
Exploiting Hypergraph Partitioning for Efficient
Boolean Satisfiability

Vijay Durairaj and Priyank Kalla

Department of Electrical and Computer Engineering

University of Utah, Salt Lake City, UT-84112

{durairaj, kalla}@ece.utah.edu

Abstract: This paper presents hypergraph parti-

tioning based constraint decomposition procedures to

guide Boolean Satisfiability search. Variable-constraint

relationships are modeled on a hypergraph and parti-

tioning based techniques are employed to decompose the

constraints. Subsequently, the decomposition is analyzed

to solve the CNF-SAT problem efficiently.

The contributions of this research are two-fold : 1) to

engineer a constraint decomposition technique using hy-

pergraph partitioning; 2) to engineer a constraint resolu-

tion method based on this decomposition. Preliminary

experiments show that our approach is fast, scalable and

can significantly increase the performance (often orders

of magnitude) of the SAT engine.

I. Introduction

Contemporary SAT solvers have matured over the

years and come a long way from the DPLL-based chrono-

logical backtracking procedures of Davis-Putnam (DP)

[1] and Davis-Logemann-Loveland (DLL) [2]. Recent ap-

proaches [3] [4] [5] etc., employ sophisticated methods

such as constraint propagation and simplification, con-

flict analysis, learning and non-chronological backtracks

[3] [4] [5] to efficiently analyze and prune the search

space.

An important aspect of CNF-SAT is to derive an or-

dering of variables to guide the search. The order in

which variables (and correspondingly, constraints) are

resolved significantly impacts the performance of SAT

search procedures. Most conventional SAT solvers [4]

[5] [3] employ variable-activity based branching heuris-

tics to resolve the constraints. Activity of a variable is

its frequency of occurrence among the constraints. For

a comprehensive review of the effect of activity based

branching strategies for SAT solver performance, read-

ers are referred to [6].

Constraint partitioning and minimum-width tree de-

composition schemes have been investigated in the con-

text of constraint satisfaction problems [7] [8]. Re-

cently, such approaches have also found application in

DPLL-based CNF-SAT search [9] [10] [11][12]. Above

approaches analyze and exploit the variable-constraint

relationship to derive a variable order for efficient SAT

search. However, the computational complexity (expo-

nential) of the proposed algorithms results in large com-

pute times to search for the variable order. As a result,

these techniques are impractical for solving large/hard

CNF-SAT problems [10].

A. Research Contributions

This paper proposes hypergraph partitioning based

SAT search procedures that attempt to overcome the

practical limitations of the above approaches. Instead

of relying on the fine-grained (and hence computation-

ally complex) minimum-width tree decomposition proce-

dures, this paper presents hypergraph partitioning meth-

ods [13] to decompose the constraints. Subsequently, this

decomposition is analyzed to solve the SAT problem effi-

ciently. Even though our approach does not directly de-

rive a minimum-width tree decomposition, results show

that SAT search can be significantly expedited using our

hypergraph partitioning based approach. Moreover, we

show that our technique is robust and scalable and can

handle a large set of variables and constraints - where

contemporary tree decomposition methods take unac-

ceptably long time. The goals of this research are two-

fold : 1) to engineer a constraint decomposition tech-

nique using hypergraph partitioning; 2) to engineer a

constraint resolution method based on this decomposi-

tion.

First, we propose a novel tri-partitioning of the con-

straints and derive a procedure to resolve the constraints

hierarchically. Sub-problems within the partitions are re-

solved by propagating the constraints across partitions.

We experimentally analyze and comment on the efficacy

of our approach. The conclusions derived from these

preliminary experiments motivate a yet another iterative

constraint decomposition scheme. In this approach, the

constraints are decomposed in a chain of connected parti-

tions which suggests a variable ordering scheme to guide

SAT diagnosis. The variable order derived through the

partitioning results in significant increase in performance



(often orders of magnitude) of the SAT engine. Our ap-

proach is fast and scalable; it is a viable alternative to

contemporary minimum-width tree decomposition tech-

niques in the context of deriving a good variable order

for SAT search.

II. Constraint Decomposition via Hypergraph

Partitioning

First, let us analyze the effect of hypergraph partition-

ing on the given SAT problem. The given SAT problem

in standard DIMACS CNF formulae is converted into a

hyper-graph, where variables are represented as hyper-

graph edges and clauses are modeled as vertices. A bal-

anced min-cut bi-partitioning is applied. We use the

state-of-the-art hypergraph partition tool hMeTiS [13]

and port it towards our problem of interest. To search for

SAT solutions, we use a modified version of the zCHAFF

SAT solver [4]. Figure 1 depicts the resulting partitioned

sets of constraints. The variables that connect both par-

titions are termed as cut-set variables. These variables

correspond to clauses that appear in different partitions.

The two partitions are termed as LEFT and RIGHT par-

titions.

Fig. 1. Balanced bi-partitioning

Once the original constraint set has been partitioned

into two, we need to derive a technique to solve the SAT

problem for the respective partitions. Moreover, the so-

lution obtained from individual partitions needs to be

reconciled with the other. If the number of cut-set vari-

ables is very small, then we can make assignments to

these variables and solve the partitions independently.

However, in the worst-case it would require an expo-

nential number of assignments to the cut-set variables

(backtracks). We have observed from our preliminary

experiments that, in most cases, the number of cut-set

variables is relatively large. Therefore, such a brute-

force technique is inefficient. In order to solve the parti-

tioned SAT problem efficiently, the “partitioning statis-

tics” need to be analyzed further.

During the course of these experiments, we made an

interesting observation related to the activity statistics

of the cut-set variables. Recall that the activity of a

variable is defined as the frequency of occurrence of the

variable among clauses. SAT solvers compute the activ-

ity of variables and perform the search by case-splitting

on variables of high activity. Contemporary tools such as

zCHAFF, BerkMin, etc. dynamically update the activ-

ity of the variables as and when conflict clauses are added

to the original constraints. In our experiments, we ob-

served that the variables having higher activity formed

the cut-set. We analyzed the reason why the cut-set

variables have high activity. This can be intuitively ex-

plained as follows: High activity variables appear in a

larger number of clauses. Balanced bi-partitioning dis-

tributes these clauses (containing high activity variables)

across the partitions. Therefore, high activity variables

form the cut-set, whereas the low activity variables are

grouped within respective partitions. It is important to

begin the search by making assignments to variables of

high activity [6] [4]. This implies that the cut-set vari-

ables should be the first choice for case-splitting. Keep-

ing this in mind, we propose a tri-partitioning scheme to

solve the partitioned SAT problem.

A. Tri-Partition Derived from Bi-Partition

In this experiment, a third partition is created from

the previously derived balanced bipartition as follows.

The vertices (clauses) corresponding to the cut-set vari-

ables are extracted from both the partitions (LEFT and

RIGHT) and are collected together to form a third par-

tition (called TOP partition) as shown in Fig. 2. As a

result, the extracted subproblem corresponds to clauses

with high activity variables. Moreover, the LEFT and

RIGHT partitions have no directly connecting hyper-

edges.

Fig. 2. Tri-partition: Subproblem with high activity variables
extracted from the bipartition

We propose the following method for solving SAT on

the above derived tri-partition structure.

1. The TOP partition CNF formulae are first given

to the SAT solver.



TABLE I

SAT solving on Tri-partition derived from balanced bi-partition

Bench- Vars/ zCHAFF Part. LEFT/ TOP Vars/ BBP Total
mark Clauses (sec) Time(s) RIGHT Clauses Time (s)

fpga10 8 120 / 448 15.66 0.24 224 / 224 40/268 0 0.322

fpga12 8 144 / 560 244.42 0.25 280 / 280 48/320 0 0.347

fpga12 9 162 / 684 >1000 0.262 342 / 342 54/399 1 0.787

fpga12 12 198 / 968 727.44 0.314 484 / 484 66/587 0 0.527

fpga13 10 195 / 905 >1000 0.289 452 / 453 66/529 1 1.284

fpga13 12 234 / 1242 >1000 0.395 621 / 621 79/753 1 1.329

hole 8 72 / 197 0.11 0.167 148 / 149 36/233 – >1000
hole 9 105 / 310 1 0.254 207 / 208 45/325 – >1000
hole 10 155 / 406 18.06 0.213 280 / 281 55/406 – >1000
hole 11 551 / 187 175.47 0.207 369 / 369 67/573 – >1000

Urq3 1 43 / 334 112.05 0.178 167 / 167 17/320 32768 1027.1
Urq3 9 37 / 236 3.37 0.17 66 / 170 7/154 64 7.36
Urq3 10 37 / 236 3.37 0.158 66 / 170 7/154 64 7.808

2. If the solution to this partitioned sub-problem is an

Unsatisfiable instance, then the original problem is also

Unsatisfiable.

3. If a solution to TOP partition is found, then LEFT

and RIGHT partitions are both constrained with the as-

signments to the their respective cut-set variables. Sub-

sequently, the updated LEFT partition is given to the

SAT solver.

4. If the solution to LEFT partition is found, the search

is transferred to RIGHT partition. If a solution to

RIGHT partition is also found, then the original problem

is satisfiable.

5. If a solution is not found for the updated constraints

in LEFT/RIGHT partition, then the search backtracks

to TOP partition and adds a conflict induced clause

corresponding to the cut-set variables. For example, if

a = b = 1 was the assignment to the cut-set variables,

which resulted in an UNSAT instance for LEFT and/or

RIGHT partition, then a conflict clause a
′ + b

′ is added

to the TOP partition, and the search is restarted.

6. This procedure of backtracking between partitions

(BBP) is repeated until: i) a solution is found; or ii)

TOP partition becomes an UNSAT instance, in which

case the problem is unsatisfiable.

Some results are presented in the Table I. In the table,

column “LEFT/RIGHT” corresponds to the balanced

bi-partition statistics, i.e., the number of clauses in corre-

sponding partitions. Column “TOP Vars/Clauses” cor-

responds to the Variables/Clauses in the subsequently

extracted TOP partition. The FPGA routing bench-

marks are SAT instances, whereas the Urquhart prob-

lems and the pigeon-hole problems are UNSAT instances.

Note that original zCHAFF takes significant amount

of search time to find a solution to the FPGA routing

problems. On the other hand, using our partitioned ap-

proach, we have been able to solve these benchmarks

within one second including the time to partition and

time to backtrack between partitions. However, the

performance of our technique on UNSAT instances is

poor when compared to the monolithic SAT technique.

Even the small Urq3 1 benchmark cannot be solved in

less than 1000 seconds. Why is it that the partitioning

scheme does not provide good results for UNSAT prob-

lems? We analyzed the results and inferred that solv-

ing TOP partition independently always provides a par-

tial solution that cannot be reconciled with LEFT and

RIGHT partitions. As a result, our approach requires

a large number of backtracks between partitions (BBP)

to prove unsatisfiability. Also, we have observed that for

the UNSAT instances, BBP increases exponentially with

the variables in TOP partition.

Recall that our tri-partition was derived from a bal-

anced bi-partition. A balanced bi-partition resulted in

a large number of cut-set variables. Our tri-partitioned

approach backtracks on the assignments made to these

variables. One way to overcome this problem of expo-

nential BBP is to reduce the number of cut-set variables

by unbalancing the partitions. We have performed ex-

periments by unbalancing the partitions with an unbal-

ance factor of 35. The results are presented in the Table

II. It can be observed from the table that while unbal-

anced partitioning improves the performance on UNSAT

instances; however, it degrades the performance on SAT

instances. We analyzed the reason for such a behaviour,

which is elaborated below.

When the partitioning is unbalanced, the bi-partition

cut-set is generally formed by low-activity variables

and the cut-set size also reduces. The proposed tri-

partitioned SAT procedure now case splits on these low

activity variables first. This results in poor performance

for SAT instances. On the other hand, for the UNSAT

instances, because of the reduction in cut-set size, the



TABLE II

SAT solving on tri-partition derived from unbalanced partition with UBF=35

Bench- Vars/ zCHAFF Part. LEFT/ TOP Vars/ BBP Total
mark Clauses (sec) Time(s) RIGHT Clauses Time (s)
fpga10 8 120 / 448 15.66 0.133 67 / 381 22 / 113 109 51.097
fpga12 8 144 / 560 244.42 0.137 90 / 470 26 / 153 0 255.014

hole 8 72 / 197 0.11 0.208 46 / 251 14/75 54 0.509
hole 9 90 / 415 1 0.171 66 / 349 17/97 77 1.492
hole 10 110 / 561 18.06 0.181 91 / 470 20/120 110 5.147

hole 11 132 / 738 175.47 0.119 121 / 617 23/144 144 43

Urq3 1 43 / 334 112.05 0.212 62 / 272 8/244 128 25.67

Urq3 9 37 / 236 3.37 0.17 66 / 170 7/154 64 7.36
Urq3 10 37 / 236 3.37 0.158 66 / 170 7/154 64 7.808

backtracking between partitions also decreases. Hence,

the speed-up for UNSAT instances.

Another way to analyze the above issue is that of vari-

able ordering for SAT search. Our approach of parti-

tioning the constraints results in an order in which the

constraints (and correspondingly, variables) are resolved.

Therefore, the above experiments motivated us to ask

this question: Can the above partitioning scheme be ex-

tended in such a way so as to derive an ordering of vari-

ables to guide SAT diagnosis? This question is answered

in the following section.

III. Tree Decomposition based on Hypergraph

partitioning: A variable order for SAT

search

Fig. 3. Analyzing Clause-Var Dependencies

The importance of branching on high active variables

for SAT is well known [6] [4] [5], and it is also observed in

our previous experiments. Moreover, partitioning based

constraint resolution highlights the importance of ana-

lyzing constraint-variable dependencies. Therefore, we

extend our partitioning scheme by iteratively decom-

posing the constraints by analyzing both variable activ-

ity along with their constraint dependency. The result-

ing tree-like decomposition provides a variable order for

guiding CNF-SAT search. Our procedure is explained

below.

As shown in Fig. 2, a top-level partition is created by

extracting the clauses corresponding to the cut-set vari-

ables. As a first step, these (bi-partition) cut-set vari-

Fig. 4. Fully decomposed SAT problem

ables are ordered according to their activity and stored

in a list (var ord list). The SAT tool will branch on these

variables first. Note that, the clauses in top-level parti-

tion also contain a set of variables, other than those of

the cut-set, which correspond to the first level of con-

nectivity among constraints. This is shown in Fig. 3 as

Level-1 Connectivity. Subsequently, the clauses cor-

responding to the Level-1 connectivity variables

are extracted to form the next level of partition. Again,

these Level-1 connectivity variables are ordered

according to their corresponding activity. To break ties,

Level-1 connectivity variables are ordered according to

their activity within the Level-1 partition. This subset

of ordered variables is appended to the list (var ord list).

Repeating the above procedure, results in a fully decom-

posed tree as shown in Fig. 4. This var ord list provides

an order for SAT search.

IV. Experimental Results and Analysis

The above approach has been programmed as an al-

gorithm which is integrated with both hMeTiS [13]

and zCHAFF [4]. Experiments were conducted over a

wide range of satisfiable, as well as unsatisfiable bench-

marks from: (i) Miter circuits (UNSAT instances); (ii)



TABLE III

Run-time Comparison of our proposed approach with zCHAFF/MiniSAT

Original zCHAFF Modified zCHAFF MiniSAT
Bench- Vars/ Time Deci- Implica- Partition Solve Total Deci- Implica- Orig- Modi-
mark Clauses (sec) sions tions Time(s) Time(s) Time(s) sions tions inal fied
fpga10 8 120 / 448 15.66 54,199 980,436 0.16 0.01 0.17 460 3,935
fpga12 8 144 / 560 244.42 279 K 5.75 M 0.173 0.41 0.583 5,674 95 K 0 0.01
fpga12 9 162 / 684 >1000 — — 0.199 1.13 1.329 14,095 295 K 0 0.02
fpga12 11 180 / 820 >1000 — — 0.278 3.46 3.738 26,521 433 K 0 0.02
fpga12 12 198 / 968 727.44 455 K 7.85 M 0.02 0.288 0.3 1,679 16 K 0 0.01
fpga13 10 195 / 905 >1000 — — 1.14 0.231 1.371 12,949 219 K 0.05 0.03
fpga13 12 234 / 1242 >1000 — — 0.06 0.353 0.413 2,250 32 K 0 0

Urq3 1 43 / 334 112.05 1.05 M 12.7 M 0.102 7.81 7.912 174 K 1.1 M 12.5 9.91
Urq3 4 36 / 220 0.07 6,098 38 K 0.083 0.08 0.163 4,837 46 K 0.17 0.2
Urq3 9 37 / 236 3.37 80 K 1.02 M 0.076 1.68 1.756 42 K 351 K 0.54 0.69
Urq3 10 37 / 236 3.37 80 K 1.02 M 0.076 0.93 1.006 25 K 173 K 0.53 0.27

c880 opt 770 / 2 K 1.13 17 K 812 K 0.362 0.33 0.392 11 K 432 K 0.53 0.63
c1355 opt 1006 / 3 K 13.62 99 K 8.56 M 0.549 0.46 1.009 15 K 631 K 0.37 0.76
c1908 opt 1895 / 5 K 1.67 20 K 2.63 M 0.9 0.82 1.72 14 K 1.51 M 1.53 1.32
c2670 opt 2527 / 6 K 1.48 45 K 1.92 M 1.15 1.38 2.53 53 K 1.99 M 1.1 1.16
c3540 opt 3431 / 9 K 20.57 74 K 16.6 M 1.42 22.22 23.64 83 K 18.9 M 40.04 26.5
c5315 opt 4992 / 14 K 34.62 136 K 19.8 M 1.25 13.35 14.6 128 K 13.1 M 56.65 24.32
c7552 opt 5466 / 15 K 105.97 384 K 42.1 M 1.76 39.7 41.46 257 K 25.4 M 33.96 48.32

3pipe 2468 / 27 K 1.67 33 K 1.95 M 4.27 3.27 7.54 54 K 3.4 M 6.24 3.77
4pipe 5237 / 80 K 111.2 471 K 71 M 13.84 74.27 88.11 415 K 53.1 M 139.57 55.03
5pipe 9471 / 195 K 167.22 1.77 M 94 M 38.40 86.76 125.16 875 K 46.7 M 68.29 51.15

3pipe k 2391 / 27 K 2.52 49 K 2.8 M 3.526 2.4 5.926 43 K 2.4 M 6.73 2.81
4pipe k 5095 / 79 K 184.2 711 K 106 M 12.327 51.62 63.947 256 K 38.2 M 186.91 91.8
5pipe k 9330 / 189 K 764.47 1.8 M 417 M 39.43 384.57 424.0 1.3 M 240 M >1000 691.42

3pipe q0 2476 / 25 K 8.6 123 K 5.29 M 4.02 1.51 5.53 41 K 2 M 4.51 2.11
4pipe q0 5380 / 69 K 56.83 395 K 52 M 13.133 24.59 37.723 228 K 26.3 M 48.04 20.15
5pipe q0 10 K / 154 K 573.25 1.5 M 374 M 37.231 395.39 432.62 1.47 M 299 M 653.82 121.57

FPGA routing benchmarks (SAT); (iii) Urquhart prob-

lems (UNSAT); (iv) Velev’s micro-processor verification

benchmarks (UNSAT). The results are analyzed below.

Table III demonstrates that the variable order derived

by our technique results in significant speed up (orders

of magnitude in many cases) over the one convention-

ally used by zCHAFF. It is clearly seen from the table

that the run times (decomposition time + solve time)

of our proposed approach are significantly smaller than

that of original zCHAFF SAT solver, even for the larger

and more difficult instances. As compared to original

zCHAFF, our results show consistent improvements in

the number of decisions as well as implications made by

zCHAFF using the decision order derived by our pro-

posed method.

In order to show that our technique can significantly

improve the performance of any DPLL-based SAT en-

gine, we ran the same set of experiments with the Min-

iSAT solver [14]. The results are presented in the last

two columns of Table III.

V. Conclusion and Status of the work

This paper has presented constraint partitioning

schemes that can be employed for efficient constraint res-

olution via CNF-SAT. We have demonstrated that hy-

pergraph partitioning based approaches can be success-

fully employed to solve large and hard CNF-SAT prob-

lems. This is particularly important for design validation

problems in VLSI-CAD that often have a significantly

large number of variables and clauses. Our approach is

fast, robust, scalable and it generates a good variable

order for SAT search.

Future work: Overcoming the limitations of

Our Approach - The generated variable order is dy-

namically modified by zCHAFF SAT solver according to

its VSIDS heuristics. As the conflict clauses are added

to the database, the variable activity, as well as clause

connectivity, changes. Hence, with the increase in num-

ber of backtracks, the dynamically updated variable or-

der (due to VSIDS) might deviate from the one derived

statically by our approach. Moreover, the quality of

the derived variable order depends on the hypergraph

partitioning tools. We are currently working to over-

come the above limitations: 1) Instead of relying on

hMeTiS, we are currently developing a constraint decom-

position heuristic by directly analyzing the topology of

hypergraph (constraints); 2) We are also implementing a

scheme to dynamically update/re-compute the variable

order according to our proposed technique, as and when

conflict clauses are added and during search restarts.



References

[1] M. Davis and H. Putnam, “A Computing Procedure for Quan-

tification Theory”, Journal of the ACM, vol. 7, pp. 201–215,
1960.

[2] M. Davis, G. Logemann, and D. Loveland, “A machine pro-

gram for theorem proving”, in Communications of the ACM,
5:394-397, 1962.

[3] J. Marques-Silva and K. A. Sakallah, “GRASP - A New

Search Algorithm for Satisfiability”, in ICCAD’96, pp. 220–
227, Nov. 1996.

[4] M. Moskewicz, C. Madigan, L. Zhao, and S. Malik, “CHAFF:

Engineering and Efficient SAT Solver”, in DAC, 2001.

[5] E. Goldberg and Y. Novikov, “BerkMin: A Fast and Robust

Sat-Solver”, in DATE, pp 142-149, 2002.

[6] J. P. M. Silva, “The Impact of Branching Heuristics in Propo-

sitional Satisfiability Algorithms”, in Portuguese Conf. on
Artificial Intelligence, 1999.

[7] R. Dechter and J. Pearl, “Network-based Heuristics for

Constraint-Satisfaction Problems”, Artificial Intelligence,
vol. 34, pp. 1–38, 1987.

[8] E. Amir and S. McIlraith, “Partition-Based Logical Reason-

ing”, in 7th Intl. Conf. on Prin. of Knowledge Represent.
and Reasoning, 2000.

[9] E. Amir and S. McIlraith, “Solving Satisfiability using De-

composition and the Most Constrained Subproblem”, in LICS
workshop on Theory and Applications of Satisfiability Testing

(SAT 2001), 2001.

[10] P. Bjesse, J. Kukula, R. Damiano, T. Stanion, and Y. Zhu,

“Guiding SAT Diagnosis with Tree Decompositions”, in Sixth
International Conference on Theory and Applications of Sat-

isfiability Testing (SAT 2003), 2003.

[11] A. Gupta, Z. Yang, P. Ashar, L. Zhang, and S. Malik,

“Partition-based Decision Heuristics for Image Computation
using SAT and BDDs”, in ICCAD, pp. 286–292. IEEE Press,
2001.

[12] F. Aloul, I. Markov, and K. Sakallah, “Mince: A static global

variable-ordering for sat and bdd”, in IWLS, 2001.

[13] G. Karypis, R. Aggarwal, V. Kumar, and S. Shekhar, “Mul-

tilevel Hypergraph Partitioning: Application in VLSI Do
main”, in Proc. DAC, pp. 526–529, 1997.

[14] N. Eén and N. Sörensson, “An Extensible SAT Solver”, in

6th International Conference, SAT, 2003.


