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Abstract. This paper presents a new technique to derive an initial static
variable ordering for efficient SAT search. Our approach not only exploits
variable activity and connectivity information simultaneously, but it also
analyzes how tightly the variables are related to each other. For this pur-
pose, a new metric is proposed - the degree of correlation among pairs of
variables. Variable activity and correlation information is modeled (im-
plicitly) as a weighted graph. A topological analysis of this graph gener-
ates an order for SAT search. Also, the effect of decision-assignments on
clause-variable dependencies is taken into account during this analysis.
An algorithm called ACCORD (ACtivity - CORrelation - ORDering) is
proposed for this purpose. Using efficient implementations of the above,
experiments are conducted over a wide range of benchmarks. The results
demonstrate that: (i) the variable order generated by our approach signif-
icantly improves the performance of SAT solvers; (ii) time to derive this
order is a fraction of the overall solving time. As a result, our approach
delivers faster performance as compared to contemporary approaches.

1 Introduction

An important aspect of CNF-SAT is to derive an ordering of variables to guide
the search. The order in which variables (and correspondingly, constraints) are
resolved significantly impacts the performance of SAT search procedures. Vari-
able activity and clause connectivity are often considered as qualitative and
quantitative metrics to model clause-variable dependencies. Activity of a vari-
able (or literal) is defined as the number of its occurrence among all the clauses
of a given SAT problem [I]. Most conventional SAT solvers [2] [3] [4] employ
variable/literal-activity based branching heuristics to resolve the constraints.
Connectivity of constraints has also been used as a heuristic approach to
derive variable orderings for SAT search. Loosely speaking, two clauses are
said to be ”connected” if one or more variables are common to their support.
Clause connectivity can be modeled by representing CNF-SAT constraints as
(hyper-) graphs and, subsequently, analyzing the graph’s topological structure.
Tree decomposition techniques have been proposed in literature [5] [6] for analyz-
ing connectivity of constraints in constraint satisfaction programs (CSP). Such
techniques identify decompositions with minimum tree-width, thus enabling
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a partitioning of the overall problem into a chain of connected constraints. Re-
cently, such approaches have also found application in those problems that can
be modeled as DPLL-based CNF-SAT search [6] [7]. Various approaches operate
on such partitioned tree structures by deriving an order in which the partitioned
set of constraints are resolved [6] [7] [8] [9] [10] [7] [11] [10]. Recently, Durairaj
et. al. [I2] proposed hypergraph bi-partitioning based constraint decomposition
scheme (HGPART) that employs both variable activity and clause connectivity
simultaneously to derive a variable order.

The above connectivity/tree-decomposition/partitioning-based methods that
guide SAT diagnosis have one or more of the following limitations: (i) they
suffer from large compute times to search the variable order [5] [9] [6]; (ii) the
quality of the variable order does not consistently improve the performance of
SAT solvers [9] [11]; (iii) there is no direct control over the decomposition [12].
Another limitation of these techniques is that while they do analyze variable
activity, clause connectivity or both, however, they do not analyze how tightly
the variables are connected to each other. As a result, tightly connected, hard
problems may not realize the run-time improvements.

To overcome the above limitations , this paper presents a new approach to de-
rive an initial static ordering for SAT search by rigorously analyzing constraint-
variable dependencies. Moreover, we analyze the effect of decision-assignments
on the variable order and exploit this effect to further improve the order. Exper-
imental results demonstrate that our approach is faster and more robust than
the contemporary variable ordering techniques, and it improves the performance
of SAT solvers (in many cases by orders of magnitude).

2 ACCORD: Activity-Correlation Based Ordering

It is our desire to derive a variable order for SAT search by analyzing clause-
variable relationships. The importance of branching on high activity variables is
well understood [I]. Analyzing the connectivity of constraints is also important
for constraint resolution. Contemporary techniques address both of the above
issues. However, ‘how tightly are the variables related?’ - this feature too should
not be overlooked. For this purpose, we propose a metric that measures how
tightly the variables are connected/related. We define this metric as follows:

Definition 2.1. Two variables x; and x; are said to be correlated if they ap-
pear together (as literals) in one or more clauses. The number of clauses in
which the pair of variables (z;, x;) appear together is termed as their degree of
correlation.

In our approach, the constraint-variable relationship of a given CNF-SAT
problem is modeled as a weighted graph. The variables (as opposed to literals)
form the vertices, while edges denote the correlation/connectivity between them.
Associated with each variable is its activity, which is modeled as an integer value
within the node. The edge weights represent the degree of correlation between
the variables/vertices. For example, if two variables z;,z; appear together in n
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Fig. 1. An example CNF and its Weighted Graph - Edge weights denote the degree of
correlation between the variables (vertices). Variable activity depicted within the node

clauses, then the weight of the edge e;; connecting them is n. An ordering of the
nodes (variable order) can be performed by analyzing the graph’s topology. We
now describe our approach by means of an example corresponding to the CNF-
SAT problem shown in Fig. [[l(a). Its corresponding weighted graph is depicted
in Fig. Di(b).

We begin the search by first selecting the highest active variable, i.e. the
node that has the highest internal weight. The variable is marked and the node is
added to a set called supernode. The variable is also stored in a list (var_ord_list).
The SAT tool should branch on this variable first. It can be observed from the
graph (weight within the nodes) that the activity of variables {e, u, g, v} is the
highest (= 5). We select one of these variables (randomly or lexicographically)
as the initial branching variable. Let us select the variable u, shown in Fig. I(b)
as “First Selection.” The variable u becomes the supernode. Now we need to
identify the set of variables connected to this supernode u. Note that, when
the solver branches on this variable u, it will assign u = 1. This is because the
activity of its positive literal is greater than that of negative. Hence, all the
clauses corresponding to the literal u will be satisfied due to this assignment.
In order to exploit this behaviour, our algorithm determines connectivity only
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from the clauses in which literal @ appears. For this purpose, the incident edges
on the node u are split into two edges corresponding to the literals and their
correlation as shown in Fig. [[lc). The dotted edge corresponds to the negative
literal (@). All the nodes that share at least one edge with the supernode (@) are
identified. The nodes {g, ¢, a,b} are connected to the literal @, as shown in Fig.
@(c). One of these variables {g,c,a,b} is to be selected as the next branching
variable. We consider the degree of correlation, modeled as edge weights, as the
metric to identify this variable. The nodes that share an edge with the supernode
are sorted in decreasing order of the sum of their degrees of correlation with the
nodes in the supernode. In our example, the variables {g, a, b, c} have the same
degree of correlation with node u, which is equal to 1. In order to break this
tie, we further distinguish these variables according to their activity. Since the
activity of variable g is higher than that of variables {a,b,c}, g is selected as
the next branching variable. This is shown in Fig. [[l(c) as “Second Selection.”
Moreover, the node g is added to the current supernode set; supernode = {u, g}.
The variable order derived so far is var_ord_list = {u, g}.

Algorithm 1. Pseudo code for ACCORD

1: INPUT = CNF Clauses and Variable-Clause Database ;
2: /* For each variable z;, the Variable-Clause database contains a list of clauses in
which z; appears */

3: OUTPUT = Variable order for SAT search ;

4: activity_list = Array containing activity of each variable ;

5: var_order_list = Initialize variable order according to activity ;

6: connectivity_list = Initialize to zero for all variables ;

7: for (i=0; i != number of variables; i++) do

8:  /* Implicitly, supernode = {var_order_list[0], ..., var_order_list[i]} */

9:  next_var = var_order_list[i] ;

10:  correlation_list = find variables connected to least active literal of next_var using
Variable-Clause database ;

11:  for all var € correlation_list do

12: connectivity list[var]++ ; /* Compute correlation */

13:  end for

14:  adjust_variable_order(var € correlation_list) ;

15:  /* Linear sort is used to update the variable order corresponding to both con-
nectivity_list as well as activity_list */

16:  /* Here, {var_order_list[0], ..., var_order_list[i]} is the current variable order*/

17: end for

18: return(var_order_list) ;

As the next step, those variables are identified that share an edge with the
supernode in the set of unresolved clauses. The activity of the literal g is greater
than the literal g. Hence, only those clauses in which g appears are considered, as
they are unsatisfied. These variables are {v, e, ¢, a,b} as shown in Fig[l{d) with
highlighted incident edge. Consider the nodes {v, e, a,b}. They share only one
edge with the supernode with weights (correlation) = 1. On the other hand, node
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¢ has two edges incident on the supernode. Therefore, the correlation modeled
by both edges should be accounted for. This is computed as the sum of the
degrees of correlation between ¢ and the supernode {g,u} = 141 = 2. Since this
sum is the highest for ¢, it is selected as the next branching variable. This is
shown in Fig. [I(d) as third selection. The supernode set and the var_ord_list are
correspondingly updated. The above procedure is repeated until all the nodes
are ordered and included with in the supernode. The final derived variable order
is {u,g,¢,v,e,a,b,w,d}.

Our approach is inspired from the Prim’s Minimum Spanning Tree (MST)
algorithm [I3]. We have named it the ACCORD (ACtivity COrrelation
ORDering) algorithm. The Pseudo code for the ACCORD algorithm is pre-
sented in Algorithm [Il The Variable-Clause database, mentioned in lines 1-2, is
implemented using the array of arrays data-structure available within contem-
porary SAT solvers [2] [14]. The algorithm analyzes the clause-variable database,
and for each variable, it computes its correlated variables. Using the activity and
correlation measures, the variable ordering is computed. The time complexity of
ACCORD can be derived as O(V - (V -C'+V?)), where V represents the number
of variables and C' represents the number of clauses.

3 Experimental Results and Analysis

The ACCORD algorithm has been programmed within the zCHAFF [2] solver
using its native data-structures. The algorithm analyzes the constraint-variable
relationships of the given CNF-SAT problem and derive a variable order for SAT
search. Using this as the initial order, the SAT tool (zCHAFF) performs a search
for the solutions. On encountering conflicts, we allow the solver to add conflict-
induced clauses and proceed with its book-keeping and (non-chronological) back-
tracking procedures. In other words, ACCORD provide only an initial static
ordering. zCHAFF’s VSIDS heuristic updates this order dynamically, when con-
flict clauses are added. Hence, our approach is not a replacement for VSIDS; it
is to be used in conjunction with it. Using this setup, we have conducted experi-
ments over a large set of benchmarks that include: i) Microprocessor verification
benchmarks [I5]; and ii) some of the hard instances specifically created for the
SAT competition (all three categories - industrial, handmade and random). We
conducted our experiments on a Linux workstation with a 2.6GHz Pentium-IV
processor and 512MB RAM.

Table [I] presents some results that compares the quality of the variable order
derived by ACCORD with those of zZCHAFF (latest version developed in 2004)
and hypergraph partitioning (HGPart) based order [12]. For a fair comparison,
zCHAFF is used as the base SAT solver for all experiments - just the variable
orders are different. As compared to zZCHAFF and HGPart, the variable order
generated by ACCORD results in a orders of magnitude speedup in SAT solving.
Particularly for more difficult problems, our approach significantly outperforms
the other two.
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Table 1. Run-time Comparison of ACCORD with zCHAFF and HGPART

zCHAFF| HGPart + zCHAFF || ACCORD + zCHAFF
Bench- Vars/ Solve Var. | Solve | Total || Var. | Solve | Total
mark Clauses (sec) |[Time(s)Time(s)|Time(s)|[Time(s)Time(s)Time(s)
3bitadd_31 [8432/21K|| 68.88 3.023 | 0.55 |3.573 0.09 4.1 4.19
3bitadd_32 |8704/32K|| 7.43 3.417 | 0.67 | 4.087 0.1 0.02 | 0.12
clus-2020-1 {1200/4800|| >1000 || 1.421 |>1000 - 0.01 |666.32666.33
clus-2020-2 {1200/4800|| 688.19 1.81 9.12 | 10.93 0.04 | 37.17 | 37.21
clus-1010-3 1200/4919|| >1000 || 1.701 |704.66 |706.361|| 0.01 |700.85|700.86
color-10-3 |300/6475|| 129.57 || 0.375 | 19.01 |19.385 0 25.05 | 25.05
conn-939  |576/6864 || 135.54 || 1.196 | 28.96 | 30.156 0 0.42 | 0.42
conn-945 | 596/7157 || 581.56 || 1.145 | >1000 - 0.01 | 98.02 | 98.03

mm-1x10 [1120/7220|| 654.16 || 1.057 | >1000 - 0.01 |237.48 [237.49
qwh-35 1597/11K|| 39.73 || 1.869 | 84.59 | 86.459 || 0.03 | 5.58 | 5.61
unif-r4-2 500/2000| >1000 || 0.447 | >1000 - 0 198.471198.47

unif-r4-5 500/2000 || 884.04 || 0.491 | 91.88 |92.371 0 129.79 1 129.79
unif-r4-7 500/2000| >1000 || 0.451 |582.53 |582.981 0 151.25|151.25
unif-r4-9 500/2000| >1000 || 0.493 | 711.65|712.143 0 141.95(141.95
ferry10 2958/21K|| 3.54 3.549 | 0.73 | 4.279 0.04 | 0.07 | 0.11
ferry12 4222/32K|| 238.5 || 8.189 [134.78|142.969|| 0.09 | 66.51 | 66.6

icos-stretch | 45/352 || 102.99 || 0.199 | 93.84 | 94.039 0 78.56 | 78.56
marg33-ch | 41/272 || 247.73 || 0.071 |142.53|142.601 0 20.01 | 20.01
marg33add8 41/224 3.44 0.074 | 1.36 | 1.434 0 1.29 | 1.29
marg35 61/280 || >1000 || 0.085 | >1000 - 0 289.17 289.17
mm-2x2-50 [60/32000 | 39.8 3.815 | 31.37 | 35.185 || 0.05 | 24.9 |24.95
mm-2x3-66 [1698/49K|| 17.32 || 4.386 | 16.48 | 20.866 || 0.08 | 13.55 {13.63
urghlc3x3 | 41/204 || 284.48 || 0.078 | 8.92 | 8.998 0 57.96 | 57.96
urqh2x4 42/336 || 302.79 || 0.077 | 71.07 | 71.147 0 26.53 |26.53
urqh2x5 53/432 | >1000 || 0.117 | >1000 - 0 612.96 |1612.96
urghle3x4 | 58/476 || >1000 || 0.143 |196.78 [196.923 0 320.62 | 320.62
rotmul 5980/35K|| 174.7 || 5.888 |153.26 159.148|| 0.28 |159.53 |159.81
9dIx-iql 25K /261K|| 504.47 || 68.83 |443.79| 512.62 || 15.69 |381.09|396.78

TableRldepicts some results for the microprocessor pipeline verification bench-
marks. These experiments were conducted using both 2003 and 2004 versions of
the zZCHAFF SAT solver. For both experiments, the same variable order derived
by ACCORD is used. Note that, using the ACCORD’s order, zCHAFF-2003 tool
is able to improve the performance significantly. zZCHAFF-2004 follows upon its
earlier versions by implementing the efficient conflict analysis procedures pro-
posed by [3]. As a result for these benchmarks, the order generated by ACCORD
gets significantly modified due to the conflict clause resolution [3] and hence, the
impact of ACCORD is minimal.
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Table 2. Run-time Comparison of ACCORD with zCHAFF’03 and zCHAFF’04

zCHAFF ACCORD+ zCHAFF|| ACCORD+
2003 zCHAFF’03 2004 zCHAFF’04
Bench- Vars/ Solve Var. | Solve | Total Solve Solve | Total
mark Clauses (sec) || Time(s)|Time(s)| Time(s)|| Time(s) ||Time(s)|Time(s)

4pipe 5K /80K 129 0.56 56.1 56.66 8.02 11.96 | 12.52
Spipe 9K/195K || 196.53 2.36 54.46 | 56.82 18.34 16.59 | 18.95
4pipek | 5K/79K || 208.81 0.6 40.85 | 41.45 8.34 14.53 | 15.13
Spipek | 9K/189K || 871.79 2.25 | 388.32 | 390.57 || 40.75 31.29 | 33.54
4pipe_q0| 5K/69K 66.71 0.48 73.86 | 74.34 6.37 8.59 9.07

5pipe_q0|10K /154K || 649.9 1.53 | 214.89 | 216.42 25.21 26.46 | 27.99
6pipe 16K/394K|| >2000 6.53 | 827.06 | 833.59 || 132.82 || 144.72 | 151.25
6pipe_k |15K/408K|| 105.52 8.76 | 141.45 | 150.21 71.49 57.64 66.4

6pipe_q0|17K/315K|| 104.48 4.88 82.44 | 87.32 43.37 46.65 | 51.53
Tpipe_q0|26K /536K || >2000 12.45 |1523.16|1535.61| 284.97 || 265.3 | 277.75

4 Conclusions and Future Work

This paper has advocated the need to analyze constraint-variable relationships to
derive an ordering of variables to guide SAT diagnosis. To analyze the tightness
of the connectivity between variables, we have proposed the degree of correlation
as a qualitative and quantitative metric. Our technique models the constraint
variable dependencies on a weighted graph and analyzes the graph’s topological
structure to derive the order. Our approach is fast, robust, scalable and can
handle a large set of variables and constraints. The variable order derived by
our procedure improves the performance of the solver by one or more orders of
magnitude. As part of future work, we are exploring a dynamic variable order
update strategy to be employed when conflict clauses are added to the database.
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