k\Omega} \frac{50k\Omega}{110k\Omega}$$

$$v_1 \left(\frac{-1}{50k\Omega}\right) + v_3 \left(\frac{1}{50k\Omega} + \frac{1}{55k\Omega}\right) = 40\mu A + \frac{31V}{55k\Omega}$$

We multiply both sides of the 1st eqn by 150kΩ to clear the denominators.

$$v_1 \cdot 3 + v_2 \cdot 5 + v_3 (-3) = -140\mu A \cdot 150k\Omega = -21V$$

We multiply both sides of the 2nd eqn by 110 to clear the denominators.

$$v_1 (11) + v_2 (-11) + v_3 (5) = 31V (5) = 155V$$
We multiply the 3rd eq'n by $1100 \Omega = 1.1 \Omega$

\[V_1 (-22) + V_3 (22 + 20) = 40 \mu A \cdot 1.1 \Omega + 31V(20) \]

or \[V_1 (-22) + V_3 (42) = 44V + 620V = 664V \]

Now we start eliminating variables. From the 1st eq'n, we have

\[V_2 = \frac{-21V - 3V_1 + 3V_3}{5} \]

Our 2nd and 3rd eq'n's with this V_2 become

\[11V_1 - 11 \left(\frac{-21V - 3V_1 + 3V_3}{5} \right) + 5V_3 = 155V \]

and

\[-22V_1 + 42V_3 = 664V \]

Solving the last eq'n for V_3 gives

\[V_3 = \frac{664V + 22V_1}{42} \]

Substituting into the 1st eq'n (and collecting terms multiplying V_3) yields the following eq'n:

\[\left(\frac{11 + \frac{33}{5}}{5} \right) V_1 + \left(\frac{-33 + 5}{5} \right) \left(\frac{664V + 22V_1}{42} \right) = 155V - 21(11)V \]

or, after multiplying both sides by 5,

\[88 V_1 - 8 \left(\frac{664V + 22V_1}{42} \right) = 775V - 231V = 544V. \]

Dividing both sides by 4 and moving constant term:
\[22\, v_1 - \frac{2\, (22)}{42} \, v_1 = 136\, V + \frac{2\, (664)}{42} \, V. \]

Multiplying both sides by 42 gives

\[[42(22) - 44] \, v_1 = 136\, (42) + 2\, (664)\, V \]

or \[v_1 = \frac{5712 + 1328\, V}{924 - 44} = 8\, V \]

Then \[v_3 = \frac{664\, v + 22\, (8\, V)}{42} = 20\, V \]

and \[v_2 = \frac{-21\, v - 3\, (8\, V) + 3 \, (20\, V)}{5} = 3\, V. \]

Consistency check: Calculate currents from these voltages and verify that currents sum to zero at nodes... They do!

100\, \text{mA} \quad v_1 = 8\, V

\[\begin{array}{c}
\text{100kΩ} \\
\text{100kΩ}
\end{array} \]

\[\begin{array}{c}
\text{30kΩ} \\
\text{100mA}
\end{array} \]

\[\begin{array}{c}
\text{50kΩ} \cdot 100\, \text{mA} = 5\, V \\
\text{50kΩ} \cdot i_x
\end{array} \]

\[\begin{array}{c}
\text{50kΩ} \\
\text{240\, mA}
\end{array} \]

\[\begin{array}{c}
\text{12\, V} \\
\text{12\, V}
\end{array} \]

\[\begin{array}{c}
\text{100\, mA} \\
\text{100\, mA}
\end{array} \]

\[\begin{array}{c}
\text{110kΩ} \\
\text{100mA}
\end{array} \]

\[\begin{array}{c}
\text{110kΩ} \\
\text{110kΩ}
\end{array} \]

\[\begin{array}{c}
\text{31V} \\
\text{31V}
\end{array} \]

\[\begin{array}{c}
\text{100mA} \\
\text{100mA}
\end{array} \]

\[\begin{array}{c}
\text{100mA} \\
\text{100mA}
\end{array} \]

\[\begin{array}{c}
\text{100mA} \\
\text{100mA}
\end{array} \]
Ex:

\[\begin{align*}
3 \text{ mA} & \quad +v_x^- \\
& \quad 10 \text{ k}\Omega \quad 0.5 \text{ mA} \quad 2v_x^+ \\
& \quad i_1 \quad i_2 \\
& \quad 30 \text{ V} \\
& \quad 15 \text{ k}\Omega
\end{align*} \]

a) Use the mesh-current method to find \(i_1 \) and \(i_2 \).

b) Find the power dissipated by the dependent source.

Soln: a) We follow a step-by-step procedure:

1) We define mesh currents. If, however, we have any current sources on outside edges of the circuit, the mesh currents for those loops will be the same as the current source.

In this circuit, we have a current source on the left edge. Thus, the mesh current for the left loop is 3 mA.

Since \(i_1 \) and \(i_2 \), as defined, are on the outside edge of the circuit, we may use them as our mesh currents.
2) We define the voltage from the dependent src, v_x, in terms of mesh currents. Here, we observe that v_x is across the 10kΩ resistor, too. For the 10kΩ resistor, we have

$$v_x = 3 \text{mA} \cdot 10 \text{kΩ} - i_1 \cdot 10 \text{kΩ}$$

3) We look for loops with a current source in between, meaning we have a supermesh. This is the case for the i_1, i_2 loops. For the i_1, i_2 supermesh, we take a v-loop around the outside edge of the i_1 and i_2 loops, (bypassing the 0.5 mA src).

$$v_x = \overbrace{-i_1 \cdot 10 \text{kΩ} + 30V - 2(3\text{mA} - i_1)10\text{kΩ}}^{i_1, i_2 \ \text{v-loop}} + 3\text{mA} \cdot 10\text{kΩ}$$

$$- i_2 \cdot 15 \text{kΩ} = 0V$$

Add a current eqn for the 0.5 mA src between the loops:

$$i_1 - i_2 = 0.5 \text{mA} = \frac{1}{2} \text{mA}$$

Note: we have $-i_2$ for current measured opposite the arrow in the current src.

4) We solve our eqns for i_1 and i_2.

We group i_1 and i_2 terms on the left and move constant to the right side.
\[i_1 \left(\frac{-10k\Omega + 2 \cdot 10k\Omega}{10k\Omega} \right) + i_2 (-15k\Omega) = -60V + 60V \]
\[i_1 - i_2 = \frac{1}{2} \text{ mA} \]

Solving the 2nd eqn for \(i_1 \), we have

\[i_1 = i_2 + \frac{1}{2} \text{ mA} \]

Substituting into 1st eqn, we have

\[(i_2 + \frac{1}{2} \text{ mA}) \cdot 10k\Omega + i_2 (-15k\Omega) = 30V \]

or

\[i_2 (10k\Omega - 15k\Omega) = 10V - \frac{1}{2} \text{ mA} \cdot 10k\Omega \]

or

\[-i_2 (5k\Omega) = -5V \]

or

\[i_2 = 1 \text{ mA} \]

Then

\[i_1 = 1 \text{ mA} + \frac{1}{2} \text{ mA} = \frac{3}{2} \text{ mA} \]

Consistency check: calculate \(v \)-drops for \(i_1, i_2 \) and verify \(v \)-loops.

\[v_x = \frac{3}{2} \text{ mA} \cdot 10k\Omega = 15V \]

All \(v \)-loops sum to 0V, and all current sums at nodes = 0A.
b) We know \(V_x = (3mA - i_1) \cdot 10k\Omega \)

\[
\begin{align*}
\text{i} &= \frac{3}{2} \text{mA} \cdot 10k\Omega \\
V_x &= 15V
\end{align*}
\]

The current for the dependent src is \(i_2 \).

\[
i_2 = 1 \text{mA}
\]

Thus, power for the dependent src is

\[
p = V \cdot i = 2V_x i_2 = 2(15V) \cdot 1mA
\]

or \(p = 30 \text{ mW} \).
Mesh Current Example

For the circuit shown, write three independent equations for the three mesh currents i_1, i_2, and i_3. The quantity v_x must not appear in the equations.
Mesh Current Example

\[\begin{align*}
&8 \text{ mA} \\
&2 \text{k} \Omega \\
&i_\beta \\
&3 \text{k} \Omega \\
&3i_\beta \\
&44 \text{V} \\
&-24 \text{V}
\end{align*} \]

a. Use the mesh-current method to find \(i_1 \).

b. Find the power dissipated by the dependent current source.
ex:

\[\begin{align*}
\text{Find the Thevenin equivalent with respect to terminals a,b.} \\
(\text{In other words, create a circuit with a } V\text{-source and internal } R \\
\text{that has same } i \text{ and } v \text{ at its terminals as above circuit has} \\
\text{at } a,b \text{ terminals.}) \\
\text{Use Node-V method to find } V_1, \text{ then use } V_R = V_1 + \frac{8A \cdot 2\Omega}{6\Omega} = V_{TH}.
\end{align*} \]

(We are finding \(V_{TH} \) by calculating voltage at \(a,b \) terminals \\
with nothing connected to \(a,b \) terminals.)

\(\text{Node } v, \text{ e.g.,: } \frac{v_1 - 12V + v_1}{6\Omega} - 8A = 0A \)

\[\begin{align*}
\text{or } v_1 &= \frac{8A + 12V}{12\Omega} = 9A \\
\text{or } v_1 &= \frac{9A \cdot 12\Omega}{6\Omega} = 9A \cdot \frac{12\Omega}{6\Omega} = 9A \cdot (2\Omega) = 54V, \quad \frac{2}{3} = 36V \\
\end{align*} \]

\(V_{TH} = V_R = V_1 + \frac{8A \cdot 2\Omega}{6\Omega} = 36V + 16V = 52V \)

To find \(R_{TH} \) we turn independent sources to zero and
find \(R \) looking into \(a,b \) terminals:

\(R_{TH} = \frac{6\Omega \cdot 12\Omega}{6\Omega + 12\Omega} = \frac{6\Omega \cdot 2\Omega}{3} + 2\Omega \)

\(\text{Thevenin equivalent:} \)

\[\begin{align*}
\text{52V} \\
\text{6}\Omega \\
\text{a} \\
\text{b}
\end{align*} \]
Thevenin Equivalent

Ex:

\[10V \]

\[\text{Find Thevenin equivalent circuit between nodes a and b.} \]
For the circuit shown, write three independent equations for the node voltages v_1, v_2, and v_3. The quantity v_x must not appear in the equations.

2. Make a consistency check on your equations for problem 1 by setting resistors and sources to values for which the values of v_1, v_2, and v_3 are obvious. State the values of resistors, sources, and v_1, v_2, v_3 for your consistency check, and show that your equations for problem 1(a) are satisfied for these values. (In other words, plug the values into your equations for problem 1(a).)

Sol'n: 1. 1) $v_1 = v_3$
 (Connected to ref node by v-src)

 2) \[
 \frac{v_2 - v_1}{R_5} + \alpha \frac{v_3}{R_4} + \frac{v_2 - v_3}{R_1} = 0A
 \]
 This is v_x in terms of node voltage. We are using a v-divider.

 3) \[
 \frac{v_3 - v_2}{R_1} + \frac{v_3 - v_1}{R_2} + \frac{v_3 - 0V}{R_3 + R_4} = 0A
 \]

 Note: we only have to write the eqns, not solve them.
2. Many consistency checks are possible. Choose values of R's and s's such that values of v_1, v_2, v_3 are obvious from inspection.

My choices:

\[v_2 = 0V \]
\[v_1 = 12V \]
\[v_5 = 12V \]
\[v_3 = 0V \]
\[R_1 = 1\Omega \]
\[R_2 = \infty \]
\[R_3 = 3\Omega \]
\[R_4 = 4\Omega \]

Plug all the component values and v's into eqns in prob 1 to verify that eqns are satisfied.

1) $12V = 12V \quad \checkmark$

 $v_1 = v_2$

2) $\frac{0-12V}{\infty} + 0.0V \cdot \frac{4\Omega}{3+4\Omega} + 0-0V = 0A \quad \checkmark$

 \[\frac{v_2-v_1}{R_5} + \frac{v_2}{R_3+R_4} + \frac{v_2-v_3}{R_1} = 0A \]

3) $\frac{0-0V}{1\Omega} + \frac{0-12V}{\infty} + \frac{0V-0V}{3+4\Omega} = 0A \quad \checkmark$

 \[\frac{v_2-v_1}{R_1} + \frac{v_2-v_1}{R_2} + \frac{v_2-0V}{R_3+R_4} = 0A \]
Homework #4 Example

1.

(a) For the circuit shown, write three independent equations for the node voltages v_1, v_2, and v_3. The quantity v_x must not appear in the equations.

(b) Make a consistency check on your equations for (a) by setting resistors and sources to values for which the values of v_1, v_2, and v_3 are obvious. State the values of resistors, sources, and v_1, v_2, v_3 for your consistency check, and show that your equations for problem (a) are satisfied for these values. (In other words, plug the values into your equations for problem (a).)
For the circuit shown, write three independent equations for the three mesh currents i_1, i_2, and i_3. The quantity i_x must not appear in the equations.

sol'n: First, write i_x in terms of mesh currents.

$$i_x = -i_2 \quad \text{(use mesh currents only)}$$

Now do v-loops for mesh currents.

We have current source between loops for i_1 and i_2.

$$i_1$$

we have supermesh loop around outside of i_1 and i_2 loops (that avoids having to define V for i_3).

supermesh v-loop: $+v_{s2} - i_2 R_2 - i_1 R_1 = 0$

we must not need this v-loop. Indeed, we have a current src on the outside edge, giving us

$$i_s = -\alpha (-i_x)$$

we must also have a current eq'n for i_3 source to complete super mesh:

$$i_3 = i_1 - i_2$$

flows against i_3 so is minus

Normal v-loop for i_3:

$$+v_{s1} - i_3 R_3 - i_3 R_4 = 0$$

$$+ i_1 R_3$$

Question only requires 3 eq'ns we could solve, but we don't have to solve them.
Write 3 independent equations for \(i_1\), \(i_2\), and \(i_3\). \(i_x\) must not appear in the equations.
Find the Thevenin's equivalent circuit at terminals a-b. \(i_x \) must not appear in your solution. **Hint:** Use the node voltage method. **Note:** \(\alpha > 0 \).

soln: Assuming \(V_s \) is current src:

\[
V_{\text{Thev}} = V_{a,b \text{ open circuit}}
\]

Use node-voltage method to find \(v_i \):

\[
-V_s - \alpha \left(\frac{v_i}{R_2 + R_3} \right) + \frac{v_i}{R_2 + R_3} = 0
\]

or \(v_i \left(\frac{1 - \alpha}{R_2 + R_3} \right) = V_s
\]

\[
v_i = \frac{V_s}{1 - \alpha} \frac{R_2 + R_3}{R_2 + R_3}
\]

\[
V_{\text{Thev}} = v_i \cdot \frac{R_3}{R_2 + R_3} = \frac{V_s}{1 - \alpha} \frac{R_3}{1 - \alpha}
\]

Now short a,b terminals and find \(i_{sc} \) flowing from a to b.

Note that \(R_3 \) will carry no current; it all flows thru the short. \(\therefore \) we may ignore \(R_3 \).

Use node voltage to find \(v_i \):

\[
-V_s - \alpha \left(\frac{v_i}{R_2} \right) + \frac{v_i}{R_2} = 0
\]

\[
v_i = \frac{V_s}{1 - \alpha} \frac{R_2}{1 - \alpha}
\]

\[
R_{\text{Thev}} = \frac{V_{\text{Thev}}}{i_{sc}} = R_3
\]
Homework #4 Examples

4. cont.

Thevenin equiv:

\[V_{\text{Thev}} = V_s \frac{R_3}{1-\alpha} \]

Assuming \(V_s \) is voltage src:

\[V_{\text{Thev}} = V_{a,b} \text{ open circuit} \]

Use node-voltage method to find \(V_1 \):

\[\frac{V_1 - V_s}{R_1} = \alpha \frac{V_1}{R_2 + R_3} + \frac{V_1}{R_2 + R_3} = 0 \]

\[V_1 \left(\frac{1}{R_1} + \frac{1-\alpha}{R_2 + R_3} \right) = \frac{V_s}{R_1} \]

Multiply both sides by \(R_1 \) and re-arrange:

\[V_1 = \frac{V_s}{1 + (1-\alpha) R_1} \]

\[V_{\text{Thev}} = V_1 \cdot \frac{R_3}{R_2 + R_3} = \frac{V_s R_3}{(1 + (1-\alpha) R_1)(R_2 + R_3)} \]

\[V_{\text{Thev}} = \frac{V_s R_3}{R_2 + R_3 + (1-\alpha) R_1} \]

Now short a,b terminals and find isc flowing from a to b. Note that \(R_3 \) will be bypassed. All current will flow thru short.
\(\therefore \) we may ignore \(R_3 \).
Homework #4 Examples

4. cont.

\[V_1 - V_S - \alpha \frac{V_1}{R_1} + \frac{V_1}{R_2} = 0A \]

\[V_1 \left(\frac{1}{R_1} + \frac{1-\alpha}{R_2} \right) = \frac{V_S}{R_1} \]

or \[V_1 = \frac{V_S}{1 + (1-\alpha) \frac{R_1}{R_2}} \]

\[i_{sc} = \frac{V_1}{R_2} = \frac{V_S}{R_2 + (1-\alpha) R_1} \]

\[R_{The} = \frac{V_{Thev}}{i_{sc}} = \frac{R_3}{\frac{R_2 + R_3}{R_2 + (1-\alpha) R_1}} \]

\[R_{Thev} = R_3 \parallel \left[R_2 + (1-\alpha) R_1 \right] \]

Thevenin equiv:

\[V_{Thev} = \frac{V_S R_3}{R_2 + R_3 + (1-\alpha) R_1} \]
Find the Thevenin's equivalent circuit at terminals a-b. \(v_x \) must not appear in your solution.

Hint: Use node voltage method to find v above \(R_1 \). **Note:** \(\alpha > 0 \).
Calculate the power consumed by the dependent current source, (labeled \(\frac{1}{5} v_x \)). **Note:** If a source supplies power, the power it consumes is negative.

Soln: \(V \) on top rail = 10V from 10V src (if ref on bottom).

Then \(v_x = 5V = 10V - 5V \)

\[\therefore \frac{1}{5} v_x = \frac{1}{5} 5V = 1A \text{ for dependent src} \]

Using \(v \)-loop on left, \(-1A \cdot R_1 - v -10V = 0V\)

or \(v = -10V - 1A \cdot R_1 = -15V \)

\[p = \frac{1}{5} v_x \cdot v = 1A \cdot (-15V) = -15W \]

\[p = -15W \]
Homework #4 Example

Calculate the power consumed by the dependent current source, (labeled $\frac{1}{3}v_x$).

Note: If a source supplies power, the power it consumes is negative.
Ex:

For the circuit shown, write three independent equations for the node-voltages, \(v_1, v_2, \) and \(v_3 \). The quantity \(v_x \) must not appear in the equations.
Ex:

For the circuit shown, write three independent equations for the three mesh currents, $i_1, i_2,$ and i_3. The quantity i_x must not appear in the equations.
Ex:

Find the Thevenin's equivalent circuit at terminals a-b. i_x must not appear in your solution. Note: $\alpha \neq 1$.
Calculate the power dissipated in the dependent current source, (labeled $3v_x$).
Capacitor (C in Farads)
\[i(t) = C \frac{dv(t)}{dt} \]
Parallel plates dielectric between
V causes i to flow
Stores charge on plates like a small battery
V cannot change instantly for C
V constant \(\Rightarrow i = 0 \) \(\left(\frac{dv}{dt} = 0 \right) \)
Energy \(= \frac{1}{2} CV^2 \)

Inductor (L in Henry)
\[V(t) = L \frac{di(t)}{dt} \]
i cannot change instantly for L
i constant \(\Rightarrow V = 0 \) \(\left(\frac{di}{dt} = 0 \right) \)
Energy \(= \frac{1}{2} Li^2 \)

General Equation:
\[X(t) = \text{Final} + \left[\text{Initial} - \text{Final} \right] e^{-\frac{(t-t_0)}{\tau}} \]
\[t - t_0 \]
Start time, at switch (set to zero)

Procedure:
1. Find Initial value on cap/inductor before switch \((t = o^-) \)
 \(\approx i_c(t = o^-) \) or \(v_c(t = o^-) \sqrt{3} \)
 \(\Rightarrow \) Note: voltage in C cannot change instantaneously
 \(v_c(t = o) = v_c(t = 0^+) \) \(\approx v \) src.
2. Find Final value on C/L \((t \rightarrow \infty) \)
 \(\Rightarrow \) Note: Use \(v_c(t) = 0 \) (wire) j \(i_c(t) = 0 \) (open)
3. Find \(\tau \) (use switch in Final position)
 \(\tau = \frac{1}{R \cdot C} \) OR \(\tau = \frac{L}{R_{eq}} \) where \(R_{eq} \) is R seen by element
4. Plug into general equation
 Note: If finding other variables, relate to \(v_c(t) \) or \(i_c(t) \) eq.
Derivation

Recall (2)
\[\ln a - \ln b = \ln \left(\frac{a}{b} \right) \]

Recall (1)
\[\int \frac{du}{au+b} = \frac{1}{a} \ln |au+b| + C \]

\[\begin{align*}
\text{V-Loop} & \Rightarrow \quad V_m - iR_{th} - V_c(t) = 0 \\
V_m - iR_{th} - L \frac{di(t)}{dt} = 0 \\
L \frac{di(t)}{dt} & = V_m - iR_{th}
\end{align*} \]

\[\frac{di(t)}{dt} = \frac{(i(t)) - V_m}{L} \]

\[\int_{t_0}^{t} \frac{di(t)}{dt} = \int_{t_0}^{t} \frac{1}{L} dt \]

\[i(t) = \frac{V_m}{R_{th}} + (i(t_0) - \frac{V_m}{R_{th}}) e^{-\frac{(t-t_0)}{L}} \]

Note: after a long time \(t \to \infty \)

\[V_m = \text{constant} \quad \text{and so} \quad V_c(t \to \infty) = 0 \quad \text{(wire)} \]

so \[I_c(t \to \infty) = \frac{V_m}{R_{th}} \quad \text{(final value)} \]

\[i(t_0) = \text{initial value} \]

\[i(t) = \text{Final} + (\text{Initial} - \text{Final}) e^{-\frac{(t-t_0)}{L}} \]

Note: After a long time \(t \to \infty \)

\[V_m = \text{constant} \quad \text{and so} \quad i_c(t) = 0 \quad \text{(open)} \]

so \[V_c(t \to \infty) = V_m \quad \text{(final value)} \]

\[V_c(t_0) = \text{initial value} \]

\[\gamma = \frac{1}{R_{th} C} \]

\[V_c(t) = \text{Final} + [\text{Initial} - \text{Final}] e^{-\frac{(t-t_0)}{\gamma}} \]
1. (t=0^-) \Rightarrow
\begin{align*}
V_c &= \frac{V_0(R_2)}{R_2 + 2k} \\
(t=0^+) \Rightarrow \text{because cap V cannot change instantaneously} & \Rightarrow V_c(t=0^+) = V_c(t=0^-) = \frac{V_0(R_2)}{R_2 + 2k} \\
\text{From graph} \Rightarrow & \Rightarrow 8 = \frac{V_0(R_2)}{R_2 + 2k} \\
& \Rightarrow 8R_2 + 16k = 16R_2 - 8R_2 \\
& \Rightarrow R_2 = 2kΩ
\end{align*}
(t=∞):
\begin{align*}
V_c &= 0 \\
\gamma &= R_3(2n) \\
V_c(t) &= 8 + (0 - 8)(1 - e^{-t/R_3(2n)}) = 8e^{-t/R_3(2n)} \\
\text{From graph} \Rightarrow V_c(5.5μs) &= 3.2V \\
3.2 &= 8e^{-5.5μs/R_3(2n)} \\
\ln\left(\frac{3.2}{8}\right) &= -\frac{5.5μs}{R_3(2n)} \\
R_3 &= \frac{5.5μs}{2n(\ln(\frac{3.2}{8}))} \approx 3kΩ
\end{align*}
After being in position a for a long time, the switch moves to position b at t = 0. Find R_2 and R_3 that give the following plot for $v_C(t)$:
After being closed for a long time, the switch opens at \(t = 0 \). Find \(i_L(t) \) for \(t > 0 \).

\[i_L = 6 \text{mA} \]

\((t=0^+)\): Inductor current remains the same

\(i_L(t=0^-) = i_L(t=0^+) = 6 \text{mA} \) (initial value)

\((t=\infty)\): \[i_L = 0 \]

\(i_L(t) = 6 \text{mA} + (0 - 6 \text{mA})(1 - e^{-t/\tau}) \)

(switch at \(t = \infty \)):

\[R_{\text{in}} = 2 \Omega \]

\[v_a = \frac{v_b}{2} \]

\[i_L(t) = +6 \text{mA} e^{-t/3 \Omega / 2 \Omega} \]
After being closed for a long time, the switch opens at $t = 0$. Find $i_L(t)$ for $t > 0$.
3.

After being in the above position for a long time, the switch changes at $t=0$. Find $v_i(t)$ for $t > 0$.

$t = 0^-$:

\[+4i_0 - 3i_0 - 24 = 0 \]
\[i_0 = +24 V / A \]
\[i_L = \frac{4i_0}{2} = \frac{4(24)}{2} = 48 A \]

$t = 0^+$: Inductor current stays the same \Rightarrow

\[i_L(t = 0^-) = i_L(t = 0^+) = 48 A \] - initial value

Note that V_i changes from $t = 0$ to $t = 0^+$.

\[V_i(t = 0^+) = 48(2) \] (initial value)

$t = 0^+$:

\[L = 0.5 \]
\[R_{in} = 2 = 0.25 \]

\[V_i(t) = 9(0) + (0 - 96 \times 1 - e^{-t/0.25}) = 96 e^{-4t} V \]
After being at position 1 for a long time, the switch moves to position 2 at $t=0$. Find $v_1(t)$ for $t > 0$.

3.

Diagram of the circuit with a switch and two voltage sources:

- A 36V source
- A 12V source
- A switch labeled "S"
- A 2L inductor
- A 3H inductor
- A 1F capacitor
- A current source labeled "i_A"
- A voltage source labeled "$v_1(t)$"
- A polarity label "±"
After being closed for a long time, the switch opens at $t=0$. Find $V_C(t)$ for $t > 0$.

\[
\begin{align*}
\frac{V_C - 80}{40} - 0.5i_1 + \frac{V_C}{80} &= 0 \\
i_1 &= \frac{V_C}{80} \\
V_C - 0.5\left(\frac{V_C}{80}\right) + \frac{V_C}{80} &= \frac{80}{40} \\
V_C\left(\frac{1}{100} - \frac{1}{100} + \frac{2}{100}\right) &= \frac{80}{40} \\
V_C &= 2 \left(\frac{1}{5100}\right) = \frac{2(100)}{5}
\end{align*}
\]

Need to use a test supply since $U_m = 0$ and $R_m = 0$ or the capacitor will not discharge. It must though since $V_C = 0$ as a final value and it started with $44V$ initially.

\[
\begin{align*}
\frac{444}{100} &- \frac{1}{480} \\
i_1 &= 0.5i_1 \\
i_1 &= \frac{1}{80} \\
i_t &= 0.5\left(\frac{1}{80}\right) = \frac{1}{100} \\
R_{th} &= \frac{1}{100} = 160 \Omega
\end{align*}
\]
After being open for a long time, the switch closes at \(t=0 \). Find \(V_0(t) \) for \(t > 0 \).
1. After being in position a for a long time, the switch moves to position b at $t = 0$. Find R_2 and R_3 that give the following plot for $v_C(t)$:
After being closed for a long time, the switch opens at \(t = 0 \). Find \(i_L(t) \) for \(t > 0 \).
After being open for a long time, the switch closes at $t = 0$. Find $v_1(t)$ for $t > 0$.
For both circuits, the switches close at $t = 0$ after being open for a long time.

a. Find $v_C(t)$ for $t > 0$ for the circuit on the left.

b. Find v_S and C' values that make v_C for the circuit on the right equal v_C for the circuit on the left. Assume $v_C(0^-) = 0V$.
Using superposition, derive an expression for \(i \) that contains no circuit quantities other than \(i_s, v_s, R_1, R_2, \) and \(\beta \).
Max Power Example

Calculate the value of R_L that would absorb maximum power, and calculate that value of maximum power R_L could absorb.
Energy Example

After being open for a long time, the switch is closed at $t = 0$. Calculate the energy stored on the capacitor at $t \rightarrow \infty$.

Write a numerical expression for $v(t), t > 0$.
After being open for a long time, the switch is closed at $t = 0$. Write an expression for $i_L(t)$, $t > 0$.
1. After being open for a long time, the switch is closed at \(t = 0 \).

Calculate the energy stored on the inductor at \(t \to \infty \).

2. Write a numerical expression for \(i(t), t > 0 \).

Solution: For \(t \to \infty \), \(L \) acts like wire, switch is closed.

Find \(i_L(t \to \infty) \). Energy, \(W = \frac{1}{2} L i_L^2 \).

\[
\begin{align*}
\mathbf{R}_{\mathbf{g}} &= \frac{1.2 \, \mathbf{k}\Omega \ | \ 3.6 \, \mathbf{k}\Omega}{1.2 \, \mathbf{k}\Omega} = \frac{3}{4} \\
\mathbf{R}_{\mathbf{g}} &= 0.9 \, \mathbf{k}\Omega
\end{align*}
\]

We have current divider.

\[
\begin{align*}
i_L(t \to \infty) &= \frac{2.4 \, \mathbf{mA} \cdot \mathbf{R}_{\mathbf{g}}}{\mathbf{R}_{\mathbf{g}} + 7.2 \, \mathbf{k}\Omega} = \frac{2.4 \, \mathbf{mA} \cdot 0.9 \, \mathbf{k}\Omega}{8.1 \, \mathbf{k}\Omega} = \frac{24}{90} \, \mathbf{mA} = \frac{12}{45} \, \mathbf{mA} = \frac{4}{15} \, \mathbf{mA} \\
w &= \frac{1}{2} 81 \, \mathbf{mH} \left(\frac{4}{15} \right)^2 \mathbf{mA}^2 = \frac{1}{2} 81 \cdot \frac{16}{25^2} \, \mathbf{nJ} \\
w &= \frac{9 \cdot (8)}{25} \, \mathbf{nJ} = \frac{72}{40} \, \mathbf{nJ} = 2.88 \, \mathbf{nJ} \\
w_L(t \to \infty) &= 2.88 \, \mathbf{nJ}
\end{align*}
\]
We want to find \(i(t=0^+) \). We start by finding \(i_L(t=0^-) \) so we will know \(i_L(t=0^+) \), since
\[
i_L(t=0^+) = i_L(t=0^-).
\]

\(t=0^- \): L acts like wire, switch is open.

No power source for L, so L discharges to give \(i_L(0^-) = 0A \).

\[
\begin{array}{c}
3.6\,k\Omega \\
\downarrow \quad i_L(0^-) = 0A \\
7.2\,k\Omega
\end{array}
\]

\(t=0^+ \): L acts like current source of value \(i_L(0^+) = i_L(0^-) = 0A = \text{open circuit} \).
Switch is closed.

\[
\begin{array}{c}
2.4\,mA \\
\uparrow i(0^+) \\
\downarrow \quad 1.2\,k\Omega \\
\quad \quad 3.6\,k\Omega \\
\quad \quad \downarrow 7.2\,k\Omega \\
\end{array}
\]

This is a current divider.

\[
i(0^+) = 2.4\,mA \cdot \frac{3.6\,k\Omega}{1.2\,k\Omega + 3.6\,k\Omega} = 1.8\,mA
\]

For time constant \(R_{Th} \), we look into the terminals where L is connected. We turn off independent 2.4 mA src which becomes open circuit.

\[
\begin{array}{c}
1.2\,k\Omega \\
\quad \quad 3.6\,k\Omega \\
\quad \quad \downarrow 7.2\,k\Omega \\
\quad \quad 0.9\,k\Omega \quad \text{(from soln to (a))}
\end{array}
\]
sol'n: 2. cont.

\[R_{Th} = 7.2 \, k\Omega + 0.4 \, k\Omega = 8.1 \, k\Omega \]

Our time constant is \(\frac{L}{R_{Th}} = \frac{81 \, \text{mH}}{8.1 \, k\Omega} = 10 \, \mu \text{s} \).

Find \(i(t \to \infty) \) [see below].

Plug values into general solution.

\[i(t > 0) = i(t \to \infty) + \left[i(0^+) - i(t \to \infty) \right] e^{-\frac{t}{R_{Th}}} \]

\[i(t > 0) = 1.6 \, mA + \left[1.8 \, mA - 1.6 \, mA \right] e^{-\frac{t}{10 \, \mu \text{s}}} \]

\[i(t > 0) = 1.6 \, mA + 0.2 \, mA \, e^{-\frac{t}{10 \, \mu \text{s}}} \]

\(t \to \infty \): L acts like wire, switch closed

Find \(i(t \to \infty) \) (not \(i_L \)).

\[2.4 mA \]

\[\frac{1.2 k\Omega}{3.6 k\Omega} \]

\[\frac{7.2 k\Omega}{3.6 k\Omega} \]

\[\frac{3.6 k\Omega \parallel 7.2 k\Omega}{2.4 k\Omega} = \frac{3.6 k\Omega \cdot 2}{3} = 2.4 k\Omega \]

\[i \text{- divider: } i(t \to \infty) = \frac{2.4 \, mA \cdot 2.4 k\Omega}{2.4 k\Omega + 1.2 k\Omega} = 1.6 \, mA \]
After being closed for a long time, the switch closes at \(t = 0 \).

Calculate the energy stored on the inductor as \(t \to \infty \).

find \(i(t) \) for \(t > 0 \).
After being at position a for a long time, the switch moves to position b at time $t = 0$.

a. Write an expression for $v_c(t = 0^+)$.

b. Write an expression for $v_c(t), t > 0$.

\[v_c(t=0^+) = v_c(t=0^-) \]

At $t=0^-$, switch is in position a.

C acts like open circuit.

No current in R_3 means no v-drop for R_3.

$\therefore v_c(0^-) = V_S$

\[v_c(0^+) = V_S \]

b) Find $v_c(t \to \infty)$ and $R_{Th}C = \text{time constant}$.

$t \to \infty$: switch is in position b. No pur src.

C discharges thru R_1.

$\therefore v_c(t \to \infty) = 0V$

R_{Th} is resistance seen looking into terminals where C connected with switch in position b.
R_{Th} = (R_1 \parallel R_2) + R_3

Now plug values into general sol'n.

\begin{align*}
V_c(t>0) &= V_c(t=0) + \left[V_c(0^+) - V_c(t=\infty)\right] e^{-t/R_{Th}C} \\
V_c(t>0) &= 0V + [V_3 - 0V] e^{-t/(R_1 \parallel R_2 + R_3)C} \\
V_c(t>0) &= V_3 e^{-t/(R_1 \parallel R_2 + R_3)C}
\end{align*}
2. After being open for a long time, the switch closes at $t = 0$. Write an expression for $v_C(t \geq 0)$ in terms of R_1, R_2, R_3, i_s, and C.
a. Calculate the value of R_L that would absorb maximum power.

b. Calculate that value of maximum power R_L could absorb.

Solution:

$R_L = R_{Th}$ yields maximum power transfer

We find R_{Th} by removing R_L, turning independent sources off, and seeing what resistance we have looking into terminals a,b.

$$R_{Th} = \frac{300 \Omega \parallel 1.5 \Omega}{1.5 \Omega} = \frac{300 \Omega \cdot 1}{1.5 \Omega} = 300 \Omega \cdot \frac{5}{6}$$

$$R_{Th} = 250 \Omega$$

\[\therefore R_L = 250 \Omega \]
soln: 4.6) Find Thevenin equivalent of circuit where R_L connected.

$V_{Th} = V_{ab}$ with R_L removed.

Use superposition (or other method such as node-voltage) to find V_{Th}.

case I: 2V src on, 16mA src off (open circuit)

We have v-divider.

$$V_{Th1} = \frac{2V \cdot 300a}{300a+1.5k\Omega}$$

$$V_{Th1} = \frac{2V}{6}$$

case II: 2V src off, 16mA src on

=wire

We have i-divider.

All current flows thru wire.

$\therefore V_{Th2} = 0V$

$$V_{Th} = V_{Th1} + V_{Th2} = \frac{2V}{6} + 0V = \frac{2V}{6} = \frac{1}{3}V$$

$$max\ pwr = \frac{V_{Th}^2}{4R_{Th}} = \frac{\left(\frac{1}{3}V\right)^2}{4 \cdot 250\Omega} = \frac{1}{9} mW$$

$$max\ pwr = \frac{1}{9} mW$$
a) Calculate the value of R_L that would absorb maximum power.

b) Calculate that value of maximum power R_L could absorb.
Using superposition, derive an expression for \(v \) that contains no circuit quantities other than \(i_S, v_S, R_1, R_2, \) and \(\beta \). Note: \(\beta > 0 \).

Solution:

Case I: \(i_S \) on, \(v_S \) off = wire

Current summation at center node gives

\[-i_S + i_{x1} + \frac{\beta i_{x1}}{R_2} = 0\]

or

\[i_{x1} \left(1 + \frac{\beta}{R_2}\right) = i_S\]

\[i_{x1} = \frac{i_S}{1 + \frac{\beta}{R_2}} = i_S \cdot \frac{R_2}{R_2 + \beta}\]

\[v_1 = \beta i_{x1} = \frac{\beta i_S R_2}{R_2 + \beta} = i_S \cdot R_2 \parallel \beta\]
sol'n: 5. cont. case II: \(i_3 \) off, \(v_3 \) on

\[i_3 \text{ open} \]

\[
\begin{align*}
V \text{ loop around outside gives} & \\
\beta i_{x_2} - i_{x_2} R_2 - v_3 &= 0V \\
i_{x_2} (\beta + R_2) &= v_3 \\
i_{x_2} &= \frac{v_3}{\beta + R_2} \\
v_2 &= -i_{x_2} R_2 = -v_3 \frac{R_2}{\beta + R_2} = -v_3 \frac{R_2}{R_2 + \beta} \\
v &= v_1 + v_2 = \beta i_3 \frac{R_2}{R_2 + \beta} - v_3 \frac{R_2}{R_2 + \beta} = (\beta i_3 - v_3) \frac{R_2}{R_2 + \beta} \]

\[v = (\beta i_3 - v_3) \frac{R_2}{R_2 + \beta} \]
Using superposition, derive an expression for v_1 that contains no circuit quantities other than i_s, v_s, R_1, R_2, and β, where $\beta > 0$.

\[i_s \]

\[R_1 \]

\[+ v_1 - \]

\[v_s \]

\[R_2 \]

\[\beta i_x \]
After being closed for a long time, the switch opens at $t = 0$.

a) Calculate the energy stored on the capacitor at $t = 0^+$.

b) Write a numerical expression for $v(t)$ for $t > 0$.
After being open for a long time, the switch closes at $t = 0$.

a) Write an expression for $i_L(t = 0^+)$

b) Write an expression for $i_L(t > 0)$ in terms of R_1, R_2, R_3, v_S, and L.
3.

a) Calculate the value of R_L that would absorb maximum power.
b) Calculate that value of maximum power R_L could absorb.
Using superposition, derive an expression for i_1 that contains no circuit quantities other than i_s, v_s, R_1, R_2, and α, where $\alpha > 0$.
Sinusoidal Signals

\[v_s(t) = A \cos(\omega t) \pm v_c(t) = A_2 \cos(\omega t + \phi) \]

- input sinusoid, output also sinusoid!
 freq unchanged!

amplitude & phase shift change
calculate these

- Can write arbitrary input (periodic) as sum of sinusoids of different frequencies

Imaginary #'s What is \(j \) ?

1. \(j = \sqrt{-1} \)
2. \(j \) is a unit vector \(\perp \) to real axis
3. \(j \) defines rule for multiplying vectors
4. \(j = 90^\circ \) rotation
5. \(j \) allows us to use phasors for input \(A \cos(\omega t + \phi) \)
6. \(j \) is a token placed in front of sin() to make cos()
7. \(j \) allows us to write \(\cos(\omega t + \phi) \) as \(\text{a} + j \text{b} = \cos + j \sin \)
8. \(j \) allows us to use complex exp for polar form \(A e^{j\phi} \)
9. \(j \) results from taking \(\frac{d}{dt} e^{j\omega t} = j \omega e^{j\omega t} \)
10. \(j \) allows us to write \(\cos = e^{j\omega t} + e^{-j\omega t} \)
Complex #s:

\[a + bj \] used so that current (i symbol) not get confused

\[a = \text{real part}, \quad b = \text{imaginary part} \]

Complex plane or (Argand) diagram

\[z = x + yj \] \[\text{Rectangular or Cartesian form} \]

Polar Form

\[z = r e^{i\varphi} \] where \[\varphi = \begin{cases} \tan^{-1}\left(\frac{y}{x}\right) & x > 0 \\ \tan^{-1}\left(\frac{y}{x}\right) + \pi & x < 0, y \geq 0 \\ \tan^{-1}\left(\frac{y}{x}\right) - \pi & x < 0, y < 0 \\ \frac{\pi}{2} & x = 0, y > 0 \\ -\frac{\pi}{2} & x = 0, y < 0 \end{cases} \]

Trigonometric form:

\[z = r(\cos \varphi + jsin \varphi) \]

Suggestions:

\[\text{add/sub. using rect. form} = a + bj + (c + dj) = (a + c) + (b + d)j \]

\[\text{mult/div. using exponential form} \]

\[(r_1 e^{i\varphi_1}) \times (r_2 e^{i\varphi_2}) = r_1 \cdot r_2 e^{i(\varphi_1 + \varphi_2)} \]
EX: Express $3e^{j32^\circ} + 4e^{-j40^\circ}$ in rectangular and polar form.

ANS: $5.608 - j0.981$ or $5.693e^{-j9.922^\circ}$ (approx)

SOL'N: Use Euler's formula to write each complex number in rectangular form $a + jb$:

$$Ae^{j\phi} = A\cos \phi + jA\sin \phi$$

$$3e^{j32^\circ} = 3\cos(32^\circ) + j3\sin(32^\circ) = 2.544 + j1.590$$

$$4e^{-j40^\circ} = 4\cos(-40^\circ) + j4\sin(-40^\circ) = 3.064 - j2.571$$

Sum the real and imaginary parts:

$$3e^{j32^\circ} + 4e^{-j40^\circ} = 2.544 + 3.064 + j(1.590 - 2.571)$$

Our answer in rectangular form:

$$3e^{j32^\circ} + 4e^{-j40^\circ} = 5.608 - j0.981$$

Use the Pythagorean theorem to find the magnitude for polar form:

$$|3e^{j32^\circ} + 4e^{-j40^\circ}| = \sqrt{5.608^2 + 0.981^2} = 5.693$$

Use tangent of phase angle $= \text{Im}/\text{Re}$ to find angle for polar form:

$$\angle(3e^{j32^\circ} + 4e^{-j40^\circ}) = \tan^{-1}\left(\frac{-0.981}{5.608}\right) = -9.922^\circ$$

Our answer in polar form:

$$3e^{j32^\circ} + 4e^{-j40^\circ} = 5.693e^{-j9.922^\circ}$$
EX: Rationalize \(\frac{3 + j1.5}{5 - j2.6} \)

ANS: 0.35 + j0.48

SOL'N: Multiply the numerator and denominator by the denominator's complex conjugate. This turns the denominator into a real number equal to the magnitude squared of the original denominator.

\[
\frac{3 + j1.5}{5 - j2.6} = \frac{\frac{3 + j1.5}{5 - j2.6}}{\frac{5 + j2.6}{5 - j2.6}} = \frac{(3 + j1.5)(5 + j2.6)}{5^2 + 2.6^2}
\]

\[
= \frac{15 - 3.9 + j(7.8 + 7.5)}{31.76}
\]

\[
= 0.35 + j0.48
\]

OR

\[
\frac{3 + j(1.5)}{5 - j2.6} = \frac{\sqrt{9 + 1.5^2} e^{j\tan^{-1}(\frac{1.5}{3})}}{\sqrt{25 + 2.6^2} e^{j\tan^{-1}(\frac{2.6}{5})}}
\]

\[
= \frac{3.351}{5.636} e^{j(26.6^\circ + 27.5^\circ)} = 0.6 e^{j(54.1^\circ)}
\]

\[
= 0.6 \cos(54.1^\circ) + 0.6 \sin(54.1^\circ) j
\]

\[
= 0.35 + 0.49 j
\]
EX: Evaluate $\frac{4 + j3}{2 - j6}$

ANS: $\frac{-1}{4} + j\frac{3}{4}$

SOLN: Multiply the numerator and denominator by the denominator's complex conjugate. This turns the denominator into a real number equal to the magnitude squared of the original denominator. Divide the numerator's real and imaginary parts by this new denominator.

$$\frac{4 + j3}{2 - j6} = \frac{4 + j3}{2 - j6} \frac{(2 - j6)^*}{(2 - j6)^*}$$

$$= \frac{4 + j3}{2 - j6} \frac{2 + j6}{2 + j6}$$

$$= \frac{8 - 18 + j(6 + 24)}{4 + 36}$$

$$= \frac{-10 + j30}{40}$$

$$= \frac{-1}{4} + j\frac{3}{4}$$

OR

\[\frac{\sqrt{16+9} \ e^{j \tan^{-1}(3/4)}}{\sqrt{14+36} \ e^{j \tan^{-1}(6/8)}} = \frac{5}{6.32} \ e^{j(37^\circ + 72^\circ)} = 0.8 \ e^{j(109^\circ)} \]

\[= +0.8\cos (109^\circ) + 0.8\sin (109^\circ) \ e^{j} = -26 + 0.76 j\]
DEF: Complex Conjugate of \(a + jb = a - jb \) = complex number with imaginary part inverted

NOT'N: \(z^* = \) complex conjugate of \(z \)

TOOL: To find the complex conjugate of an expression, change each \(j \) to \(-j\).

NOTE: This is equivalent to (but easier than) converting the expression to form \(a + jb \) and changing it to \(a - jb \).

TOOL: \((Ae^{j\phi})^* = Ae^{-j\phi}\) when \(A \) is real

TOOL: To find \(z^* \), reflect \(z \) around the real axis. In other words, preserve the magnitude but take the negative of the phase angle.

EX: Evaluate \((2 + j3)^*\)

ANS: \((2 - j3)\)

SOL'N: This is a direct application of the definition of complex conjugate.

EX: Evaluate \((\text{Re}^{j\phi})^*\) where \(R \) is real

ANS: \(\text{Re}^{-j\phi}\)

SOL'N: We retain the magnitude but invert the phase angle to find the conjugate of a complex number in polar form.

EX: Evaluate \(\left[\frac{(6 - j2)e^{j35^\circ}}{(4 + j5)\sin(x)} \right]^*\) where \(x \) is real

ANS: \(\left[\frac{(6 + j2)e^{-j35^\circ}}{(4 - j5)\sin(x)} \right]^*\)

SOL'N: Change each \(j \) to \(-j\). Thus, \(-j \) becomes \((-(-j)) = j\).
EX: Find $\text{Re}[7e^{j25^\circ}]$, (i.e., find the real part)

ANS: $7\cos(25^\circ) \approx 6.34$

SOL'N: The answer follows directly from Euler's formula (see tools for rectangular and polar forms for complex numbers):

$$Ae^{j\phi} = A\cos \phi + jA\sin \phi$$

EX: Find $|2e^{j182^\circ}|$, (i.e., find the magnitude)

ANS: 2

SOL'N: The magnitude of a product is the product of the magnitudes:

$$|2e^{j182^\circ}| = 2 \cdot |e^{j182^\circ}|$$

The magnitude of a real number is the absolute value of that real number:

$$|2| = 2$$

The magnitude of e^{ix} for any real x is 1:

$$|e^{ix}| = 1$$

Thus we have:

$$|e^{j182^\circ}| = 1$$

Putting our results together gives the answer:

$$|2e^{j182^\circ}| = 2$$
EX: Find $\text{Re} \left(\frac{6 + j3}{2 - j4} e^{jx} \right)$, (i.e., find the real part) where "x" is real

ANS: $1.5 \cos(x + \pi/2)$

SOL'N: We may take one of several different approaches to convert the quantity inside the brackets into the form $a + jb$ (where a is our final answer). We'll take the approach of rationalizing the fraction.

$$\text{Re} \left(\frac{6 + j3}{2 - j4} e^{jx} \right) = \text{Re} \left[\frac{6 + j3}{2 - j4} \frac{2 + j4}{2 + j4} e^{jx} \right]$$

$$= \text{Re} \left[\frac{12 - 12 + j(24 + 6)}{2^2 + 4^2} e^{jx} \right]$$

$$= \text{Re} \left[\frac{j30}{20} e^{jx} \right]$$

We now use Euler's formula to expand the complex exponential:

$$= \text{Re} \left[\frac{j30}{20} \{ \cos(x) + j \sin(x) \} \right]$$

$$= \text{Re} \left[-1.5 \sin(x) + j1.5 \cos(x) \right]$$

Our final answer is the real part, which we may express in several ways.

$$\text{Re} \left(\frac{6 + j3}{2 - j4} e^{jx} \right) = -1.5 \sin(x) \text{ or}$$

$$\text{Re} \left(\frac{6 + j3}{2 - j4} e^{jx} \right) = 1.5 \cos(x + \pi/2) = 1.5 \cos(x + 90^\circ)$$

NOTE: A curious feature of this problem is that the fraction consisting of complex numbers is purely imaginary. We now examine this symbolically.

$$k \cdot \frac{a + jb}{b - ja} = k \cdot j(b - ja) \frac{b - ja}{b - ja} = jk$$

Whenever the numerator and denominator of a fraction have the above pattern, we will find that the result is purely imaginary. Note the necessary minus sign.
EX: Find the value (in polar form) of \((6 + j5)^{1/5}\).

ANS: \(1.51e^{j7.96^\circ}\) (approx)

SOL'N: First, we convert the number being raised to a power to polar form:

\[
6 + j5 = \sqrt{6^2 + 5^2} e^{j\tan^{-1}\left(\frac{5}{6}\right)} \approx 7.81e^{j39.8^\circ}
\]

Now take the power inside the parentheses and use the identity

\[(ab)^n = a^n b^n\]

giving the answer:

\[(6 + j5)^{1/5} \approx 7.81^{1/5} e^{j39.8^\circ/5} \approx 1.51e^{j7.96^\circ}\]

EX: Find the value (in polar form) of \((3e^{j40^\circ})^3\).

ANS: \(27e^{j120^\circ}\)

SOL'N: We take the power inside the parentheses and use the identity

\[(ab)^n = a^n b^n\]

giving the answer:

\[3^3 e^{j3\cdot40^\circ} = 27e^{j120^\circ}\]
EX: Find the polar form of $2.5 - j3.2$.

ANS: $4.06e^{-j52^\circ}$

SOL'N: We express $2.5 - j3.2$ in polar form $Ae^{j\phi}$.

Use the pythagorean theorem to find magnitude A:

$$A = \sqrt{2.5^2 + 3.2^2} = 4.06$$

Set the tangent of the phase angle equal to the side opposite (imaginary part) over the side adjacent (real part):

$$\tan \phi = \frac{\text{Im}[2.5 - j3.2]}{\text{Re}[2.5 - j3.2]} = \frac{-3.2}{2.5} = -1.28$$

$$\phi = \tan^{-1} \left(\frac{-3.2}{2.5} \right) \approx -52^\circ \text{ or } -0.9076 \text{ radians}$$

Our final answer:

$$2.5 - j3.2 \approx 4.06e^{-j52^\circ}$$

NOTE: When calculating the inverse tangent, if we use -1.28 rather than both the imaginary and real parts, we have two possible values for ϕ that differ by 180 degrees. The ratio of the imaginary and real parts is the same for $1 + j$ and $-1 - j$, for example. Thus, it is necessary to keep track of which quadrant the complex number lies in if we wish to avoid confusion about the correct value of phase angle ϕ.

EX: Find the rectangular form of $6e^{-j47^\circ}$

ANS: $4.09 - j4.39$

SOL'N: We must express $6e^{-j47^\circ}$ in rectangular form $a + jb$.

We use Euler's formula for the complex exponential:

$$6e^{-j47^\circ} = 6\cos(-47^\circ) + j6\sin(-47^\circ)$$

Applying identities, $\cos(-A) = \cos(A)$ and $\sin(-A) = -\sin(A)$, we have

$$= 6\cos(47^\circ) - j6\sin(47^\circ)$$
$$= 4.09 - j4.39$$
EX: Find the rectangular and polar forms of \(\frac{6 - j2}{4 + j5} \).

ANS: \(\frac{14}{41} - j\frac{38}{41} \) and \(0.987e^{-j69.78^\circ} \)

SOL'N:
\[
\frac{6 - j2}{4 + j5} = \frac{6 - j2}{4 + j5} \frac{(4 + j5)^*}{(4 + j5)^*} = \frac{6 - j2}{4 + j5} \frac{(4 - j5)}{(4 + j5)}
\]
\[
= \frac{24 - 10 - j(30 + 8)}{16 + 25} = \frac{14}{41} - j\frac{38}{41}
\]

\[
A = \sqrt{\left(\frac{14}{41}\right)^2 + \left(\frac{38}{41}\right)^2} = 0.987
\]

\[
\phi = \tan^{-1}\left(\frac{-38}{41}\right) = -69.78^\circ
\]
TUTOR: THE PHASOR TRANSFORM

All voltages and currents in linear circuits with sinusoidal sources are described by constant-coefficient linear differential equations of the form

\[a_n \frac{d^n f}{dt^n} + a_{n-1} \frac{d^{n-1} f}{dt^{n-1}} + \ldots + a_0 f = C \cos(\omega t + \phi) \]

(1)

where \(f \) is a function of time, the \(a_n \) are constants, \(C \) is a constant, \(\omega \) is the radian frequency of the sinusoidal source, and \(\phi \) is the phase of the sinusoidal source. In (1), \(f \) represents any voltage or current in the circuit.

A particular solution to (1) can be found by an elegant procedure called the **phasor transform** method. This supplementary material outlines the mathematical basis of the method. The phasor transform is defined by

\[f(t) = \Re\left[F(\omega)e^{j\omega t}\right] \]

(2)

where \(F(\omega) \) is a function of \(\omega \) called the phasor transform of \(f(t) \), and \(\Re \) means the real part of the quantity in the brackets. \(F(\omega) \) is complex; it has a real and an imaginary part.

Two key mathematical relationships are used in finding a particular solution to (1). The first is

\[\Re[W] = \frac{W + W^*}{2} \]

(3)

where \(W \) is any complex number and \(W^* \) is the complex conjugate of \(W \).

Using (3) with (2) gives

\[f = \frac{F e^{j\omega t} + F^* e^{-j\omega t}}{2} \]

(4)
where \(f \) has been written for \(f(t) \) and \(F \) for \(F(\omega) \) for brevity. Note that \(F \) is not a function of time. The second relationship is

\[
(5) \quad \cos(\omega t + \phi) = \frac{e^{j(\omega t + \phi)} + e^{-j(\omega t + \phi)}}{2}
\]

which is called Euler's formula.

Substituting (5) and (4) into (1), taking the derivatives with respect to time, and collecting terms gives

\[
(6) \quad \left[a_n(j\omega)^n F + a_{n-1}(j\omega)^{n-1} F + \ldots + a_0 F - Ce^{j\phi} \right] e^{j\omega t} + \\
\left[a_n(-j\omega)^n F^* + a_{n-1}(-j\omega)^{n-1} F^* + \ldots + a_0 F^* - Ce^{-j\phi} \right] e^{-j\omega t} = 0.
\]

Now because \(e^{j\omega t} \) and \(e^{-j\omega t} \) are linearly independent functions (see, for example, C. R. Wylie, *Advanced Engineering Mathematics*, 3rd ed., New York: McGraw-Hill, 1966, p. 444), (6) can be true for all time only if

\[
(7) \quad \left[a_n(j\omega)^n F + a_{n-1}(j\omega)^{n-1} F + \ldots + a_0 F - Ce^{j\phi} \right] = 0
\]

and

\[
(8) \quad \left[a_n(-j\omega)^n F^* + a_{n-1}(-j\omega)^{n-1} F^* + \ldots + a_0 F^* - Ce^{-j\phi} \right] = 0.
\]

Equations (7) and (8) are identical because one is the complex conjugate of the other, so only one is needed. An expression for \(F \) from (7) is

\[
(9) \quad F = \frac{Ce^{j\phi}}{a_n(j\omega)^n + a_{n-1}(j\omega)^{n-1} + \ldots + a_0}.
\]

A particular solution to (1) can now be obtained from (9) and (2):

\[
(10) \quad f = \text{Re}[Fe^{j\omega t}] = \text{Re} \left[\frac{Ce^{j\phi}e^{j\omega t}}{a_n(j\omega)^n + a_{n-1}(j\omega)^{n-1} + \ldots + a_0} \right].
\]
Symbolically, the notation for a phasor transformation is

\[(11) \quad \mathbf{P}[f(t)] = \mathbf{F}(\omega)\]

where the bold \(\mathbf{P} \) means "phasor transform of". Thus, \(\mathbf{F} \) is the phasor transform of \(f \). Taking the derivative of both sides of (2) gives

\[
\frac{df}{dt} = \text{Re}\left[j\omega F(\omega)e^{j\omega t}\right]
\]

which corresponds to

\[
\mathbf{P}\left[\frac{df}{dt}\right] = j\omega \mathbf{F}.
\]

Similarly,

\[(12) \quad \mathbf{P}\frac{d^n f}{dt^n} = (j\omega)^n \mathbf{F}\]

and

\[(13) \quad \mathbf{P}[\cos(\omega t + \phi)] = e^{j\phi}\]

because

\[(14) \quad \cos(\omega t + \phi) = \text{Re}\left[e^{j\phi}e^{j\omega t}\right].\]

From the basic relation in (2) it can also be shown that

\[(15) \quad \mathbf{P}[f_1 + f_2] = \mathbf{F}_1 + \mathbf{F}_2\]

and
(16) \[P[af] = aF \]

where

\[P[f_1] = F_1 \]

and

\[P[f_2] = F_2 \]

and "a" is a constant. The relation in (15) means that the phasor transform of a sum of functions can be found by taking the transform of each function and adding the transforms.

Equations (11), (12), (13), (15), and (16) describe phasor transforms. An inverse phasor transform relation is written as

(17) \[f(t) = P^{-1}[F(\omega)]. \]

Equations (11) and (17) are called a transform pair. Equation (11) states how to get F when f is known; (17) how to get f when F is known. Equation (2) is the inverse transform relation. The transform relation is derived as follows. \(f(t) \) will always be a sinusoid, because it is a particular solution to (1). Thus \(f(t) \) can be written as

(18) \[f(t) = f_m \cos(\omega t + \alpha). \]

Substituting (18) into (2), using Euler's formula and (3) gives

\[\frac{f_m e^{j\omega t} e^{j\alpha} + f_m e^{-j\omega t} e^{-j\alpha}}{2} = \frac{F e^{j\omega t} + F^* e^{-j\omega t}}{2}. \]

Collecting terms and using the linear independence of \(e^{j\omega t} \) and \(e^{-j\omega t} \), as before, gives
(19) \[F = f_m e^{j\alpha} \]

so the phasor transform of \(f_m \cos(\omega t + \alpha) \) is \(f_m e^{\alpha t} \). The transform pairs are thus

(20) \[F = P[f] = f_m e^{j\alpha} \]

and

(21) \[f = P^{-1}[F] = \text{Re}[Fe^{j\omega t}] \].

With the phasor transform relations given in (12), (15), (16), (20), and (21), a particular solution to (1) can be found without going through the detailed derivation using (3) and linear independence. The phasor transform of (1) is taken term-by-term using (12), (13), (15), and (16) to get (7), which is then solved for \(F \). Having found \(F \), \(f \) is found by taking the inverse transform according to (21).

EX: Let's find a particular solution to

(22) \[\frac{d^3 f}{dt^3} + 3 \frac{d^2 f}{dt^2} + 50 \frac{df}{dt} - 60f = 500\cos(10t + \pi/3). \]

Taking the phasor transform of this equation gives

\[(j10)^3 F + 3(j10)^2 F + 50(j10)F - 60F = 500e^{j\pi/3}. \]

Solving for \(F \),

\[F = \frac{500e^{j\pi/3}}{-j100 - 300 + j500 - 60}. \]

Converting \(F \) to polar form gives
F = 0.812e^{-j174.25^\circ}

and finding the inverse transform gives

f = \text{Re}\left[Fe^{j\omega t}\right] = \text{Re}\left[0.812e^{-j174.25^\circ}e^{j10t}\right] = 0.812\cos(10t - 174.25^\circ).

\textbf{COMMENT:} The phasor transform method is powerful because it transforms a differential equation (1) into an algebraic equation (7), which can be solved for the phasor F, and then f can be found by taking the inverse transform.

Phasor voltages and currents satisfy Kirchhoff's laws, because of (15). Consequently, circuits can be transformed into the frequency domain, eliminating the need to write differential equations in the time domain and solve them by phasor transforms. The procedure for analyzing and designing circuits by transforming them into the frequency domain is summarized in the figure below. Note that impedance is defined as the ratio of a phasor voltage to a phasor current. Impedance is not defined in the time domain.
TIME DOMAIN

\[v_g = v_m \cos(\omega t + \phi) \]

\[i = \frac{v_m \cos(\omega t + \phi - \psi)}{\sqrt{R^2 + \omega^2 L^2}} \]

\[\psi = \tan^{-1}(\omega L/R) \]

Time-domain expression for the desired quantities

FREQUENCY DOMAIN

\[V_g = v_m e^{j\phi} \]

Frequency-domain representation of the circuit (transformed circuit)

Apply circuit laws to obtain algebraic equations:

\[V_g = R I + j \omega L I \]

Solve for the desired quantities:

\[I = \frac{V_g}{R + j \omega L} \]
EX: If \(f(t) = 2\sin(\omega t + \pi/3) \) find \(P[f(t)] \), (i.e., find the phasor)

ANS: \(P[f(t)] = F = 2e^{-j\pi/6} = 2\angle\pi/6 \)

SOL’N: If we have a cosine, we use the standard identity for phasors:

\[
P[A\cos(\omega t + \phi)] = Ae^{j\phi} = A\angle\phi
\]

For a sine, we multiply the standard identity by \(-j\) (which is the phasor for a sine of magnitude one and zero phase shift):

\[
P[\sin(\omega t)] = -j = 1\angle-90^\circ
\]

Thus, we have

\[
P[f(t)] = F = -2je^{j\pi/3}.
\]

The above is mathematically correct and works properly in solving problems, but we will apply identities to express the answer in standard form:

\[
-1 = e^{j180^\circ} = e^{-j180^\circ} = e^{j\pi} = e^{-j\pi}.
\]

NOTE: (We use whichever of \(+180^\circ\) or \(-180^\circ\) is most convenient.)

\[
j = e^{j90^\circ} = e^{j\pi/2}.
\]

Applying the identities:

\[
F = -2je^{j\pi/3} = 2e^{-j\pi}e^{j\pi/2}e^{j\pi/3} = 2e^{-j\pi/6} = 2\angle-\pi/6.
\]
EX: If \(F = (2.5 + j3.2) \) find \(P^{-1} [F] \), (i.e., find the inverse phasor)

ANS: \(P^{-1} [F] = 4.06 \cos(\omega t + 52^\circ) \)

SOL'N: We convert to polar form:

\[
2.5 + j3.2 = \sqrt{2.5^2 + 3.2^2} e^{j \tan^{-1} \left(\frac{3.2}{2.5} \right)} \approx 4.06 e^{j52^\circ}
\]

Now use the standard inverse phasor identity:

\[
P^{-1} [Ae^{j\phi}] = A \cos(\omega t + \phi)
\]

NOTE: There is no math to do here—we just substitute the values of \(A \) and \(\phi \) into the \(\cos(\cdot) \).

NOTE: We don't know the value of \(\omega \) for this problem. Thus, we just use a symbolic variable for \(\omega \). The value of \(\omega \) is not part of a phasor. (The value of \(\omega \) must be kept track of separately.)

Using the identity gives the answer:

\[
P^{-1} [F] = 4.06 \cos(\omega t + 52^\circ)
\]

NOTE: Mathematically, it is also correct to invert the given phasor in two pieces, with the real part giving a cosine term having no phase shift and the imaginary part giving a (negative) sine term having no phase shift:

\[
P^{-1} [2.5 + j3.2] = 2.5 \cos(\omega t) - 3.2 \sin(\omega t).
\]

Although this answer is correct, it is usually easier to visualize a single sinusoid with a phase shift. The sum of the cos and sin terms is equal to the single cos with a phase shift given above. This follows from the observation that the sum of any number of sinusoids of the same frequency may be expressed as a single sinusoid of that frequency. (The challenging part is determining the magnitude and phase shift of the single sinusoid.)
1.

Given $\omega = 10 \text{ M rad/s}$, find z_{ab}.

2.

Find a frequency, ω, that causes z_{ab} to be real, (i.e., imaginary part equals zero).
3.

\[i_s(t) = 25 \cos(10kt) \text{ mA} \]

\[2 \text{k} \Omega \quad 200 \text{ mH} \quad 12.5 \text{nF} \]

- a) Find the phasor value for \(i_s(t) \).
- b) Draw the frequency-domain circuit diagram, including the phasor value for \(i_s(t) \) and impedance values for components.
- c) Find the phasor value for \(i_L(t) \).

4.

\[R_S = 200 \Omega \]

\[V_S \]

\[+ \]

\[G \]

\[D \]

\[+ \]

\[R_D = 2 \text{k} \Omega \]

\[- \]

\[v_o \]

\[R_S = 200 \Omega \]

\[C_{gd} = 0.5 \text{ pF} \]

\[v_S \]

\[+ \]

\[G \]

\[+ \]

\[v_g \]

\[g_m v_g \]

\[C_{gs} = 4 \text{ pF} \]

\[v_{gs} \]

\[G \]

\[v_g \]

\[C_{ds} = 0.5 \text{ pF} \]

\[r_d = 1 \text{k} \Omega \]

\[R_D = 1.5 \text{k} \Omega \]

\[v_o \]

\[S \]

\[S \]

\[v_S(t) = 2 \cos(10kt) \text{ V} \]

The above circuit diagrams show a common-source JFET amplifier and its high-frequency equivalent circuit. Find \(v_o(t) \).
Ex:

\[z_{ab} \]

\[\text{Given } \omega = 10 \text{ M rad/s, find } z_{ab}. \]

Sol'n:

\[z_L = j \omega L = j \cdot 10\text{ M rad/s} \cdot 10\mu\text{H} = j100 \Omega \]

\[z_C = \frac{-j}{\omega C} = \frac{-j}{10\text{ M rad/s} \cdot 1\text{ nF}} = \frac{-j \Omega}{10\text{ M}} \]

Frequency domain (or s-domain) model:

We first consider the R and C in parallel.

\[100 \Omega \parallel -j100 \Omega = 100 \Omega \cdot \frac{1}{1-j} = 100 \Omega \cdot \frac{-j}{1+j} \]

Rationalizing this expression, we have

\[100 \Omega \parallel -j100 \Omega = 100 \Omega \cdot \frac{-j}{1-j} \cdot \frac{1+j}{1+j} = \frac{-j}{1-j} \]
or
\[100 \Omega \parallel -j100 \Omega = 100 \Omega \quad \frac{1-j}{2} = 100 \Omega \cdot \left(\frac{1}{2} - \frac{j}{2} \right) \]

Now we add \(z_L = j100 \Omega \)
\[100 \Omega \parallel -j100 \Omega + j100 \Omega = 100 \Omega \left(\frac{1}{2} - \frac{j}{2} + j \right) \]
\[= 100 \Omega \left(\frac{1}{2} + \frac{j}{2} \right) \]

To find \(z_{ab} \), we use conductance \(g_{ab} = \frac{1}{z_{ab}} \)
\[g_{ab} = \frac{1}{100 \Omega \parallel -j100 \Omega + j100 \Omega} + \frac{1}{300 \Omega} \]
\[= \frac{1}{100 \Omega \left(\frac{1}{2} + \frac{j}{2} \right)} + \frac{1}{100 \Omega} \cdot \frac{1}{3} \]
\[= \frac{1}{100 \Omega} \cdot \frac{2}{1+j} \cdot \frac{1-j}{1+j} + \frac{1}{100 \Omega} \cdot \frac{1}{3} \]
\[= \frac{1}{100 \Omega} \cdot \frac{2-\frac{j}{2}}{2} + \frac{1}{100 \Omega} \cdot \frac{1}{3} \]
\[= \frac{1}{100 \Omega} \left(1-j \right) + \frac{1}{100 \Omega} \cdot \frac{1}{3} \]
\[= \frac{1}{100 \Omega} \left(\frac{4}{3} - j \right) \]

Now we calculate \(\frac{1}{g_{ab}} = z_{ab} \).
\[z_{ab} = \frac{1}{g_{ab}} = \frac{100 \Omega}{\frac{4}{3} - j} = \frac{100 \Omega}{\frac{3}{4-j3}} = \frac{100 \Omega}{\frac{3}{4-j3} \cdot \frac{4+j3}{4+j3}} = \frac{100 \Omega}{\frac{12+j9}{4^2+3^2}} = \frac{100 \Omega}{\frac{12+j9}{25}} = 4 \cdot \left(12+j9\right) \]

\[z_{ab} = 48 + j \ 36 \]
1. Given $\omega = 1k \text{ rad/sec}$, find Z_{ab}.
Ex:

$\begin{align*}
\text{Find a frequency, } \omega, \text{ that causes } z_{ab} \text{ to be real, (i.e., imaginary part equals zero).}
\text{Sol'n: } & \quad z_{ab} = 20 \Omega + z_{L1} + \frac{z_c}{z_{L2}} \\
& \quad \text{For } z_{ab} \text{ to be real, we must have } z_{L1} + \frac{z_c}{z_{L2}} = \text{real} \\
& \quad \text{One simple sol'n is to let } \omega = 0 \text{ so both } L\text{'s act like wires and } C \text{ acts like open circuit.} \\
& \quad \text{Other potential solns are } \omega = \infty, (so \ L\text{'s act like opens, resulting in } z_{ab} = \infty), \text{ and } \omega = \text{frequency where } \frac{z_c}{z_{L2}} = -z_{L1}, (so \ C \text{ and } L \text{ in parallel have equal but opposite impedances).} \\
& \quad \text{The latter case, where } \frac{z_c}{z_L} \text{ gives the interesting result that } \frac{z_c}{z_L} = \frac{L/C}{0} = \infty \\
& \quad \text{This means } z_{ab} = \infty \Omega. \text{ In this case, (unlike } \omega = 0), z_{ab} \to \infty \text{ along real axis as } \frac{z_c}{z_L} \to \infty.
\end{align*}$

or $\omega = 20 K \text{ rad/s}$
Another sol'n is that $z_c \parallel z_L$ has a value is minus z_L of the top inductor.

In that case, $z_L + z_c \parallel z_L = 0$ and $z_{wb} = 0$ - wire.

$z_L = j \omega L$

$z_c \parallel z_L = -\frac{j}{\omega C}\| j \omega L = \frac{-j}{\omega C} \cdot j \omega L = \frac{L}{C} \frac{-j}{\omega L - \frac{1}{\omega C}}$

Thus, we want $j \omega L - \frac{j L}{C} = 0$.

or $\omega L = \frac{L}{C} \frac{1}{\omega L - \frac{1}{\omega C}}$

or $\omega L (\omega L - \frac{1}{\omega C}) = L/C$

or $\omega^2 L^2 - \frac{L}{C} = \frac{L}{C}$

or $\omega^2 L^2 = \frac{2L}{C}$ or $\omega = \sqrt{\frac{2}{LC}}$

or $\omega = \sqrt{\frac{2 \times 5 \mu F \cdot 1 mH}{LC}}$

or $\omega = \sqrt{\frac{2G}{5}} \frac{r/s}{400 M} \frac{r/s}{5}$

or $\omega = 20 kHz$ r/s
Find a frequency, ω, that causes Z_{ab} to be real (i.e. imaginary part equals zero). $\omega \neq 0$ or $\omega \neq \infty$.
EX:

\[i_s(t) = 25\cos(10kr\ t) \ mA \]

\[2 \ \text{k}\Omega \quad 200 \ \text{mH} \quad 12.5 \ \text{nF} \]

\[i_L(t) \]

a) Find the phasor value for \(i_s(t) \).

b) Draw the frequency-domain circuit diagram, including the phasor value for \(i_s(t) \) and impedance values for components.

c) Find the phasor value for \(i_L(t) \).

Sol'n: a) The phasor for \(A\cos(\omega t + \phi) \) is \(Ae^{j\phi} \).

\[\therefore I_s = 25e^{j0^\circ} \ \text{mA} \text{ or } 25 \angle 0^\circ \ \text{mA} \]

b) From \(i_s(t) \), we see that \(\omega = 10krad/s \).

Impedance \(z_L = j\omega L = j\cdot 10k \cdot 200mH = j2k\Omega \)

\[z_d = \frac{-j}{\omega C} = \frac{-j}{10k \cdot 12.5nF} = \frac{-j}{125\mu} \]

\[z_c = \frac{-j}{8k \cdot 125\mu} = -j8k\Omega \]

\[I_s = 25\angle 0^\circ \ mA \]

\[2k\Omega \quad j2k\Omega \quad -j8k\Omega \]
c) The value for I_L is given by the current divider formula:

$$I_L = I_s \cdot \frac{R \parallel z_c}{R \parallel z_c + z_L}$$

$$= I_s \frac{1}{1 + \frac{z_L}{R \parallel z_c}}$$

$$= I_s \frac{1}{1 + \frac{z_L}{z_L \left(1 + \frac{1}{R \parallel z_c}}\right)}}$$

$$= 25 \angle 0^\circ \text{ mA} \left\{ \frac{1}{1 + j2k\omega \left(1 + \frac{1}{2k\omega - jBk\omega} \right)} \right\}$$

$$= 25 \angle 0^\circ \text{ mA} \left\{ \frac{4}{4} \right\} \frac{1}{1 + j - \frac{1}{4}}$$

$$= 25 \angle 0^\circ \text{ mA} \frac{4}{3 + j4}$$

$$= 25 \angle 0^\circ \text{ mA} \frac{4 \cdot 3 - j4}{3 + j4 \cdot 3 - j4}$$

$$= 25 \angle 0^\circ \text{ mA} \frac{12 - j16}{3^2 + 4^2}$$

$$= 1 \angle 0^\circ \text{ mA} \cdot 20 \angle -53.1^\circ$$

$$I_L = 20 \text{ mA} \angle -53.1^\circ$$
a. Find the phasor value for $V_s(t)$.

b. Draw the frequency-domain circuit diagram, including the phasor value for $V_s(t)$ and impedance values for components.

c. Find the phasor value for $i(t)$.

Ex:

\[
\begin{align*}
R_S &= 200 \, \Omega \\
R_D &= 1.5 \, k\Omega
\end{align*}
\]

\[
\begin{align*}
R_S &= 200 \, \Omega \\
C_{gd} &= 0.5 \, pF \\
C_{gs} &= 4 \, pF \\
g_m v_{gs} &= 1 \, mS \\
C_{ds} &= 0.5 \, pF \\
r_d &= 1 \, k\Omega \\
R_D &= 1.5 \, k\Omega
\end{align*}
\]

\[v_s(t) = 2 \cos(10kt) \, V\]

The above circuit diagrams show a common-source JFET amplifier and its high-frequency equivalent circuit. Find \(v_o(t)\).

Sol'n: In this practical circuit, we have circuit values that allow us to make simplifying approximations.

We first calculate impedance values.

\[w = 10k \, r/s \quad \text{from} \quad v_s(t) = 2 \cos(10kt) \, V\]
\[z_{C_{gs}} = -\frac{j}{\omega C_{gs}} = -\frac{j}{10k \cdot 4p} \]
\[z_{C_{gd}} = -\frac{j}{\omega C_{gd}} = -\frac{j}{10k \cdot 2p} \]
\[z_{C_{ds}} = -\frac{j}{\omega C_{ds}} = -\frac{j}{10k \cdot 2p} \]

The phasor for \(V_s(t) \) is \(V_s = 2 \angle 0^\circ \) V.

Frequency domain (or s-domain) model:

\[V_s = \begin{cases} \pm j 25 \text{M} \quad \text{V} \\ 2 \angle 0^\circ \text{V} \end{cases} \]

\[z_{DS} = -j 200 \text{M} \parallel 1k \Omega \parallel 1.5k \Omega \]

Starting with \(1k \Omega \parallel 1.5k \Omega \) we have

\[1k \Omega \parallel 1.5k \Omega = 500 \Omega \quad 2 \parallel 3 = 500 \cdot \frac{6}{5} = 600 \Omega \]

Thus, \(z_{DS} = -j 200 \text{M} \parallel 600 \Omega = \frac{1}{600 - \frac{j}{200} \text{M}} \]

Using \(-\frac{1}{j} = j \) and rationalizing gives...
\[z_{DS} = \frac{1}{\frac{1}{600} + \frac{j}{200\Omega}} \quad \Omega \]

\[= \frac{1}{\frac{1}{600} - \frac{j}{200\Omega}} \quad \Omega \]

\[= \frac{1}{\left(\frac{1}{600}\right)^2 + \left(\frac{1}{200\Omega}\right)^2} \quad \Omega \]

\[\approx \frac{1}{\frac{1}{600}} \quad \Omega \quad \text{Since} \quad \frac{1}{200\Omega} \ll \frac{1}{600} \]

\[z_{DS} \approx \frac{1}{\frac{1}{600}} \quad \Omega = 600 \quad \Omega \]

In retrospect, we could have made the approximation that \(-j200\Omega \approx 600 \Omega\).

We may make this approximation despite the \(j\) in one of the quantities. In general, we may make the following approximations of complex values:

\[a+jb \approx a \quad \text{when} \quad |b| \ll |a| \]

\[a+jb \approx jb \quad \text{when} \quad |a| \ll |b| \]

\[\text{Graph showing approximations:} \]

\[\text{Im} \]

\[jb \quad a+jb \quad \text{with} \quad a \ll b \]

\[\text{Re} \]

\[a \quad a+jb \quad \text{with} \quad b \ll a \]

\[\text{with} \quad |b| \ll |a| \]

\[jb \quad a+jb \quad \text{with} \quad a \ll b \]
With our Z_{DS} value, we have a simplified model:

![Circuit Diagram]

We now analyze the dependent source so we can replace it with an impedance, Z_{eg}.

\[
Z_{eg} = V_o \quad \text{using Ohm's law to write } Z_{eg} = V/I
\]

Now we find a way to write V_o in terms of V_{gs}. We use a V-divider:

\[
V_o = V_{gs} \frac{Z_{eg} \parallel Z_{DS}}{Z_{eg} \parallel Z_{DS} + Z_{c}}
\]

Substituting for V_o in our Z_{eg} equation, we have

\[
Z_{eg} = \frac{V_{gs} \frac{Z_{eg} \parallel Z_{DS}}{Z_{eg} \parallel Z_{DS} + Z_{c}}}{V_{gs} \cdot g_m}
\]

\[
Z_{eg} = \frac{1}{g_m} \frac{Z_{eg} \parallel Z_{DS}}{Z_{eg} \parallel Z_{DS} + Z_{c}}
\]
\[Z_{eg} = \frac{1}{g_m} \frac{Z_{eg} Z_{ds}}{Z_{eg} Z_{ds} + Z_c (Z_{eg} + Z_{ds})} \]

Dividing top and bottom by \(Z_{eg} \) gives the following:

\[Z_{eg} = \frac{1}{g_m} \frac{Z_{ds}}{Z_{ds} + Z_c + \frac{Z_c Z_{ds}}{Z_{eg}}} \]

\[Z_{eg} \left(Z_{ds} + Z_c + \frac{Z_c Z_{ds}}{Z_{eg}} \right) = \frac{1}{g_m} Z_{ds} \]

\[Z_{eg} (Z_{ds} + Z_c) + Z_c Z_{ds} = \frac{1}{g_m} Z_{ds} \]

\[Z_{eg} \left(\frac{Z_{ds} + Z_c}{Z_{ds}} \right) = \frac{1}{g_m} Z_{ds} - \frac{Z_c Z_{ds}}{Z_{ds}} \]

\[Z_{eg} = \frac{1 - Z_c}{g_m} = \frac{1}{1 + \frac{Z_c}{Z_{ds}}} \]

\[Z_{eg} = \frac{1 + \frac{Z_c}{Z_{ds}}}{Z_{ds}} \]

The imaginary parts of the numerator and denominator are much larger than the real parts. Thus, we ignore the real parts.

\[Z_{eg} \approx j 200 \text{ MΩ} / -j \frac{1}{3} \text{ M} \approx -600 \Omega \]
Now we have a problem: \(z_{eg} || z_{DS} = -\frac{600}{\omega} \).

That means \(z_{eg} || z_{DS} = \infty \\Omega \).

It is a good idea to try a more exact calculation to be sure that \(z_{eg} || z_{DS} \) is much larger than \(z_c = -j200 \text{M}\Omega \).

We use conductance to simplify calculations.

\[
\frac{1}{z_{eg} || z_{DS}} = \frac{1}{z_{eg}} + \frac{1}{z_{DS}} = \frac{1}{\frac{z_c}{g_m} + \frac{z_{DS}}{z_{DS}}} = \frac{1}{\frac{z_c}{g_m} + \frac{1}{g_m - z_c}}
\]

\[
= \frac{1}{z_{DS}} \left(\frac{z_{DS} + z_c}{\frac{1}{g_m} - z_c} + 1 \right)
\]

\[
= \frac{1}{z_{DS}} \left(\frac{z_{DS} + z_c + \frac{1}{g_m} - z_c}{\frac{1}{g_m} - z_c} \right)
\]

\[
= \frac{1}{z_{DS}} \left(\frac{z_{DS} + \frac{1}{g_m}}{\frac{1}{g_m} - z_c} \right)
\]

\[
= \frac{g_m + \frac{1}{z_{DS}}}{1 - g_m z_c}
\]

\[
= \frac{1}{1 - \frac{1}{1 - \frac{1}{1 - l_m (-j200 \text{M})}}} \\Omega
\]

\[
\frac{z_{eg} || z_{DS}}{\frac{1 + j200 K}{1K + \frac{1}{600}}}
\]
\[z_{eg} \parallel z_{DS} = \frac{1 + j200k}{\frac{3 + 5}{3k}} \cdot \frac{z_k}{8} = \frac{\frac{3}{8} \cdot k + j75M\Omega}{8} \]

We see that the value is smaller than \(z_c = -j200\,M\Omega \).

Our new, simplified model:

We use \(V \)-dividers to find \(V_o \).

\[V_{gs} = V_s \cdot \frac{-j25M\Omega}{200 + \frac{3}{8} \cdot k + j75M\Omega} (\frac{\frac{3}{8} \cdot k + j75M\Omega}{-j200M\Omega}) \]

\[V_{gs} = V_s \cdot \frac{-j25M\Omega}{200 - j125M\Omega} \]

where \(-j25M\Omega \parallel -j125M\Omega = -j25M\Omega \cdot 1\parallel 5\)

\[= -j25M\Omega \cdot \frac{5}{6} \]

\[= -j\frac{125}{6} \, M\Omega \]

\[V_{gs} = V_s \cdot \frac{-j\frac{125M\Omega}{6}}{200 - j\frac{125M\Omega}{6}} \approx V_s \]
\[V_o = V_{gs} \frac{\frac{3}{6} k + j 75 \text{ M} \Omega}{\frac{3}{6} k + j 75 \text{ M} \Omega - j 200 \text{ M} \Omega} \]

\[V_o \approx V_{gs} \frac{j 75 \text{ M} \Omega}{-j 125 \text{ M} \Omega} = V_{gs} \left(\frac{-3}{5} \right) \]

\[V_o \approx 2 \angle 0^\circ \left(-\frac{3}{5} \right) = -\frac{6}{5} \angle 0^\circ V = \frac{6}{5} \angle 180^\circ \]

Note: a minus sign is the same as 180° of phase shift.

\[v_o(t) = \frac{6}{5} \cos(10kt + 180^\circ) \text{ V} \]
4.

\[V_s = 10 \cos(10^3 t) \]

Find \(V_o(t) \).
1. Find z_{ab}.

![Diagram of a circuit with labeled components: a resistor of 30 Ohms, an inductor of 9.6 mH, a capacitor of 5 microfarads, and another resistor of 14 Ohms.]
Find a value for C that causes z_{ab} to be real, (i.e., imaginary part equals zero), for $\omega = 1000 \text{ r/s}$.

Homework #7 Example #2

2.
3. \(v_s(t) = 15 \cos(3 \, \text{kt}) \, \text{V} \)

 a. Find the phasor for \(v_s(t) \).

 b. Draw the frequency-domain circuit diagram, including the phasor value for \(v_s(t) \) and impedance values for components.

 c. Find the phasor value for \(i_C(t) \).

 d. Find \(i_C(t) \).
4.

\[V_s = 15 \angle 30^\circ \text{V} \]

\[\omega = 10 \text{k}\text{r/s} \]

Find \(v_o(t) \).
Homework #8 Example

Dr. Neil Cotter

1.

Give numerical answers to each of the following questions:

pts

a. Rationalize \(\frac{3+j4}{7-j24} \). Express your answer in rectangular form.

b. Find the rectangular form of \(\left[\frac{1-\sqrt{2}e^{-j45^\circ}}{e^{j30^\circ}} \right]^* \). Note the asterisk that means "conjugate".

c. Given \(\omega = 100 \text{ rad/s} \), find the following inverse phasor: \(P^{-1} \left[j30 \sin(-53^\circ) \right] \)

d. Find the magnitude of \(\left(2e^{j30^\circ} - j \right) \left(\frac{5-j12}{e^{j17^\circ}} \right) \).

e. Find the real part of \(\frac{1}{e^{-j30^\circ}} \).

\[\text{soln:} \]

a) \(\frac{3+j4}{7-j24} = \frac{21-4(24)+j(3(24)+j4(7))}{7^2+24^2} = \frac{-75+j100}{25^2} = \frac{-3+j4}{25} \)

b) \(\left[\frac{1-\sqrt{2}e^{-j45^\circ}}{e^{j30^\circ}} \right]^* = \frac{1-\sqrt{2}e^{-j45^\circ}}{e^{j30^\circ}} = \frac{1-\sqrt{2}e^{-j45^\circ}}{e^{j30^\circ}} = e^{-j90^\circ} e^{j30^\circ} = e^{-j60^\circ} = e^{j120^\circ} = \frac{1}{2} - j\frac{\sqrt{3}}{2} \)

c) \(P^{-1} \left[j30 \sin(-53^\circ) \right] = P^{-1} \left[j30 \sin(-53^\circ) \right] = \frac{30 \cos(-100kt \pm 137^\circ)}{30 \cos(-100kt \pm 233^\circ)} \)

d) \(\left(2e^{j30^\circ} - j \right) \left(\frac{5-j12}{e^{j17^\circ}} \right) = \left| 2e^{j30^\circ} \right| \left| \frac{5-j12}{e^{j17^\circ}} \right| = \left| 2 \right| \left| \frac{5-j12}{\frac{\sqrt{5}}{2} + j\frac{\sqrt{3}}{2}} \right| = 13 \frac{\sqrt{3}}{2} \)

e) \(\text{Re} \left[\frac{1}{e^{-j30^\circ}} \right] = \text{Re} \left[e^{j30^\circ} \right] = \text{Re} \left[\frac{\sqrt{3}}{2} + j\frac{1}{2} \right] = \frac{\sqrt{3}}{2} \)
Homework #8 Examples

Give numerical answers to each of the following questions:

1.
 a. Rationalize \(\frac{23 + j7}{15 - j8} \). Express your answer in rectangular form.

 b. Find the polar form of \((2 + j3)(3 + j2) + [3 + j16]^*\). Note the asterisk that means "conjugate".

 c. Find the following phasor: \(p \left[-5 \sin \left(100t - 30^\circ \right) \right] \).

 d. Find the magnitude of \(\frac{100(3 + j4)(4 + j3)}{(7 + j)(7 - j)} \).

 e. Find the imaginary part of \((1 + j)e^{-j45^\circ} (j2) \).
2. \(v_g(t) = 12\cos(100t - 90^\circ)\) V

![Circuit Diagram]

a. Choose an R, an L, or a C to be placed in the dashed-line box to make

\[i(t) = I_0 \cos(100t - 45^\circ) A\]

where \(I_0\) is a real constant. State the value of the component you choose.

b. With your component from (a) in the circuit, calculate the resulting value of \(I_0\).

\[\text{Sol'n: a) Use conductance:}\]
\[\mathbf{I} = I_0 \angle -45^\circ A = \frac{V_g}{\left(\frac{1}{20 \, \Omega} + j\frac{100 \, \mu H }{\omega L} \right) \, \mathbf{Z_{box}}}\]

Note: \(\omega = 100\) from \(v_g(t)\) where \(V_g = 12 \angle -90^\circ\) V

we have \(\angle \mathbf{I} = \angle V_g + \angle G_{tot}\) from phasor multiplication

\[-45^\circ = -90^\circ + \angle G_{tot}\]

\[\therefore \angle G_{tot} = 45^\circ\]

\[\text{or } \text{Re}[G_{tot}] = \text{Im}[G_{tot}]\]

\[G_{tot} = \frac{50 \, \mu H}{\omega L} + j\frac{100 \, \mu H}{\omega L} + \frac{1}{\mathbf{Z_{box}}}\]

we can choose \(\frac{1}{\mathbf{Z_{box}}} = \frac{50 \, \mu H}{\omega L}\) \(\Rightarrow \mathbf{Z_{box}} = 20 \, \Omega\) resistor

or \(\frac{1}{\mathbf{Z_{box}}} = -j\frac{50 \, \mu H}{\omega L}\) \(\Rightarrow \frac{i}{\omega L} = -j\frac{1}{100 \, \Omega}\)

Note: Either answer accepted but 20 \, \Omega\ R is more sensible.

\[I_0 = |\mathbf{I}| = |V_g| \cdot |G_{tot}| = 12 \cdot \sqrt{2} \cdot 100 \, \mu A = \sqrt{2} \cdot 12 \, mA \text{ for } 20 \, \Omega\ R\]

or \(12 \cdot \sqrt{2} \cdot 50 \, \mu A = \sqrt{2} \cdot 600 \, \mu A \text{ for } 200 \, \Omega\ L\)
Choose an R, an L, or a C to be placed in the dashed-line box to make

\[v(t) = V_0 \cos (1kt - 45^\circ) \text{V} \]

where \(V_0 \) is a real constant. State the value of the component you choose.
3.

a. Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $v_S(t)$, and show numerical impedance values for R, L, and C. Label the dependent source appropriately.

b. Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for V_{Th} and the numerical impedance value of z_{Th}.

Solution:

a) $\omega = 100$ from $v_S(t)$

$$j \omega L = j 100 \cdot 20 \ \text{mH} = j 2 \ \Omega$$

$$\frac{-j}{\omega C} = \frac{-j}{100 \cdot 5 \ \text{mF}} = -j 2 \ \Omega$$

Phasor $V_S \equiv P \left[12 \cos (100t) \right] V = 12 \angle 0^\circ V$.

b) $V_{Th} = V_{a,b}$ with no load.

- We have $v_L + v_C = 0 \ \Omega$ so 0V across L & C together.
- Also, no current in 4Ω where across 4Ω.
- Add the -12V for v_{src} to get $V_{Th} = -12V$.

For I_{Th}, short a,b and measure i out of a terminal.

Circuit model:

- $4V_x$ irrelevant
- $I_{Src} = \frac{-12V}{4\ \Omega} = -3A$
- $z_{Th} = \frac{V_{Th}}{I_{Src}} = \frac{-12V}{-3A} = 4 \ \Omega$
Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for V_{TH} and the numerical impedance value of Z_{TH}.
1.

Give numerical answers to each of the following questions:

a) Rationalize \(\frac{-25j}{3 - 4j} \). Express your answer in rectangular form.

b) Find the rectangular form of \(\left[\begin{array}{c} (1 + j) \\ e^{j30^\circ} \end{array} \right] \left[\begin{array}{c} (1 + j) \\ e^{-j60^\circ} \end{array} \right]^* \). (Note the asterisk that means "conjugate").

c) Given \(\omega = 2\pi \text{ rad/s} \), find the following inverse phasor:
\[P^{-1} = [10(-0.866 - 0.5j)] \]

d) Find the magnitude of \(\frac{(4e^{j30^\circ} - \frac{1}{2}j)(-1 - j)}{\sqrt{2}e^{j10^\circ}} \).

e) Find the real part of \(\frac{e^{-2}}{e^{-j45^\circ}} \).
2. \(v_g(t) = 2\sin(10t + 180^\circ) \) V

Choose an R, an L, or a C to be placed in the dashed-line box to make

\[i(t) = I_0 \cos(10t + 45^\circ) \] A

where \(I_0 \) is a real constant. State the value of the component you choose.

With your component from Problem 2 in the circuit, calculate the resulting value of \(I_0 \).
3.

\[i_s(t) = 2\cos(20t) \text{ A} \]

\[\begin{align*}
&\text{12.5 mF} \quad \text{+} \quad \text{v_x} \\
&\quad \quad \quad \text{v_x} \quad \text{=} \\
&\quad \quad \quad \text{16 \Omega} \\
&\quad \quad \quad \text{800 mH} \\
&\quad \quad \quad \text{2v_x} \\
&\quad \quad \text{a} \\
&\quad \text{b} \\
\end{align*} \]

a) Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for \(i_s(t) \), and show numerical impedance values for \(R \), \(L \), and \(C \). Label the dependent source appropriately.

b) Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for \(V_{Th} \) and the numerical impedance value of \(Z_{Th} \).
1. Give numerical answers to each of the following questions:

a. Rationalize \(\frac{42 - j26}{6 + j5} \). Express your answer in rectangular form.

b. Find the rectangular form of \(\frac{1 - e^{j90^\circ}}{e^{-j90^\circ}} \left[\frac{1 - j}{e^{j45^\circ}} \right]^{-\ast} \). Note the asterisk that means "conjugate".

c. Given \(\omega = 2\pi \text{ rad/s} \), find the following inverse phasor: \(P^{-1}[(-1 + j) \cdot 30] \).

d. Find the magnitude of \(\left[(-1 - j)e^{j135^\circ} + j\sqrt{2} \right]e^{j45^\circ} \).

e. Find the real part of \(e^{-3 + j180^\circ} \).
a. Choose an R, an L, or a C to be placed in the dashed-line box to make

\[i(t) = I_0 \cos(20kt) \text{A} \]

where \(I_0 \) is a real constant. State the value of the component you choose.

b. With your component from (a) in the circuit, calculate the resulting value of \(I_0 \).
3. Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for $v_S(t)$, and show numerical impedance values for R, L, and C. Label the dependent source appropriately.

b. Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for V_{TH} and the numerical impedance value of Z_{TH}.
1. Give numerical answers to each of the following questions:

 a) Rationalize \(\frac{120 - j22}{-11 + j60} \). Express your answer in rectangular form.

 b) Find the polar form of \(j(1 + j)^{*} e^{j30^\circ} \). (Note the asterisk that means "conjugate").

 c) Find the following phasor: \(P[-7\cos(49t + 135^\circ)] \).

 d) Find the magnitude of \(\frac{24 + j7}{3 - j4} \cdot \frac{-1}{e^{j10^\circ}} \).

 e) Find the imaginary part of \(\frac{e^{j45^\circ}}{e^{-j225^\circ}} \).
Homework #8 Example #4

2.

\[v_g(t) = 10 \cos(50kt - 135^\circ) \, \text{V} \]

a) Choose an R, an L, or a C to be placed in the dashed-line box to make
\[v(t) = V_o \sin(50kt) \]
where \(V_o \) is a positive real constant (with units of Volts). State the value of the component you choose.

b) With your component from (a) in the circuit, calculate the resulting value of \(V_o \).
3.

\[v_a(t) = 100 \cos(1 \text{MHz}) \, V \]

\[30 \, \text{mH} \]

\[25 \, \text{pF} \]

\[240 \, \text{k} \Omega \]

\[\frac{1}{3} i_x \]

\[i_x \]

a) Draw a frequency-domain equivalent of the above circuit. Show a numerical phasor value for \(v_a(t) \), and show numerical impedance values for \(R \), \(L \), and \(C \). Label the dependent source appropriately.

b) Find the Thevenin equivalent (in the frequency domain) for the above circuit. Give the numerical phasor value for \(V_{TH} \) and the numerical impedance value of \(Z_{TH} \).