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Abstract: This paper presents a new techmique to derive an initial static
variable ordering for efficient SAT search. Our approach not only exploits vari-
able actiwity and connectivity information simultaneously, but it also analyzes
how tightly the variables are related to each other. For this purpose, a new met-
ric is proposed - the degree of correlation among pairs of variables. Variable
activity and correlation information is modeled (implicitly) as a weighted graph.
A topological analysis of this graph generates an order for SAT search. An al-
gorithm called ACCORD (ACtivity - CORrelation - ORDering) is proposed for
this purpose.

While ACCORD rigorously analyzes constraint-variable dependencies, it does
not account for the effect of decision-assignments on clause-variable dependen-
cies. This issue motivates further refinements to our approach using literal ac-
tivity and correlation measures - giving rise to the L’ACCORD algorithm. Using
efficient implementations of the above, experiments are conducted over a wide
range of benchmarks. The results demonstrate that: (i) the variable order gen-
erated by our approach significantly improves the performance of SAT solvers;
(ii) time to derive this order is a fraction of the overall solving time. As a re-
sult, our approach delivers faster performance (often, by orders of magnitude)
as compared to contemporary approaches.

1 Introduction

Contemporary SAT solvers have matured over the years and come a long way
from the classical search procedures of Davis-Putnam (DP) [1] and Davis-Logemann-
Loveland (DLL) [2]. Recent approaches [3] [4] [5] etc., employ sophisticated meth-
ods such as constraint propagation and simplification, conflict analysis, learning
and non-chronological backtracks [3] [4] [5] to efficiently analyze and prune the
search space. In recent past, a lot of effort has been invested in trying to under-
stand the nature of the SAT problem. The works that deserve mention relate to
symmetry analysis [6] [7], local search strategies [8], complexity of SAT wviz-a-viz
ATPG [9], relationship of BDD variable orderings and CNF search procedures
[10], amount of search space analyzed [11], UNSAT core extraction [12] [13],
among others [14] [15] [16].

An important aspect of CNF-SAT is to derive an ordering of variables to
guide the search. The order in which variables (and correspondingly, constraints)



are resolved significantly impacts the performance of SAT search procedures.
Boolean functions arising in many applications represent some spatial, casual
or logical dependencies (or connections) among variables. Therefore, analysis
of these clause-variable dependencies provides useful information that can be
exploited to guide CNF-SAT search procedures. Variable activity and clause
connectivity are often considered as qualitative and quantitative metrics to
model clause-variable dependencies. Activity of a variable (or literal) is defined
as the number of its occurrence among all the clauses of a given SAT problem
[17]. Most conventional SAT solvers [4] [5] [3] employ variable/literal-activity
based branching heuristics to resolve the constraints.

Connectivity of constraints has also been used as a heuristic approach to
derive variable orderings for SAT search. Loosely speaking, two clauses are said
to be ”connected” if one or more variables are common to their support. Clause
connectivity can be modeled by representing CNF-SAT constraints as (hyper-
) graphs and, subsequently, analyzing the graph’s topological structure. Tree
decomposition techniques have been proposed in literature [18] [19] for analyz-
ing connectivity of constraints in constraint satisfaction programs (CSP). Such
techniques identify decompositions with minimum tree-width, thus enabling
a partitioning of the overall problem into a chain of connected constraints. Re-
cently, such approaches have also found application in those problems that can
be modeled as DPLL-based CNF-SAT search [19] [20] [21] [22] [23] [24]. Various
approaches operate on such partitioned tree structures by deriving an order in
which the partitioned set of constraints are resolved [20] [21] [22] [24]. MINCE
[10] employs CAPO placer’s mechanism [25] to find a variable order such that
the clauses are resolved according to their chain of connectivity. Bjesse et. al.
[21] proposed tree decomposition based approaches to guide variable selection
and conflict clause generation. Aloul et. al. have proposed a fast, heuristic based
approach, FORCE [26], as an alternative to the computationally complex ap-
proach of MINCE. Recently, Durairaj et. al. [27] [28] [29] proposed hypergraph
bi-partitioning based constraint decomposition scheme that employs both vari-
able activity and clause connectivity simultaneously to derive a variable order.

This paper presents a new approach to derive an initial static ordering for
SAT search by rigorously analyzing constraint-variable dependencies. Experi-
mental results demonstrate that our approach is faster and more robust than
the contemporary variable ordering techniques, and it improves the performance
of SAT solvers (in many cases by orders of magnitude).

The paper is organized as follows. The following Section analyzes the lim-
itation of previous work. Section 3 outlines the specific contributions of this
research. The variable order generation approaches are presented in Sections 4
and 5, followed by experimental results and analysis in Section 6. Finally, Section
7 concludes the paper.



2 Limitations of Previous Work

The computational complexity (exponential) of minimum tree-width decompo-
sition algorithms results in large compute times to search for the variable order.
The technique of Dechter et. al. [18] is shown to be time exponential in the tree-
width. Algorithms for approximating tree-width with bounded error [23] are also
shown to be too costly for industrial problems [21]. As a result, these techniques
are impractical for large/hard CNF-SAT problems.

In general, the time required to derive a variable order should be small as
compared to the subsequent SAT solving time - it should certainly not exceed
the solving time. Unfortunately, for large and hard SAT problems, it has been
observed that MINCE [10] [30] and Amir’s tool [20] [31] require unacceptably
long time just to derive the variable order. This behaviour is depicted in Table
1, which compares the time required to derive the variable order by Amir’s tool
[31], MINCE [30], FORCE [26] and the hypergraph partitioning based technique
(HGPart) of [27] against zZCHAFF’s (2003 version) solve time. It can be observed
from the table that in order to derive the variable order, both Amir’s and MINCE
approach suffer from long compute times - much longer than the default SAT
solving time. In contrast, FORCE and HGPart can derive the variable order
much faster than the other two. This clearly demonstrates the computational
limitations of Amir’s and MINCE approach; as such they are too expensive to
be applicable for practical SAT problems. While, FORCE is fast, the quality of
the variable order does not consistently improve the performance of SAT solvers.

Table 1. Comparison of original zZCHAFF runtime, Amir’s, MINCE’s, FORCE’s and
HGPart’s partitioning time

Benc- Vars/ |zCHAFF’03| Amir [MINCE|FORCE|HGPart
hmark| Clauses (sec) (sec) | (sec) | (sec) | (sec)
€2670 | 2.5K/6.4K 1.48 16.54 | 8.23 0.94 1.15
¢3540 | 3.4K/9.2K 20.57 23.66 | 13.95 0.83 1.42
¢5315 |5.0K/14.1K 34.62 54.56 | 25.51 6.52 1.25
c7552 |5.5K/15.1K| 105.97 71.30 | 24.43 3.81 1.76
4pipe |5.2K/80.2K 129 505.83| 93.1 1.36 13.84
Spipe |9.5K/195K 196.53  |>2000| 267.2 2.82 38.40

Table 2. Quality of variable order derived by FORCE

Benc- Vars/ zCHAFF’03|FORCE
hmark Clauses (sec) (sec)
¢3540 3431/9262 20.57 36.55
cH315 4992/14151 34.62 9.25
c7552 5466/15150 105.97 | 136.55
Apipe_q0k| 5380/69072 | 66.71 | 87.78
5pipe_q0_k|10026/154400]  649.9 |375.37
[clussetl | 1200/4800 | 59.62 | >1000




Table 2 presents some results that reflect the inconsistency in the quality
of the variable order derived by FORCE. Since MINCE and Amir’s tool have
been shown to be impractical (too slow), we analyze the variable order derived
by FORCE. The order derived by FORCE was given to the zCHAFF solver
(2003 version) to resolve constraints - the runtime is given in Column 4. Col-
umn 3 corresponds to original zZCHAFF runtime (VSIDS heuristic). From the
results, it can be observed that the the variable order generated by FORCE does
not consistently enhance the performance of the SAT solver!. In fact, for some
benchmarks, it degrades the SAT solver performance by an unacceptably long
time.

Recent approach of [27] has shown to deliver good results. Not only can the
variable order be derived in a reasonable amount of time, the quality of the
order also consistently improves the performance of the solver. However, as this
technique relies on hypergraph partitioning, there is no direct control over the
decomposition. As a result, many problems (such as the NQueens) cannot be
decomposed efficiently. Another limitation of these techniques is that while they
do analyze variable activity, clause connectivity or both, however, they do not
analyze how tightly the variables are connected to each other. As a result, tightly
connected, hard problems may not realize the run-time improvements.

3 Research Contributions

As discussed earlier, efficient CNF-SAT decision heuristics should analyze both
variable activity and connectivity simultaneously for faster constraint resolution.
Moreover, they should also analyze how tightly the variable are related to each
other. Furthermore, the procedure to generate such an order should be fast,
scalable and robust enough to handle large SAT problems. This paper proposes
an efficient variable order generation procedure that attempts to fulfill the above
criteria/requirements.
The contributions of our work are as follows:

1. We present an efficient technique that analyzes constraint-variable dependen-
cies to derive an ordering of variables to guide SAT diagnosis. Both variable
activity and connectivity information is exploited to derive the order.

2. In order to analyze how tightly two or more constraints are related (in terms
of common variables), we propose a new metric called the degree of cor-
relation among pairs of variables.

3. Variable activity and correlation information is (implicitly) modeled as a
weighted graph, the topological analysis of which enables the derivation of
such an order. An efficient algorithm (ACCORD) is described for this pur-
pose.

4. In order to analyze the effect of decision-assignments made by SAT solver
on the variable ordering, further refinements to the ACCORD algorithm are
proposed.

1 Mince also exhibits similar phenomenon.



5. Experiments conducted over a large and varied set of benchmarks demon-
strate that our approach is fast, robust and scalable; quality of the variable
order is reflected in the impressive speed-up achieved for SAT solving. Partic-
ularly for hard instances, orders of magnitude speed-up is achieved in many
cases.

6. The variable order generation time is small as compared to the overall solving
time.

4 Variable Order Computation: Analyzing
Constraint-Variable Dependencies

It is our desire to derive a variable order for SAT search by analyzing clause-
variable relationships. The importance of branching on high activity variables is
well understood [17]. Analyzing the connectivity of constraints is also important
for constraint resolution. Contemporary techniques address both of the above
issues. However, ‘how tightly are the variables related?’ - this feature too should
not be overlooked. For this purpose, we propose a metric that measures how
tightly the variables are connected/related. We define this metric as follows:

Definition 41 Two variables x; and x; are said to be correlated if they ap-
pear together (as literals) in one or more clauses. The number of clauses in
which the pair of variables (z;, x;) appear together is termed as their degree of
correlation.

4.1 Problem Modeling

In our approach, the constraint-variable relationship of a given CNF-SAT prob-
lem is modeled as a weighted graph. The variables (as opposed to literals) form
the vertices, while edges denote the correlation/connectivity between them. As-
sociated with each variable is its activity, which is modeled as an integer value
within the node. The edge weights represent the degree of correlation between
the variables/vertices. For example, if two variables x;,z; appear together in n
clauses, then the weight of the edge e;; connecting them is n.

An ordering of the nodes (variable order) can be performed by analyzing the
graph’s topology. We now describe our approach by means of an example corre-
sponding to the CNF-SAT problem shown in Fig. 1. Its corresponding weighted
graph is depicted in Fig. 2(a).

4.2 ACCORD: Activity-Correlation based Ordering

We begin the search by first selecting the highest active variable, i.e. the node
that has the highest internal weight. The variable is marked and the node is
added to a set called supernode. The variable is also stored in a list (var_ord_list).
The SAT tool should branch on this variable first. It can be observed from the
graph (weight within the nodes) that the activity of variables {e,u, g, v} is the
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Fig. 1. An example CNF-SAT problem
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Fig. 2. Weighted Graph - Edge weights denote the degree of correlation between the
variables (vertices). Variable activity depicted within the node.



highest (= 5). We select one of these variables (randomly or lexicographically)
as the initial branching variable. Let us select the variable w, shown in Fig. 2(a)
as “First Selection.” The variable v becomes the supernode.

Now we need to identify the set of variables connected to this supernode.
All the nodes that share at least one edge with the supernode are identified.
The nodes {g,c,a,b} are connected to the supernode u, as shown in Fig. 2(b).
One of these variables {g, ¢, a, b} is to be selected as the next branching variable.
We consider the degree of correlation, modeled as edge weights, as the metric
to identify this variable. The nodes that share an edge with the supernode are
sorted in decreasing order of the sum of their degrees of correlation with the nodes
in the supernode. In our example, variable ¢ has the degree of correlation = 1. On
the other hand, the variables {g, a,b} have the same degree of correlation with
node u, which is equal to 2; hence, we consider variables {g,a,b}. In order to
break this tie, we further distinguish these variables according to their activity.
Since the activity of variable g is higher than that of variables {a, b}, g is selected
as the next branching variable. This is shown in Fig. 2(b) as “Second Selection.”
Moreover, the node g is added to the current supernode set; supernode = {u, g}.
The variable order derived so far is var_ord_list = {u, g}.

As the next step, those variables are identified that share an edge with the
supernode. These variables are {v, ¢, ¢, a, b} as shown in Fig.2(c) with highlighted
incident edges. Consider the nodes {v,e,a,b}. They share only one edge with
the supernode with weights (correlation) = 2. On the other hand, node ¢ has
two edges incident on the supernode. Therefore, the correlation modeled by both
edges should be accounted for. This is computed as the sum of the degrees of
correlation between ¢ and the supernode {g,u} = 2+1 = 3. Since this sum is
the highest for ¢, it is selected as the next branching variable. This is shown
in Fig. 2(c) as third selection. The supernode set and the var_ord_list are cor-
respondingly updated. The above procedure is repeated until all the nodes are
ordered and included with in the supernode. The final derived variable order is
{u,g,¢c,v,e,a,b,w,d}.

Our approach is inspired from the Prim’s Minimum Spanning Tree (MST) al-
gorithm [32]. We have named it the ACCORD (ACtivity COrrelation ORDering)
algorithm. The Pseudo code for the ACCORD algorithm is presented in Algo-
rithm 1. The Variable-Clause database, mentioned in lines 1-3, is implemented
using the array of arrays data-structure available within contemporary SAT
solvers [4] [33]. For example, the Variable-Clause database corresponding to the
CNF-SAT problem of Fig 1 is shown in Fig. 3. The variable a appears in Clauses
{1, 2, 7, 9}. Hence, the first element of Variable-Clause database array is an ar-
ray containing {1, 2, 7, 9}. Similarly, the second element of the array is an
array containing {1, 3, 8, 9} corresponding to variable b; and so on. The algo-
rithm analyzes the clause-variable database, and for each variable, it computes
its correlated variables. Using the activity and correlation measures, the variable
ordering is computed.



Algorithm 1 Pseudo code for ACCORD

13:
14:
15:
16:

17:
18:
19:

20:
21:

: INPUT = CNF Clauses and Variable-Clause Database ;

/* Variable-Clause database is implemented as array of arrays */

/ * For each variable z;, the Variable-Clause database contains a list of clauses in
which z; appears */

OUTPUT = Variable order for SAT search ;

activity_list = Array containing activity of each variable ;

var_order_list = Initialize variable order according to activity ;

connectivity_list = Initialize to zero for all variables ;

inti=0;
while i != number of variables do
/* Implicitly, supernode = {var_order_list[0], ..., var_order_list[i]} */

next_var = var_order_list[i] ;
correlation_list = find variables connected to next_var using Variable-Clause
database ;
for all var € correlation_list do
connectivity list[var]++ ; /* Compute correlation */
adjust_variable_order(var) ;
/* Linear sort is used to update the variable order corresponding to both
connectivity_list as well as activity_list */
end for
i=i+1;
/* At this point, {var_order_list[0], ..., var_order_list[i]} is the current variable
order*/
end while
return(var_order_list) ;

w| 10 11 12

Fig. 3. Variable-Clause Database



4.3 Complexity of ACCORD

A weak upper bound for the ACCORD algorithm can be found by assuming
that every variable appears in every other clause. With this assumption, an upper
bound on the time complexity of ACCORD can be derived as O(V-(V-C+V?)),
where V' represents the number of variables and C represents the number of
clauses.

5 L’ ACCORD: Overcoming the Limitations of ACCORD

Most conventional SAT solvers employ literal-activity based branching heuristics
to resolve the constraints. Also, when the variable order generated by ACCORD
is given to a SAT solver, the solver will branch on a literal corresponding to
the variable selected by the ACCORD. Clauses corresponding to this literal will
be satisfied due to this assignment. ACCORD does not analyze this effect of
decision-assignments on the variable correlation. Consider the following set of
clauses.

(x4+a+e)(zx+b+ fllx+c+e)
@ +d+f)T+o)

Here, the literal = has the highest activity and the SAT solver will assign = = 1.
This satisfies the first three clauses. The ACCORD algorithm will consider the
variables {a, e, b, f, ¢, d} to compute their respective degrees of correlation with
respect to x. However, due to the assignment z = 1, it should suffice to look at
only those clauses in which T appears, as they are unsatisfied. This means that
the correlated variables to T ({d, f, c¢}) and their corresponding constraints should
be analyzed to derive a variable order. In order to exploit such a behaviour, we
have implemented the above modifications to the ACCORD algorithm. Instead of
analyzing variable-to-variable correlations, we now analyze correlations between
a literal and its connected variables. The modified algorithm is now called L’
ACCORD.

6 Experimental Results and Analysis

The ACCORD and I’ ACCORD algorithms have been programmed within the
zCHAFF [4] solver using its native data-structures. The algorithms analyze the
constraint-variable relationships of the given CNF-SAT problem and derive a
variable order for SAT search. Using this as the initial order, the SAT tool
(zCHAFF) performs a search for the solutions. On encountering conflicts, we al-
low the solver to add conflict-induced clauses and proceed with its book-keeping
and (non-chronological) backtracking procedures. In other words, ACCORD/L’
ACCORD provide only an initial static ordering. zCHAFF’s VSIDS heuristic
updates this order dynamically, when conflict clauses are added. Hence, our ap-
proach is not a replacement for VSIDS; it is to be used in conjunction with it.



Using this setup, we have conducted experiments over a large set of benchmarks
that include: i) Microprocessor verification benchmarks [34]; and ii) some of the
hard instances specifically created for the SAT competition (all three categories
- industrial, handmade and random). We conducted our experiments on a Linux
workstation with a 2.6GHz Pentium-IV processor and 512MB RAM.

6.1 ACCORD versus L’ ACCORD comparison

Table 3 compares the quality of orders generated by ACCORD and L’ ACCORD.
It is clear from the table that L’ ACCORD generates a better quality variable
order than ACCORD, always improving the SAT solver performance.

Table 3. Run-time Comparison of ACCORD and L’ ACCORD

zCHAFF|| ACCORD + zCHAFF ||’ ACCORD + zCHAFF

Bench- Solve Var. | Solve | Total Var. | Solve | Total

mark (sec) ||/Time(s)|Time(s)|Time(s)||Time(s)|Time(s)|Time(s)
clus-2020-1 >1000 0.01 | 746.62 | 746.63 || 0.01 | 666.32 |666.33
clus-1010-3 >1000 0.01 | >1000 - 0.01 | 700.85 | 700.86

conn-n600-939 135.54 0.01 82.82 | 82.83 0 0.42 0.42
conn-n600-945 581.56 0.01 | 534.64 | 534.65 || 0.01 98.02 | 98.03

icos-stretch 102.99 0 111.39 | 111.39 0 78.56 | 78.56
marg-33-add8ch|| 247.73 0 21.8 21.8 0 20.01 | 20.01
marg-35-1452 >1000 0 >1000 - 0 289.17 |289.17

mm-1x10-1488 654.16 0.01 | >1000 - 0.01 | 237.48 |237.49
mm-2x2-50-149 39.8 0.02 27.64 | 27.66 0.05 249 |24.95

qwh-35-405 39.73 0.01 | 114.45|114.46 || 0.03 5.58 5.61
urghlc3x3 284.48 0 8.53 8.53 0 57.96 | 57.96
urqh2x4 302.79 0 33.39 | 33.39 0 26.53 | 26.53
urqh2x5 >1000 0 >1000 - 0 612.96 |612.96
urghlc3x4 >1000 0 >1000 - 0 320.62 | 320.62
unif-r4-2 >1000 0 >1000 - 0 198.47 1 198.47
unif-r4-7 >1000 0 515.24 |515.241 0 151.25 |151.25
unif-r4-9 >1000 0 350.12 | 350.12 0 141.95 (141.95
3bitadd_31 68.88 0.14 43.03 | 43.17 0.09 4.1 4.19
3bitadd_32 7.43 0.15 0.86 1.01 0.1 0.02 0.12

9dIx-vliw-iql 504.47 12.79 | 464.85 | 477.64 || 15.69 | 381.09 | 396.78

6.2 L’ ACCORD versus Contemporary Techniques

Table 4 presents some results that compares the quality of the variable order
derived by I ACCORD with those of zCHAFF (latest version developed in
2004) and hypergraph partitioning (HGPart) based order [27]. For a fair com-
parison, zCHAFF is used as the base SAT solver for all experiments - just the



variable orders are different. As compared to zCHAFF and HGPart, the vari-
able order generated by L’ ACCORD results in a orders of magnitude speedup in
SAT solving. Particularly for more difficult problems, our approach significantly
outperforms the other two.

Table 4. Run-time Comparison of L’ ACCORD with zCHAFF and Hypergraph Par-
titioning based Technique

zCHAFF|| HGPart + zCHAFF |[|[L’ ACCORD + zCHAFF
Bench- Vars/ SAT/ || Solve Var. | Solve | Total Var. | Solve | Total
mark Clauses |UNSAT|| (sec) |/Time(s)|Time(s)|Time(s) |/ Time(s)|Time(s)|Time(s)
3bitadd_31 8432/21210 S 68.88 3.023 0.55 | 3.573 0.09 4.1 4.19
3bitadd_32 8704/32316 S 7.43 3.417 0.67 4.087 0.1 0.02 0.12
clus-2020-1 1200/4800 S >1000 1.421 | >1000 — 0.01 | 666.32 |666.33
clus-2020-2 1200/4800 S 688.19 1.81 9.12 10.93 0.04 37.17 37.21
clus-4530-2 1200/4800 S 975.83 1.846 | 43.85 | 45.696 0.02 | 630.55 | 630.57
clus-1010-3 1200/4919 S >1000 1.701 | 704.66 | 706.361 0.01 | 700.85 [700.86
color-10-3 300/6475 S 129.57 0.375 19.01 | 19.385 0 25.05 25.05
conn-n600-939 576/6864 S 135.54 1.196 | 28.96 | 30.156 0 0.42 0.42
conn-n600-945 596 /7157 S 581.56 1.145 | >1000 - 0.01 98.02 | 98.03
icos-stretch 45/352 U 102.99 0.199 | 93.84 | 94.039 0 78.56 | 78.56
marg-33-add8ch 41/272 U 247.73 0.071 | 142.53 | 142.601 0 20.01 | 20.01
marg-33-add8 41/224 U 3.44 0.074 1.36 1.434 0 1.29 1.29
marg-35-1452 61/280 18] >1000 0.085 | >1000 — 0 289.17 [289.17
mm-1x10-1488 1120/7220 S 654.16 1.057 | >1000 - 0.01 237.48 [237.49
mm-2x2-50-1496| 60/32000 U 39.8 3.815 | 31.37 | 35.185 0.05 24.9 |24.95
mm-2x3-66-1502 1698/48771 U 17.32 4.386 16.48 | 20.866 0.08 13.55 | 13.63
qwh-35-405 1597/10658 S 39.73 1.869 | 84.59 | 86.459 0.03 5.58 5.61
urghlc3x3 41/204 U 284.48 0.078 8.92 8.998 0 57.96 | 57.96
urqh2x4 42/336 U 302.79 0.077 | 71.07 | 71.147 0 26.53 | 26.53
urqgh2x5 53/432 U >1000 0.117 | >1000 - 0 612.96 [612.96
urghlc3x4 58/476 U >1000 0.143 | 196.78 |196.923 0 320.62 | 320.62
unif-r4-2 500,/2000 S >1000 0.447 | >1000 - 0 198.47 | 198.47
unif-r4-5 500,/2000 S 884.04 0.491 91.88 |92.371 0 129.79 | 129.79
unif-r4-7 500/2000 S >1000 0.451 | 582.53 | 582.981 0 151.25 [151.25
unif-r4-9 500/2000 S >1000 0.493 | 711.65 | 712.143 0 141.95 | 141.95
ferry10 2958/20791 S 3.54 3.549 0.73 4.279 0.04 0.07 0.11
ferry12 4222/32199 S 238.5 8.189 | 134.78 | 142.969 0.09 66.51 66.6
rotmul 5980/35229 U 174.7 5.888 | 153.26 |{159.148|| 0.28 159.53 | 159.81
9dIx-vliw-iql 24604,/261473 U 504.47 68.83 | 443.79 | 512.62 15.69 | 381.09 [396.78

The table 5 depicts some results for the microprocessor pipeline verifica-
tion benchmarks. These experiments were conducted using both 2003 and 2004
versions of the zCHAFF SAT solver. For both experiments, the same variable
order derived by L’ ACCORD is used. Note that, using the L’ ACCORD’s order,




zCHAFF-2003 tool is able to improve the performance significantly. zCHAFF-
2004 follows upon its earlier versions by implementing the efficient conflict anal-
ysis procedures. As a result, these benchmarks can be quickly solved by the 2004
version of the solver and the impact of L’ ACCORD is minimal.

Table 5. Run-time Comparison of L’ ACCORD with zCHAFF’03 and zCHAFF’04

zCHAFF’03||L’ACCORD+zCHAFF’03||zCHAFF’04 ||’ ACCORD+zCHAFF’04
Bench- Vars/ Solve Var. | Solve | Total Solve Solve Total
mark Clauses (sec) Time(s)|Time(s)| Time(s) || Time(s) |/Time(s) Time(s)
4pipe 5237/80213 129 0.56 56.1 56.66 8.02 11.96 12.52
Spipe 9471/195452 196.53 2.36 54.46 | 56.82 18.34 16.59 18.95
4pipe_k | 5095/79489 208.81 0.6 40.85 | 41.45 8.34 14.53 15.13
Spipe_k | 9330/189109 871.79 2.25 | 388.32 | 390.57 40.75 31.29 33.54
4pipe_q0| 5380/69072 66.71 0.48 73.86 | 74.34 6.37 8.59 9.07
5pipe_q0[10026/154409 649.9 1.53 | 214.89 | 216.42 25.21 26.46 27.99
6pipe 15800,/394739 >2000 6.53 | 827.06 | 833.59 132.82 144.72 151.25
6pipe_k [15346,/408792 105.52 8.76 | 141.45 | 150.21 71.49 57.64 66.4
6pipe_q0|16775/315960 104.48 4.88 | 82.44 | 87.32 43.37 46.65 51.53
Tpipe_q0[26512/536414 >2000 12.45 [1523.16| 1535.61 284.97 265.3 277.75
8pipe-q0(39434 /887706 >2000 31.16 | >2000 - 819.13 892.32 923.48

7 Conclusions and Future Work

This paper has advocated the need to analyze constraint-variable relationships to
derive an ordering of variables to guide SAT diagnosis. To analyze the tightness of
the connectivity between variables, we have a proposed the degree of correlation
as a qualitative and quantitative metric. Our technique models the constraint
variable dependencies on a weighted graph and analyzes the graph’s topological
structure to derive the order. Our approach is fast, robust, scalable and can
handle a large set of variables and constraints. The variable order derived by
our procedure improves the performance of the solver by one or more orders of
magnitude. As part of future work, we are exploring a dynamic variable order
update strategy to be employed when conflict clauses are added to the database.
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