
UNIVERSITY OF UTAH
ELECTRICAL AND COMPUTER ENGINEERING DEPARTMENT

ECE1020 COMPUTING ASSIGNMENT 4
N. E. COTTER MATLAB® ARRAYS: CODEWORDS

READING
Matlab® Student Version: learning Matlab 6, Ch 4.
Mastering Matlab® 6, Ch 6

TOPICS
Array manipulations

OVERVIEW
We have seen that noise can alter the information we send over a communication link. If
we transmit in binary—ones and zeros—some bits will be flipped. In this assignment,
you will explore error-correction codes that allow us to correct many of these errors.
Such codes are utilized in communication links of all kinds, from space probes to cell
phones.

With an error-correction code, we spread out the information we transmit so that if
any one bit gets lost in the noise, we still succeed in communicating our message. To
understand how this works, consider an analogous situation of trying to communicate an
important message by sending telegrams that may or may not be confiscated en route to
their destination. To make sure our message gets through, we might send five telegrams,
each containing every fifth letter of the message. If one message fails to get through, the
recipient would probably be able to fill in the missing letters.

An even better scheme would be to spread the message out over several telegrams
and add redundancy. The redundancy might increase the cost, however, so there might
be a limit to how much redundancy we could afford. For our rover, this translates into
sending a different set of bits than the set of bits we ultimately want to communicate. We
also send more bits than we ultimately want to communicate. This raises the following
question: Is there a way to correct all the errors in communication?

In the 1940's Claude Shannon considered this problem of reliable communication
from a purely mathematical standpoint and proved the remarkable Channel Capacity
Theorem [1]. In everyday language, this theorem says that it is indeed possible to correct
all the errors in transmission if the rate at which we transmit bits is less than the
following quantity:

C = B log2
P + N

N
where C ≡ channel capacity in bits/second

B ≡ bandwidth of transmitter
P ≡ average transmitter power in Watts
N ≡ average noise power in Watts

What is perhaps even more remarkable than the theorem is the method of proof. Shannon
showed that if one considers all possible ways of encoding bits into codewords the
average code will achieve the channel capacity. This suggests that a randomly generated

code is likely to perform fairly well in correcting all errors, but finding the optimal code
among all possible codes is a problem that remains unsolved! Furthermore, the proof of
the theorem assumes that arbitrarily long codewords may encode arbitrarily long blocks
of data bits.

In communication theory, the search continues for codes of finite length that achieve
near-optimal performance. We, however, will pursue the more modest goal of creating
random codewords.

PROCEDURE
You will manipulate arrays to create error-correcting codes in this assignment.

+5 pts Script File for calculations
Using a text editor program on your PC, create a script file called errcode.m containing
matlab commands to perform the calculations in this assignment.

+5 pts Do not use semicolons at the ends of commands in your script file.

In the following steps, you will create random 8-bit long code words of ones and zeros.

+5 pts Using concatenation of arrays and the "zeros" and "ones" functions, create an
array called zeros_and_ones containing eight entries: four zeros followed by four ones.

+10 pts Using only a one-line statement, create a two-dimensional array called
perm_eight with four rows and eight columns with each row equal to the digits from 1 to
8 in random order. Use the "randperm" function once each time you generate a row.
(Type >>help randperm for information about randperm.)

+10 pts Use the following command line in your errcode.m file, and add a comment that
explains exactly what this command line does:
rand_codewords = zeros_and_ones(perm_eight)

+5 pts Use the "size" function in a one-line statement to set variables called
number_of_codewords and length_of_codewords equal to the number of rows of
rand_codewords and the number of columns of rand_codewords, respectively.

You have now created a codebook for data transmission. The four codewords correspond
to the four possible two-bit-long data sequences: 00, 01, 10, and 11. To use this
codebook in practice you would chop a data stream into two-bit chunks. The stream
01100101011 would become 01, 10, 00, 10, 10, 11. for example. Then you would
transmit the 8-bit codeword for 01, then the 8-bit codeword for 10, and so on.

+10 pts To simulate the codebook lookup process, create an array called binary_data
containing two entries equal to either zero or one. (You may choose any of the four
possible two-bit-long data sequences: 00, 01, 10, or 11.) Create a one-line statement in
your errcode.m file that translates the entries in binary_data into a number from 1 to 4
and then uses this number to extract the corresponding row of rand_codewords, placing
the result in an array called transmit_word. Write the statement so that it would work for
any of the four possible values for binary_data.

+5 pts The previous steps created four eight-bit codewords at random. For the sake of
practice extracting from arrays, create a 2x4 array called center_code containing the 3rd
through 6th bits of the 2nd and 3rd rows of rand_codewords. Use only one statement,
and use the colon operator somewhere in that statement.

+10 pts (We now have codewords that we will use in later assignments. For the
remainder of this assignment, we practice array manipulations under the guise of creating
more codewords.) Use the randn function to create an 8x8 matrix called rand_matrix
containing (normally distributed) random numbers. Then use the logical function abs(?)
> 0.5 as part of a Matlab® statement that creates a 6x6 array of ones and zeros called
new_codewords. You must determine what should replace the ? in this statement. Also,
you must add a comment in your file explaining exactly what this entire command line in
your file does.

+5 pts For practice, use the fliplr function to flip the new_codewords matrix in the left-
right direction. Store the results in new_codewords2.

+5 pts Use the diag function to create an eight bit codeword called single_codeword
equal to the diagonal of new_codewords2. Note that diag applied to a matrix extracts the
diagonal, whereas diag applied to a vector creates a square matrix with the elements of
the vector down the diagonal. These are very different things!

+10 pts Using the abs function and subtraction, find a way to create a matrix called
inverted_codewords that is equal to new_codewords with bits inverted: zeros changed to
ones, and ones changed to zeros.

+5 pts Diary Command
When you have finished typing the script file for the above equations, delete the current
diary file and start a new diary.
>>diary on % turns on diary

Change the working directory to the c: drive where you stored your script file.
This an alternative to the addpath command if everything you write is stored in one
directory.
>> cd c:\

+5 pts Run Script File
Run your script file by typing the name of the file without the .m
>> errcode
If you make any changes in your errcode.m file, be sure to run the following Matlab
command to insure that Matlab reads your file again the next time you run it:
>> clear all

+5 pts End of Diary
>> diary off % Close the diary file. Look for the diary in e.g., c:\matlab\work directory.

E-mail your script file (errcode.m) and your diary file to your TA, (as two separate
e-mails). In the Subject line of your e-mail, be sure to put Your Name, "ECE1020
Comp4," and the file name, (e.g. errcode.m). Also, print out the files and hand them in to
the TA or to the ECE1020 locker.

REFERENCES
[1] C. E. Shannon and W. Weaver, The Mathematical Theory of Communication.

Urbana, Il: University of Illinois Press, 1978, p. 100. ISBN 0-252-72548.

