
UNIVERSITY OF UTAH

ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

ECE1020 COMPUTING ASSIGNMENT 6

N. E. COTTER MATLAB® LOGICAL OPERATORS: DECODING

READING

Matlab® Student Version: learning Matlab 6, Ch 4-25 to 4-27

Mastering Matlab® 7, Ch 10

TOPICS

Relational and Logical Operators

OVERVIEW

When our rover receives a transmitted word from the base station, it must decide which

codeword the base station sent. In advanced decoding schemes, the receiver evaluates

each incoming bit and assigns it a probability for whether it was a one or zero. The set of

codewords determines which sequences of zeros and ones are possible. The problem of

decoding reduces to the problem of finding which codeword is closest to the received

word, given that each received bit is assigned a probability between zero and one rather

than a purely zero or one value.

One way of performing decoding is to measure the distance between the received

word and every word in the code book. This approach is computationally expensive, but

it is easy to understand. In contrast, if the code is carefully constructed, Viterbi decoding,

(a version of dynamic programming), finds the closest codeword far more efficiently.

The Viterbi approach is also used in speech recognition to find the closest sequence of

words to a given utterance.

For the sake of simplicity, we will consider comparing the distance between the

received word and every word in the code book. We will also simplify the decoding

process by making so-called hard decisions and assuming that each received bit is either a

zero or one. When we receive a bit, we decide immediately whether it was a zero or one.

Noise will usually flip one or more bits in the message, and our task is to determine

which codeword is closest to sequence of zeros and ones we have received. Thus we

wish to compute the distance between binary numbers representing codewords and the

received word.

Although there are several ways to measure this distance, a particularly simple way is

to count how many bits differ in the two binary words. This is called the Hamming

distance. When we find the codeword closest to the received word, we have decoded the

incoming signal. We hope to get the correct answer!

PROCEDURE

In this assignment, you will use logical operators in the process of calculating the

Hamming distance between a received binary word and binary codewords.

Script File for calculations

• Using a text editor program on your PC, create a script file called

hamming_dist.m containing matlab commands to perform the calculations in this

assignment.

• Do not use semicolons at the ends of commands in your script files.

+5 pts Create an empty array called received_data.

+5 pts Display a message indicating that the next answer will be a one if received_data

is an empty array.

+5 pts Use a function to verify that received_data is indeed empty.

+5 pts Set received_data equal to itself concatenated with an array of 6 random

numbers uniformly distributed between 0 and 1. Use the rand function to generate the

random numbers. Note that this is rand rather than randn.

+5 pts Use the greater-than operator to quantize all the bits in received_data to zero or

one values in one command. Values less than or equal to 0.5 will become zeros, and

values greater than 0.5 will become ones. Place the resulting six bits in an array called

quant_data.

+5 pts Using similar steps, create a 4x6 array called rand_data containing random

numbers uniformly distributed between zero and one. Then quantize the bits to zero and

one values, but this time set values less than or equal to 0.5 to ones and values greater

than 0.5 to zeros. Place the result in an array called code_words. The rows of this array

will be our supposed codewords.

+5 pts Use repmat to replicate the quant_data array as four identical rows of a variable

called quant_array. We do this so we have four copies of our received data that we can

compare with the four codewords.

+5 pts Use the xor operator to create an array called code_match containing ones

where quant_array and code_words have different bit values. Note that the xor operator

gives a value of 1 if bits are different and 0 if they are the same.

+5 pts Write Matlab code to count the number of ones in each row of code_match.

Place the result in a horizontal array called hamming_nums. These are the hamming

distances between the received word and the codewords. If we were complete the

decoding process, we would pick the code word with the fewest ones.

+5 pts Use the == operator and the ~ operator to create an array called code_match2

containing the same result as code_match. This is an alternate way of determining which

bits differ between quant_data and code_words.

+5 pts Use the "any" function to determine if there is a perfect match between

quant_data and any of the code_words. Place the results in a horizontal array called

perfect_match. A one represents a perfect match. A zero represents an imperfect match.

This decoding method would only work when there happened to be a perfect match.

+5 pts Suppose there is a glitch, caused by an alpha ray, that sets a bit of quant_data to

Nan (not a number). Write a comment in your script file describing what effect this has

on the decoding process. Do we get an error (crashing our rover program)? Does the nan

act like a certain bit value? Does it make a difference whether we use xor or ==?

Rover Implemenation

The decoding of incoming bit streams can be a challenging undertaking but by using the

hamming distance as a decoding measure we have simplified the task of matching

messages with codewords. The nxt program randcommand.rxe can be used generate

random commands from the codewords stored on the NXT. By pressing the orange

button on the NXT after execution of the program a 20% bit error rate in introduced. This

simulates bits being flipped by corruption of the received signal.

+5 pts Add code to connect to the NXT and start

to program randcommand.rxe

The program saves a random command in the

mailbox #10 of the rover to be retrieved for use in

Matlab.

Use the function

[message, inbox_number] = readmailbox(nxt, mailbox_number ,0,1)

to retrieve commands to be decoded in Matlab. The retrieved message will be a binary

string stored vertically in the variable message.

+5 pts Add a pause between starting the program and reading the commands so that

there is time to accumulate five commands in the que of mailbox #10 (~20 secs pause)

and create an index, i =1.

+5 pts On one line, read a command using readmailbox(),store the command in a cell

array called commands, use the index as a reference to the message number and then

increment the index by one. (hint: use comma separation for each command)

+5 pts Use this last line four more time to provide five commands to the commands

cell array. Transposed the cell array commands.

Stop the program on the NXT and Paste following the codewords into you script file

code_words = [0 0 0 0 0 0; 0 0 0 1 1 1; 0 0 1 0 1 1; 0 1 0 1 0 1; 1 0 1 0 1 0; 1 1 0 1 0 0; 1 1 1 0 0 0 ; 1 1 1 1 1 1]

+5 pts Create an array called it match_index, to hold an index that indicates a row

number in code_words which matches the received command. Create another array called

hamming_dist to store the values of the hamming distance for each command to its

closest codeword. Initialize both arrays to zero with the same length of the commands

cell array

Create an index called n and set it equal to 1

+5 pts Convert commands(n) from a binary string to a decimal using bin2dec() and

store it in a variable called recv_mess. Create a matrix that has 8 rows each filled with

recv_mess called recv_mess_mat

+5 pts Compute the hamming distances between each code_word and recv_mess_mat

Use the min() function to search the computed distances to find the smallest distance and

store it in hamming_dist(n). The index for code_words will be stored in match_index(n)

Add a line to increment n by 1

Assignment wrap-up

Run Script File

Run your script file by typing the name of the file without the .m

>> hamming_dist

If you make any changes in your hamming_dist.m file, be sure to run the following

Matlab command to insure that Matlab reads your file again the next time you run it:

>> clear all

+5 pts Finish processing all of the commands by using the Evaluate Selection

command in the editor window to run the block of code that starts at computing

recv_mess and ends with the increment of n. Do this four time to finish processing

n=2,3,4,5

Verify that the command indexes match the commands received

End of Diary

>> diary off % Close the diary file. Look for the diary in e.g., c:\matlab\work directory.

E-mail your script file (hamming_dist.m) and your diary file to your TA, (as two separate

e-mails). In the Subject line of your e-mail, be sure to put Your Name, "ECE1020

Comp6," and the file name, (e.g. hamming_dist.m). Also, print out the files and hand

them in to the TA or to the ECE1020 locker.

