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Abstract: The type of decision strategies employed
for CNF-SAT have a profound effect on the efficiency
and performance of SAT engines. Over the years, a
variety of decision heuristics have been proposed; each
has its own achievements and limitations. This paper
re-visits the issue of decision heuristics and engineers a
new approach that takes an integrated view of the over-
all problem structure. Our approach qualitatively ana-
lyzes clause-variable dependencies by accounting for vari-
able/literal activity, clause connectivity, distribution of
variables among clauses of different lengths, and corre-
lation among variables, to derive an initial static order-
ing for SAT search. To account for conflict clauses and
their resolution, a corresponding dynamic variable order
update strategy is also presented. Quantitative metrics
are proposed that are used to devise an algorithmic ap-
proach to guide overall SAT search. Experimental results
demonstrate that our strategy significantly outperforms
conventional approaches.

I. Introduction

Recent advances in SAT have significantly impacted
Electronic Design Automation (EDA) applications such
as functional verification, logic synthesis, model check-
ing, equivalence checking, etc. Much of these advances
can be credited to efficient branching heuristics and con-
flict resolution procedures that have been researched over
the years. The order in which variables (and correspond-
ingly, constraints) are resolved significantly impacts the
performance of SAT search procedures [1] [2].

Early branching heuristics, such as Bohm’s heuristic
[3], Maximum Occurrences on Minimum sized clauses
(MOM) [4] and Jeroslow-Wang heuristic [5], attempt to
resolve smaller clauses first as that might result in ear-
lier conflicts and implications. However, these heuristics
are unable to solve large (industrial) problems that one
encounters in contemporary EDA problem formulations.
Subsequently, a new class of decision heuristics, such as
DLIS [6] and VSIDS [1], were derived which utilize the
counts of variables or literals appearing in the clauses.
Activity of a variable (or literal) - which is defined as its
frequency of occurrence among clauses - plays an impor-
tant role in such heuristics. The DLIS heuristic branches
on the literal which has the highest activity among unsat-
isfied clauses. On the other hand, the VSIDS heuristic

associates a score for each literal and branches on the
literal with the highest score. This score is initially set
to the literal’s activity among all clauses. The score is
updated whenever conflict clauses are added. Also, the
heuristic divides these scores in a periodic manner to
avoid overflow and to give importance to variables that
appear in recent conflict clauses. Most conventional SAT
solvers [1] [2] [6] employ variations of the such branching
heuristics to resolve the constraints.

In recent past, a lot of effort has been invested in deriv-
ing variable orderings for SAT search by analyzing the
problem structure. In particular, connectivity of con-
straints has been used as a means to efficiently model
and analyze the clause-variable dependencies. Clause
connectivity can be modeled by representing CNF-SAT
constraints on a (hyper-) graph. Subsequently, analyz-
ing the graph’s topological structure allows to derive an
“ordering of variables” that is used to guide the search.

Tree decomposition techniques have been proposed
in literature [7] [8] for analyzing connectivity of con-
straints in constraint satisfaction programs (CSP). Such
techniques identify decompositions with minimum tree-
width, thus enabling a partitioning of the overall problem
into a chain of connected constraints. Recently, such ap-
proaches have also found application in those problems
that can be modeled as DPLL-based CNF-SAT search [8]
[9] [10] [11] [12] [13]. Various approaches operate on such
partitioned tree structures by deriving an order in which
the partitioned set of constraints are resolved [9] [10] [11]
[13]. MINCE [14] employs CAPO placer’s mechanism
[15] to find a variable order such that the clauses are re-
solved according to their chain of connectivity. Bjesse et.
al. [10] proposed tree decomposition based approaches
to guide variable selection and conflict clause generation.
Aloul et. al. have proposed a fast, heuristic based ap-
proach, FORCE [16], as an alternative to the computa-
tionally complex approach of MINCE. Durairaj et. al.
[17] proposed a hypergraph bi-partitioning based con-
straint decomposition scheme that simultaneously ana-
lyzes variable-activity and clause-connectivity to derive
a variable order for SAT search. They have further pro-
posed a variable ordering scheme (ACCORD [18]) that
analyzes correlations among pairs of variables to resolve
the constraints.

The above variable ordering schemes are generally em-
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ployed to derive an initial static variable order. SAT
tools use this order and begin the search. SAT solvers
update this variable order dynamically when conflict
clauses are added. Due to this update, the original or-
dering gets destroyed/modified, over a period of time.
As a result, the “speed-up potential” of the initial vari-
able order is not fully exploited. Moreover, some of
these ordering schemes suffer from long compute times
[7] [14] [9]. Furthermore, both the initial variable order-
ing schemes, as well as contemporary decision heuristics
(DLIS, VSIDS), fail to explicitly account for the effect of
clause lengths on decision making.

Our Approach: Our approach first computes an ini-
tial variable order for SAT search by analyzing, both
qualitatively and quantitatively, the overall problem
structure. Following are the salient features of our initial
ordering scheme. To analyze the distribution of vari-
ables among clauses, we develop a quantitative metric
that combines variable/literal activity scores along with
the length of clauses in which they appear. Our approach
also quantitatively analyzes how tightly the variables are
related to each other. Moreover, this variable correlation
is further scaled with respect to the length of clauses.
Our heuristic also considers the effect of decision assign-
ments on subsequent constraint resolution.

We begin the search using this initial variable order.
As and when conflicts are encountered, and correspond-
ing conflict clauses are added to the database, the vari-
able order has to be updated so as to take into account
the increase in variable activity as well as conflict clause
lengths. For this purpose, we propose a dynamic strat-
egy that correspondingly updates the variable order.

While some of these concepts have been presented in
literature before, ours is an attempt to take an inte-
grated view of the problem structure. Experimental re-
sults demonstrate that our hybrid approach is faster and
much more robust than contemporary techniques. Sig-
nificant improvements (in some cases, an order of mag-
nitude) are observed over a wide range of EDA as well
as non-EDA applications.

This paper is organized as follows. Section II reviews
previous decision heuristics. Section III proposes a new
hybrid score for literals that accounts for both literal ac-
tivity and clause lengths. Section IV presents our initial
variable ordering scheme. Section V discusses a strategy
to update this order during the search. The overall ap-
proach is presented in Section VI and experiments are
described in Section VII. Section VIII concludes the pa-
per.

II. Literal Activity and Clause Length

While using literal counts as a metric to resolve the
constraints is the norm now-a-days, it suffers from the
following limitation. Activity based heuristics give equal
importance to variables (literals) irrespective of the size
of the clauses in which they appear. However, it can be

noted that branching on a variable appearing in shorter
clauses (say, a 2 literal clause) may produce faster/earlier
implications or conflicts than for larger clauses. Hence, it
is important to consider the effect of clause length while
making decisions.

Most of the early branching heuristics [3] [4] [5] did
consider clause length as an important metric in deciding
the next branching variable. Let us revisit and analyze
one of these heuristics, the Jeroslow-Wang (JW) heuris-
tic. JW heuristic branches on a literal L that maximizes
the metric

J(L) =
∑

i,L∈Ci

2−ni (1)

over all literals L, where ni is the number of literals in
clause Ci. The motivation behind this heuristic is that in
a list of clauses with n variables, there are 2n truth valu-
ations and a clause of length p rules out exactly 2n−p of
these valuations. Using the above motivation, Jeroslow-
Wang justify their rule as one that tends to branch to a
sub-problem that is most likely to be satisfiable ([5], pp.
172-173). However, [19] has experimentally disproved
their original justification and shown that the reason be-
hind the success of JW heuristic is that it creates simpler
sub-problems. This, in turn, leads to faster SAT solving.
Recently, Pilarski et. al. [20] have also shown that con-
sidering clause length while deciding on next branching
variable produces significantly faster results for a certain
classes of benchmarks. However, note that 2−ni is an
exponentially decreasing function. Therefore, for large
sized clauses, it generates very small numerical scores.
As a result, it cannot properly differentiate between the
effect of decisions on variables that appear in very large
clauses. Such large clauses are commonly found in SAT
problems, particularly in conflict clauses [20]. Hence, a
better metric that properly accounts for clause lengths
is required.

III. JW-Activity: A Hybrid Score for Literals

We propose a new quantitative metric that combines
the activity together with clause lengths (JW heuristic).
The above mentioned limitation (exponentially decreas-
ing scores) of J(L) metric can be overcome by up-scaling
the scores. We scale the J(L) metric using the activity
of literal L. In other words,

JW − Activity(L) = activity(L) ∗ J(L) (2)

For computing JW-Activity, we have modified the
data structure of the conventional solver to store infor-
mation regarding clause lengths. For this purpose, an
array is included in the database whose purpose is store
each literal’s score corresponding to JW heuristic (equa-
tion 1). Hence, whenever a clause is initially read into
the database, the JW score for each literal is updated.
Along with this score, the solver is also allowed to up-
date its literal activity. The JW-Activity for each literal
is thus computed.
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Note that when the search proceeds, some clauses will
be satisfied. This requires to update the JW score dy-
namically. However, this update is generally very expen-
sive as all satisfied clauses have to be recognized; thus
breaking the two-literal watching scheme [1]. This is-
sue is obviated in our overall approach - a discussion on
which follows in Section VI.

IV. Incorporating Connectivity-based

Decision Heuristics

The importance of deriving a good variable ordering
to guide SAT search is well known, as discussed in [21]
[14] [22]. Activity based scores alone are not sufficient
to derive a good initial variable order. Therefore, con-
temporary techniques analyze the variable activity along
with clause connectivity and derive an initial static vari-
able order. SAT tools use this order for decision assign-
ments. In the previous section, we have introduced a new
hybrid score to model literal activity along with clause
lengths. In addition to JW-Activity, we now wish to an-
alyze the connectivity information within the problem
structure, that too with respect to clause lengths, and
derive a similar initial variable ordering.

A recent approach, ACCORD [18], exploits the
activity-connectivity information to derive an initial vari-
able order. It has been experimentally demonstrated to
be faster and more robust than other connectivity based
approaches, such as [14] [9] [16] [17]. We exploit and ex-
tend the main concepts of ACCORD to derive a variable
order that utilizes problem structure and clause length.
This approach will form the basis of our initial variable
order derivation scheme.

One of the interesting features of ACCORD is the met-
ric that measures how tightly the variables are related to
each other. This metric is defined as follows:

Definition IV.1: Two variables xi and xj are said to
be correlated if they appear together (as literals) in one
or more clauses. The number of clauses in which the pair
of variables (xi, xj) appear together is termed as their
degree of correlation.

ACCORD models variable activity, connectivity and
the correlation of variables on a graph and subse-
quently analyzes its topology to derive a variable order
[18]. While ACCORD did show improvements on non-
EDA problems, its performance was not satisfactory on
larger EDA benchmarks (such as the pipeline verifica-
tion benchmarks) [18]. We analyzed the algorithm and
found that even though ACCORD tightly analyzes the
constraint-variable dependencies, it does not incorporate
the effect of clause length when deciding upon the next
branching variable. For example, consider the following
set of clauses:

(x + a + e + b + f + g)(x + c + y)

According to ACCORD, the degree of correlation be-
tween the variable x and every other variable in the above

set of constraints is measured to be same. However, it
can be noted that by resolving the three literal clause
first will produce earlier implications/conflicts.

A. Enhancing ACCORD: JW-ACCORD

To overcome the above mentioned limitation, we de-
cided to incorporate the effect of clause length within
ACCORD. We extend the concept of degree of corre-
lation by incorporating the clause length information
within the metric. The degree of correlation between
a pair of variables (xi, xj) is normalized according to
the length of the clauses in which they appear together.
For example, suppose that the pair of variables (xi, xj)
appear together in two clauses C1 and C2. Let C1 be a
3 literal clause and C2 be a 4 literal clause. Then the
corresponding normalized degree of correlation is equal
to 2−3 +2−4. Formally stating, the normalized degree of
correlation between a pair of variables (xi, xj) is com-
puted as ∑

l,Xi&Xj∈Cl

2−nl

where xi,xj appear together in clauses Cl and nl is the
number of literals appearing in each Cl.

Using the new metric, we now describe the modified
JW-ACCORD algorithm by means of an example. Let
us consider the CNF-SAT problem shown below.

(x + a)(x + b + c + d)(ā + y + z)

(x̄ + ȳ)(ā + z̄)(x̄ + b̄ + c̄ + d̄ + ē)

TABLE I

JW-ACCORD: Various metrics for the above CNF

formulae

Literal(s) Literal Activity J(L) JW-Activity
x 2 2−2 + 2−4 0.625
x̄ 2 2−2 + 2−5 0.5625
a 1 2−2 0.25
ā 2 2−2 + 2−3 0.75
y, z 2 2−3 0.125
ȳ, z̄ 1 2−2 0.25
b, c, d 1 2−4 0.0625
b̄, c̄, d̄, ē 1 2−5 0.03125

Table I presents various metrics computed for the
above set of constraints. Column 1 in the table cor-
responds to the literal for which the metric has been
computed. Column 2 and 3 shows the computed literal
activity and the J(L) metric (equation 1) respectively.
Column 4 corresponds to the JW-Activity score, which
is computed by multiplying values of column 2 with those
in column 3.

The constraint-variable relationships for the given
CNF-SAT problem can be modeled as a weighted graph
as shown in Fig. 1. The variables form the vertices, while
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Fig. 1. JW-ACCORD : Edge weights denote the normalized degree
of correlation between the variables (vertices). JW-Activity
score depicted within the node. Edges between b, c, d and e
are not shown.

edges denote the correlation/connectivity between them.
Associated with each variable is JW-Activity measure
corresponding to the literal that has the higher score.
For example, in Fig. 1 (a), the value of 0.75 in node a

corresponds to that of literal ā as that has the higher
score than literal a (see Table I). The edge weights rep-
resent the normalized degree of correlation between the
variables/vertices. For example, variables x and c appear
together in 2 clauses - in the second and the last clause.
The length of the second clause is equal to 4 and that
of the last clause is 5; hence, the edge weight is equal to
2−4 + 2−5. An ordering of the nodes (variable order) is
performed by analyzing the graph’s topology.

JW-ACCORD begins the search with the literal that
has the highest value for JW-Activity metric. Here, from
the table I, it can be seen that literal ā has the highest
JW-Activity metric (i.e. 0.75). In contrast, ACCORD
would have considered the literals {x, x̄, ā} to begin the
search, as they share the same literal activity. Therefore,
this variable a is marked and the node is added to a set
called supernode and also stored in a list (var ord list).
Next we need to identify the set of variables connected to
this supernode a. Note that, when the solver branches on
this literal ā, it will assign a = 0. Hence, all the clauses
corresponding to the literal ā will be satisfied due to this
assignment. In order to exploit this behaviour, the algo-
rithm determines connectivity only from the clauses in
which literal a appears. In that case, only the variable

x is functionally connected to the supernode. Hence, x

is marked as the next branching literal and it is added
to the supernode as shown in Figs. 1 (b) and (c). Now
we need to find the next set of variables that are con-
nected to the current supernode {a, x}. Again, in order
to utilize the effect of decision making, only clauses con-
taining x̄ and a are considered for connectivity analysis.
For this purpose, the edges incident on the node x are
split into two, corresponding to the (positive and neg-
ative) literals and their correlation. This is shown in
Fig. 1 (c). The dotted edge corresponds to the neg-
ative literal (x̄). For example, between node x and y,
there is only a dotted edge as y appears together with
x̄ and not with x. Continuing with our procedure, the
variables that are connected to x̄ and a are {y, b, c, d, e}.
The correlation between x̄ and node y is the highest and
hence, y is the next branching variable. Actually, since
ȳ has higher score than y, ȳ is the next branching literal
(i.e. y = 0 will be the next assignment). The algorithm
continues by analyzing such normalized degrees of corre-
lation among literals until all the nodes are ordered. In
case of a tie, the literal with higher JW-Activity score is
selected.

Note, the above is just a visualization of our approach.
In practice, we do not explicitly construct this weighted
graph. The correlations are analyzed by operating di-
rectly on an array of array data structure as shown in
Algorithm 1.

Algorithm 1 Pseudo code for JW-ACCORD
1: INPUT = CNF Clauses and Variable-Clause Database ;
2: /* Variable-Clause database is implemented as array of arrays

*/
3: /* For each variable xi, the Variable-Clause database contains

a list of clauses in which xi appears */
4: OUTPUT = Variable order for SAT search ;
5: activity list = Array containing activity of each literal ;
6: JW list = Array containing JW metric J(L) for each literal ;
7: var order list = Initialize variable order according to scaled

JW-Activity metric (activity list[L] * JW list[L]) ;
8: connectivity list = Initialize to zero for all variables ;
9: int i = 0;
10: while i != number of variables do

11: /* Implicitly, supernode = {var order list[0], . . . ,
var order list[i]} */

12: next var = var order list[i] ;
13: next lit = The positive or negative literal of next var that has

the highest scaled JW-Activity score; /* Effect of Decision
assignments */

14: correlation list = find variables connected to next lit using
Variable-Clause database along with their clause length;

15: for all var ∈ correlation list do

16: connectivity list[var] += (2−clauselength * activity of next lit);
17: adjust variable order(var) ;
18: /* Linear sort is used to update the variable order correspond-

ing to both connectivity list as well as activity list */
19: end for

20: i = i+1;
21: /* At this point, {var order list[0], . . . , var order list[i]} is the

current variable order*/
22: end while

23: return(var order list) ;



APPEARED IN HLDVT ’06 5

A weak upper bound for the JW-ACCORD algorithm
can be found by assuming that every variable appears
in every other clause. With this assumption, an up-
per bound on the time complexity of JW-ACCORD can
be derived as O(V · (V · C + V 2)), where V represents
the number of variables and C represents the number of
clauses.

V. Accounting for Conflict clauses

The above presented algorithm JW-ACCORD is used
to derive an initial static variable order. The SAT tool
will use this order for decision assignments. As the
search proceeds, conflicts may be encountered and con-
flict clauses would be added to the database. As and
when conflict clauses are added, the scores of literals
have to be updated. We update the JW-Activity score as
follows: (i) J(L) metric for each literal appearing in the
conflict clause is updated according to the conflict clause
length; (ii) activity of these literals is incremented by
one; (iii) JW-Activity is then computed from this new
activity and J(L) metric. According to the new JW-
Activity score, the variable order is updated.

In a recent approach (BerkMin) [2], it was demon-
strated that information within the conflict clauses (par-
ticularly the more recent conflicts) needs to be analyzed
for branching. If there are unresolved conflict clauses,
BerkMin selects the highest active literal within the con-
flict clauses for immediate branching. However, BerkMin
does not analyze clause lengths. It is important to do so
because conflict clause size often varies from 2 literals to
100’s of literals [2] [20]. Keeping this in mind, we also
keep track of JW-Activity scores of literals appearing
within conflict clauses using a separate counter. There-
fore, if there are unresolved conflict clauses, we resolve
them first using the local JW-Activity score correspond-
ing to the conflict clauses. Once all conflict clauses are
resolved, we revert to the overall JW-Activity score to
branch on the next undecided variable.

Our initial variable order can be used by any SAT
solver and its native decision heuristics can certainly
update the order (say, the VSIDS scheme in CHAFF
[1]). However, that would modify our initial order un-
favourably. We have performed experiments with both
the static order and with our dynamic update strategy.
Some results are shown in Fig. 2. From the figure, the
importance of our dynamic updates is clearly visible.

VI. Overall Branching Strategy

Combining the above concepts, our overall strategy is
as follows: When the problem is being read, we com-
pute the J(L) scores as well as the literal activities. Sub-
sequently, JW-Activity score is computed using which
the literals are sorted in decreasing order. Then, our
JW-ACCORD algorithm is applied to derive an initial
static variable ordering. This ordering is used by the
SAT engine to start resolving the constraints. As and

when conflict clauses are added, the JW-Activity scores
are modified accordingly and the variable order gets dy-
namically updated; allowing for non-chronological back-
tracks. The conflict clause resolution is also performed as
described above (BerkMin-type strategy). We have im-
plemented these procedures within the zCHAFF solver
[1] (latest version developed in 2004) using its native
data-structures.

When the search proceeds, we do not update the JW-
score (and hence, the JW-Activity) when clauses become
satisfied. Instead, we update the JW-Activity of literals
only when new conflict clauses are added.

VII. Experimental Results and Analysis

We have conducted experiments over a large set of
benchmarks that include: i) Microprocessor verification
benchmarks [23]; ii) DIMACS suite [24]; iii) SAT en-
coding of Constraint Satisfaction Problems (CSP) [25];
iv) miter circuits submitted for SAT competition and v)
hard instances specifically created for the SAT compe-
tition (industrial and handmade categories). We con-
ducted our experiments on a Linux workstation with a
2.6GHz Pentium-IV processor and 512MB RAM.

Table II presents some results that compares the per-
formance of the proposed decision heuristic with those
of zCHAFF and original ACCORD variable ordering
scheme [18]. Since, our algorithm is implemented within
zCHAFF, for a fair comparison, zCHAFF is used as the
base SAT solver for all experiments. Also, in order to
compare the performance of our solver with other state-
of-the-art solvers, we also ran experiments with MiniSAT
SAT solver (latest version that participated in the SAT
2005 competition). Each benchmark is given to both
MiniSAT and zCHAFF and their corresponding solving
times are recorded, as reported in column 4 and 5. The
benchmarks are then given to ACCORD to derive the
variable order. The order derivation time is reported in
column 6. This order is then given to zCHAFF as an
initial static ordering. zCHAFF’s native VSIDS heuris-
tics update this order on encountering conflicts. This
solve time is given in column 7 and column 8 gives total
compute time.

Finally, our engineered tool is used to compute the
JW-Activity scores and derive the initial order using JW-
ACCORD; this time is reported in column 9. Note that
the variable order time is negligible even for large bench-
marks. Our modified tool uses this as the initial order
and begins the search. On encountering conflicts, it em-
ploys the above described update strategy. This solve
time is reported in column 10 and the total time in the
last column. As compared to zCHAFF and ACCORD,
the proposed heuristic results in significant speedup in
SAT solving. In fact, our integrated approach always
defeats zCHAFF. Our technique outperforms MiniSAT
too, for most of the benchmarks - barring a few for which
the compute times are comparable. Also, it can be noted
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Fig. 2. Comparison of JW-ACCORD with static order only and with dynamic updates. Y-axis represents run time.

from the results that our solver can solve some bench-
marks which none of the other tools can solve.

The experimental results does not include benchmarks
that are: (i) trivially solvable (less than 10 seconds) by
SAT solvers, such as smaller holes and smaller DIMACS
benchmarks; (ii) unsolvable (within 2000 seconds) by any
of the solvers including the proposed technique, such as
larger pipeline verification benchmarks (10pipe, 11pipe).

VIII. Conclusions

This paper has engineered an initial variable order-
ing strategy along with corresponding variable order up-
dates for CNF-SAT resolution. Clause-variable depen-
dencies are analyzed along with clause lengths for this
purpose. Not only does our approach qualitatively ana-
lyze how the variables are distributed among clauses of
different sizes, but it also proposes a quantitative met-
ric that models this behaviour. In order to analyze how
tightly the variables are related to each other, the degree
of correlation among pairs of variables is further normal-
ized according to lengths of clauses in which they appear.
Our approach is fast, robust, scalable and can efficiently
handle a large set of variables and constraints. The pro-
posed decision heuristic improves the performance of the
solver by one or more orders of magnitude over a wide
range of benchmarks.

References

[1] M. Moskewicz, C. Madigan, L. Zhao, and S. Malik, “CHAFF:
Engineering and Efficient SAT Solver”, in Proc. Design Au-
tomation Conference, pp. 530–535, June 2001.

[2] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust
Sat-Solver”, in DATE, pp 142-149, 2002.

[3] M. Buro and H. Kleine, “Report on a sat competition”, Tech-
nical Report, University of Paderborn, November 1992.

[4] J. W. Freeman, Improvements to propositional satisfiability
search algorithms, PhD thesis, University of Pennsylvania,
1995.

[5] R.G. Jeroslow and J. Wang, “Solving propositional satisfia-
bility problems”, Annals of mathematics and Artificial Intel-
ligence, vol. 1, pp. 167–187, 1990.

[6] J. Marques-Silva and K. A. Sakallah, “GRASP - A New
Search Algorithm for Satisfiability”, in ICCAD’96, pp. 220–
227, Nov. 1996.

[7] R. Dechter and J. Pearl, “Network-based Heuristics for
Constraint-Satisfaction Problems”, Artificial Intelligence,
vol. 34, pp. 1–38, 1987.

[8] E. Amir and S. McIlraith, “Partition-Based Logical Reason-
ing”, in 7th International Conference on Principles of Knowl-
edge Representation and Reasoning (KR’2000), 2000.

[9] E. Amir and S. McIlraith, “Solving Satisfiability using De-
composition and the Most Constrained Subproblem”, in LICS
workshop on Theory and Applications of Satisfiability Testing
(SAT 2001), 2001.

[10] P. Bjesse, J. Kukula, R. Damiano, T. Stanion, and Y. Zhu,
“Guiding SAT Diagnosis with Tree Decompositions”, in Sixth
International Conference on Theory and Applications of Sat-
isfiability Testing (SAT 2003), 2003.

[11] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik,
“Partition-based Decision Heuristics for Image Computa-
tion using SAT and BDDs”, in Proceedings of the 2001
IEEE/ACM international conference on Computer-aided de-
sign (ICCAD), pp. 286–292. IEEE Press, 2001.

[12] E. Amir, “Efficient Approximation for Triangulation of Mini-
mum Treewidth”, in 17th Conference on Uncertainty in Ar-
tificial Intelligence (UAI ’01), 2001.

[13] J. Huang and A. Darwiche, “A structure-based variable or-
dering heuristic for SAT”, in Proceedings of the 18th Inter-
national Joint Conference on Artificial Intelligence (IJCAI),
pp. 1167–1172, August 2003.

[14] F. Aloul, I. Markov, and K. Sakallah, “Mince: A static global
variable-ordering for sat and bdd”, in International Workshop
on Logic and Synthesis. University of Michigan, June 2001.

[15] A. Caldwell, A. Kahng, and I. Markov, “Improved Algorithms
for Hypergraph Bipartitioning”, in Proc. Asia-Pacific DAC,
2000.

[16] F. A. Aloul, I. L. Markov, and K. A. Sakallah, “FORCE: A
Fast and Easy-To-Implement Variable-Ordering Heuristic”,
in Proceedings of the 13th ACM Great Lakes symposium on
VLSI, pp. 116–119, 2003.

[17] V. Durairaj and P. Kalla, “Guiding CNF-SAT Search via



APPEARED IN HLDVT ’06 7

TABLE II

Run-time Comparison of zCHAFF, ACCORD-zCHAFF and JW-ACCORD-zCHAFF

MiniSAT zCHAFF ACCORD-zCHAFF JW-ACCORD-zCHAFF
Bench- Vars/ SAT/ Solve Solve Var. Solve Total Var. Solve Total
mark Clauses UNSAT (sec) (sec) Time(s) Time(s) Time(s) Time(s) Time(s) Time(s)
clus-1200-1085 1200/4800 S 17.206 >2000 0.01 >2000 >2000 0.003 698.335 698.338
clus-1200-1086 1200/4800 S 4.527 868.905 0.02 425.698 425.718 0.003 68.2 68.203
lksat-n900-938 900/3357 S 12.989 77.3762 0.02 4.79227 4.8122 0.002 6.149 6.151
lksat-n900-929 900/6174 S 29.175 39.611 0.02 2.68659 2.7065 0.003 18.877 18.880
urqh2x5-1473 53/432 U 134.74 1167.15 0 612.96 612.96 0.000 308.001 308.001

hanoi5 1931/14468 S 36.745 115.547 0.04 296.203 296.243 0.018 49.953 49.971
hanoi6-fast 7086/78492 S 5.517 450.819 0.27 296.307 296.577 0.072 212.221 212.293
hole12 156/949 U >2000 482.432 0 449.634 449.634 0.000 226.482 226.482

3bitadd-31 8432/31310 S >2000 96.6333 0.17 32.814 32.984 0.024 8.747 8.771

frb30-15-3 450/19084 S 11.098 13.093 0 14.6358 14.6358 0.001 3.054 3.055

frb35-17-3 595/29707 S 11.158 442.893 0 35.7266 35.7266 0.002 110.005 110.007
comb2-420 31933/112462 U 338.653 415.699 6.78 380.58 387.36 0.122 317.003 317.125

comb3-421 4774/16331 U 132.931 >2000 0.16 >2000 >2000 0.016 1523.574 1523.59
frg2mul.miter 10316/62943 U 444.591 826.61 1.01 878.141 879.151 0.043 410.702 410.745

rotmul.miter 5980/35229 U 424.847 223.161 0.34 192.946 193.286 0.024 114.264 114.288

term1mul.miter 3504/22229 U >2000 487.108 0.15 806.837 806.987 0.014 205.365 205.379

vmpc-21-1923 441/45339 S 86.719 194.013 0.05 80.9987 81.0487 0.009 5.913 5.922

vmpc-22-1956 484/52184 S 22.038 54.3337 0.04 11.8632 11.9032 0.012 4.4363 4.4483

vmpc-24-1912 576/67872 S 416.418 >2000 0.05 >2000 >2000 0.014 36.4655 36.4795

vmpc-24-1944 576/67872 S 57.542 >2000 0.06 639.878 639.938 0.017 81.295 81.312
vmpc-26-1914 676/86424 S 225.098 191.798 0.06 134.228 134.288 0.018 79.106 79.124

vmpc-27-1947 729/96849 S 697.058 651.221 0.09 1458.96 1459.05 0.026 537.453 537.479

vmpc-28-1925 784/108080 S >2000 >2000 0.08 >2000 >2000 0.023 882.883 882.906

engine-4 6944/66654 U 17.866 58.978 0.75 66.4139 67.1639 0.108 36.012 36.120
engine-4nd 7000/67586 U 88.257 931.91 0.74 690.694 691.434 0.110 231.156 231.266
engine-6 45303/606068 U 66.882 285.44 38.77 337.326 376.096 1.845 215.882 217.727
9vliw-bp-mc 20093/179492 U 58.589 72.0121 5.5 78.0281 83.5281 0.221 67.317 67.538
5pipe-4-oo 9764/221405 U >2000 110.381 2.88 108.704 111.584 0.355 90.344 90.699

5pipe-5-oo 10113/240892 U 513.492 64.6082 2.79 60.0999 62.8899 0.427 58.479 58.906

6pipe-6-oo 17064/545612 U 396.031 303.408 12.61 341.066 353.676 1.334 231.635 232.969

6pipe 15800/394739 U >2000 172.502 8.08 150.806 158.886 0.740 130.89 131.63

7pipe 23910/751118 U >2000 534.536 23.4 581.154 604.554 1.694 340.895 342.589

5pipe-k 9330/189109 U >2000 52.844 2.61 49.2705 51.8805 0.295 42.854 43.149

6pipe-k 15346/408792 U >2000 92.5619 9.2 75.0716 84.2716 0.771 58.536 59.307

7pipe-k 23909/751116 U >2000 530.551 21.91 588.298 610.208 1.649 374.776 376.425

8pipe-k 35065/1332773 U >2000 1664.47 63.23 1547.94 1611.17 3.517 970.227 973.744

9pipe-k 49112/2317839 U >2000 >2000 303.9 >2000 >2000 7.201 1178.339 1185.54

7pipe-q0-k 26512/536414 U >2000 370.813 12.06 369.797 381.857 1.107 235.445 236.552

8pipe-q0-k 39434/887706 U >2000 1070.92 27.37 951.637 979.007 2.087 530.699 532.786

9pipe-q0-k 55996/1468197 U >2000 1435.93 11.26 1344.06 1355.32 4.004 659.687 663.691

9dlx-vliw-iq1 24604/261473 U >2000 514.127 15.69 381.09 396.78 0.379 225.574 225.953

9dlx-vliw-iq2 44095/542253 U >2000 >2000 42.09 >2000 >2000 0.877 625.677 625.554

9dlx-vliw-iq3 69789/968295 U >2000 >2000 147.04 >2000 >2000 1.744 1261.676 1263.42
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