
UNIVERSITY OF UTAH
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

ECE1020 COMPUTING ASSIGNMENT 6
N. E. COTTER MATLAB® LOGICAL OPERATORS: DECODING

READING
Matlab® Student Version: learning Matlab 6, Ch 4-25 to 4-27
Mastering Matlab® 6, Ch 9

TOPICS
Relational and Logical Operators

OVERVIEW
When our rover receives a transmitted word from the base station, it must decide which
codeword the base station sent. In advanced decoding schemes, the receiver evaluates
each incoming bit and assigns it a probability for whether it was a one or zero. The set of
codewords determines which sequences of zeros and ones are possible. The problem of
decoding reduces to the problem of finding which codeword is closest to the received
word, given that each received bit is assigned a probability between zero and one rather
than a purely zero or one value.

One way of performing decoding is to measure the distance between the received
word and every word in the code book. This approach is computationally expensive, but
it is easy to understand. In contrast, if the code is carefully constructed, Viterbi decoding,
(a version of dynamic programming), finds the closest codeword far more efficiently.
The Viterbi approach is also used in speech recognition to find the closest sequence of
words to a given utterance.

For the sake of simplicity, we will consider comparing the distance between the
received word and every word in the code book. We will also simplify the decoding
process by making so-called hard decisions and assuming that each received bit is either a
zero or one. When we receive a bit, we decide immediately whether it was a zero or one.
Noise will usually flip one or more bits in the message, and our task is to determine
which codeword is closest to sequence of zeros and ones we have received. Thus we
wish to compute the distance between binary numbers representing codewords and the
received word.

Although there are several ways to measure this distance, a particularly simple way is
to count how many bits differ in the two binary words. This is called the Hamming
distance. When we find the codeword closest to the received word, we have decoded the
incoming signal. We hope to get the correct answer!

PROCEDURE
In this assignment, you will use logical operators in the process of calculating the
Hamming distance between a received binary word and binary codewords.

+5 pts Script File for calculations
Using a text editor program on your PC, create a script file called hamming_dist.m
containing matlab commands to perform the calculations in this assignment.

+5 pts Do not use semicolons at the ends of commands in your script files.

+5 pts Create an empty array called received_data.

+5 pts Display a message indicating that the next answer will be a one if received_data is
an empty array.

+5 pts Use a function to verify that received_data is indeed empty.

+5 pts Set received_data equal to itself concatenated with an array of 6 random numbers
uniformly distributed between 0 and 1. Use the rand function to generate the random
numbers. Note that this is rand rather than randn.

+5 pts Use the greater-than operator to quantize all the bits in received_data to zero or
one values in one command. Values less than or equal to 0.5 will become zeros, and
values greater than 0.5 will become ones. Place the resulting six bits in an array called
quant_data.

+5 pts Using similar steps, create a 4x6 array called rand_data containing random
numbers uniformly distributed between zero and one. Then quantize the bits to zero and
one values, but this time set values less than or equal to 0.5 to ones and values greater
than 0.5 to zeros. Place the result in an array called code_words. The rows of this array
will be our supposed codewords.

+10 pts Use repmat to replicate the quant_data array as four identical rows of a variable
called quant_array. We do this so we have four copies of our received data that we can
compare with the four codewords.

+5 pts Use the xor operator to create an array called code_match containing ones where
quant_array and code_words have different bit values. Note that the xor operator gives a
value of 1 if bits are different and 0 if they are the same.

+5 pts Write Matlab code to count the number of ones in each row of code_match. Place
the result in a horizontal array called hamming_nums. These are the hamming distances
between the received word and the codewords. If we were complete the decoding
process, we would pick the code word with the fewest ones.

+10 pts Use the == operator and the ~ operator to create an array called code_match2
containing the same result as code_match. This is an alternate way of determining which
bits differ between quant_data and code_words.

+10 pts Use the "any" function to determine if there is a perfect match between
quant_data and any of the code_words. Place the results in a horizontal array called
perfect_match. A one represents a perfect match. A zero represents an imperfect match.
This decoding method would only work when there happened to be a perfect match.

+10 pts Suppose there is a glitch, caused by an alpha ray, that sets a bit of quant_data to
Nan (not a number). Write a comment in your script file describing what effect this has
on the decoding process. Do we get an error (crashing our rover program)? Does the nan
act like a certain bit value? Does it make a difference whether we use xor or ==?

+5 pts Run Script File
Run your script file by typing the name of the file without the .m
>> hamming_dist
If you make any changes in your hamming_dist.m file, be sure to run the following
Matlab command to insure that Matlab reads your file again the next time you run it:
>> clear all

+5 pts End of Diary
>> diary off % Close the diary file. Look for the diary in e.g., c:\matlab\work directory.

E-mail your script file (hamming_dist.m) and your diary file to your TA, (as two separate
e-mails). In the Subject line of your e-mail, be sure to put Your Name, "ECE1020
Comp6," and the file name, (e.g. hamming_dist.m). Also, print out the files and hand
them in to the TA or to the ECE1020 locker.

