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Abstract: An important aspect of the Boolean Sat-

isfiability problem is to derive an ordering of variables

such that branching on that order results in a faster,

more efficient search. Contemporary techniques em-

ploy either variable-activity or clause-connectivity based

heuristics, but not both, to guide the search. This

paper advocates for simultaneous analysis of variable-

activity and clause-connectivity to derive an order for

SAT search. Preliminary results demonstrate that the

variable order derived by our approach can significantly

expedite the search.

As the search proceeds, clause database is updated due

to added conflict clauses. Therefore, the variable activity

and connectivity information changes dynamically. Our

technique analyzes this information and re-computes the

variable order whenever the search is restarted. Prelim-

inary experiments show that such a dynamic analysis

of constraint-variable relationships significantly improves

the performance of the SAT solvers. Our technique is

very fast and this analysis time is a negligible (in mil-

liseconds) even for instances that contain a large number

of variables and constraints. This paper presents prelim-

inary experiments, analyzes the results and comments

upon future research directions.

I. Introduction

The Boolean Satisfiability problem (henceforth called

SAT) is one of the pivotal problems in the Electronic

Design Automation (EDA) arena. SAT is the problem

of finding a solution (if one exists) to the equation f =

1, where f is a Boolean formula to be satisfied. Clas-

sical approaches to CNF-SAT are based on variations

of the well known Davis-Putnam (DP) [1] and Davis-

Logemann-Loveland (DLL) [2] procedures. Recent ap-

proaches [3] [4] [5] etc., employ sophisticated methods

such as constraint propagation and simplification, con-

flict analysis, learning and non-chronological backtracks

to efficiently analyze and prune the search space. This

paper proposes a new decision heuristic that analyzes

constraint-variable dependencies to guide SAT diagnosis.

Branching on the variable order derived by our approach

significantly improves the performance of SAT solvers.

A. Related Work:

Over the years, a lot of effort has been invested in de-

riving an ordering of variables such that branching

on that order results in a faster, more efficient search for

solutions. Variable activity and clause connectivity

statistics are exploited as qualitative and quantitative

metrics to guide the search. Activity of a variable (or

literal) is defined as the number of its occurrence among

all the clauses of a given SAT problem. SAT solvers com-

pute the activity of variables and perform the search by

case-splitting on variables of high activity. Contempo-

rary tools such as zCHAFF, BerkMin, etc. dynamically

update the activity of the variables as and when con-

flict clauses are added to the original constraints. For

a comprehensive review of the effect of activity-based

branching strategies on SAT solver performance, readers

are referred to [6].

Loosely speaking, two clauses are said to be ”con-

nected” if one or more variables are common to their

support. Clause connectivity can be modeled by repre-

senting CNF-SAT constraints as (hyper-) graphs and,

subsequently, analyzing the graph’s topological struc-

ture. Tree decomposition techniques have been pro-

posed in literature [7] [8] for analyzing connectivity of

constraints in constraint satisfaction programs (CSP).

Such techniques have also found application in Boolean

satisfiability problems. It has been shown [9] [10] that

identifying minimum tree-width for the decomposed

tree structures results in partitioning the overall prob-

lem into a chain of connected constraints. MINCE [11]

employs CAPO placer’s mechanism [12] to find a vari-

able order such that the clauses are resolved according to

their chain of connectivity. Our recent work [13] employs

hypergraph partitioning methods to derive a tree decom-

position. Various other approaches operate on such par-

titioned tree structures by deriving an order in which the

partitioned set of constraints are resolved [14] [15] [10].



B. Limitations of previous work:

Contemporary methods that guide SAT diagnosis have

the following limitations:

B.1 Quality of variable order

Conventional SAT solvers [4] [5] [3] employ vari-

able activity-based branching heuristics (DLIS, VSIDS,

etc.) to resolve the constraints. On the other hand,

partitioning/tree-decomposition based approaches [16]

[10] [15] [11] employ clause-connectivity based branching

heuristics. None of these techniques utilize both activ-

ity and connectivity information simultaneously for SAT

diagnosis. Now we show, by means of an example, that

analysis of variable activity or clause connectivity alone

may not result in a sufficiently robust and efficient SAT

search.

Suppose that it is required to solve the satisfiability

problem for the circuit shown in Fig. 1. This circuit-SAT

problem can be formulated as CNF-SAT by generating

clauses for the gates as shown in Fig. 2.

Fig. 1. An Example Circuit : The integer values next to the
variable names correspond to the mapped literal in the CNF
file.

Let us analyze the application of the join-tree-

clustering (JTC) algorithm by Dechter et al. [7] [8] to

derive a variable ordering for SAT search. The algorithm

converts the given problem to a hypergraph, in which the

variables form the vertices and clauses form the hyper-

edges. This graph is then converted to an induced chordal

graph1, from which, the maximal cliques are identified.

A join-tree structure is created using these cliques. This

join-tree is the tree-decomposition of the given problem,

which is shown in Fig. 3.

The above technique is geared towards reducing the

tree-width of the derived graph. The reduction in the

tree-width subsequently corresponds to modeling the

constraint partitions according to clause connectivity.

Based on the decompositions shown in Fig. 3, a vari-

able order can be derived for SAT search by travers-

ing the tree top-down or bottom-up. For example,

traversing the tree top-down produces the following or-

der: {1, 2, 6, 5, 7, 3, 8, 4, 9}. The MINCE [11] technique

generates an order that is the opposite of the above -

1A graph is chordal if every cycle of length atleast 4 has a chord,
that is, an edge connecting two non-adjacent vertices.

Fig. 2. CNF Fig. 3. Rina Dechter’s Method

{4, 9, 8, 3, 7, 5, 6, 1, 2}. The recent work of [10] also uses

MINCE’s variable order to produce its tree-based de-

composition. This begs the question that given a parti-

tioning, which order to choose such that search can be

performed efficiently? It is not easy to answer this ques-

tion by analyzing the tree decomposition because the

partitioning was derived solely on clause connectivity.

Note that the highest active variables (those that ap-

pear in most number of clauses) are {5, 6, 7, 8}. In both

top-down and bottom-up variable orders these high ac-

tive variables appear somewhere in the middle. In such

cases, connectivity based approaches would branch on

low activity variables first. This issue motivated us to

devise a technique that analyzes variable activity along

with clause connectivity to derive a variable order.

B.2 Time complexity

The computational complexity (exponential) of the

tree-decomposition algorithms results in large compute

times to search for the variable order. The technique

of Dechter et. al. [7] is shown to be time exponential in

the tree-width. Algorithms for approximating tree-width

with bounded error [9] are also shown to be too costly

for industrial problems [10]. As a result, these techniques

are impractical for large/hard CNF-SAT problems.

In general, the time required to derive a variable or-

der should be small as compared to the subsequent SAT

solving time - it should certainly not exceed the solving

time. Unfortunately, for large and hard SAT problems,

it has been observed that MINCE [11] [17] and Amir’s

tool [16] [18] require unacceptably long time just to de-

rive the variable order. This behaviour is depicted in

Table I.

Table I compares the time required to derive the vari-

able order by Amir’s tool [18] and MINCE [17] against

zCHAFF’s solve time. It can be observed from the table

that in order to derive the variable order, both Amir’s

and MINCE approach suffer from long compute times -

much longer than the default SAT solving time. This

clearly demonstrates the computational limitations of



TABLE I

Comparison of original zCHAFF runtime, Amir’s and

MINCE’s partitioning time

Benc- Vars/ zCHAFF Amir MINCE
hmark Clauses (sec) (sec) (sec)
c2670 2.5K/6.4K 1.48 16.54 8.23
c3540 3.4K/9.2K 20.57 23.66 13.95
c5315 5.0K/14.1K 34.62 54.56 25.51
c7552 5.5K/15.1K 105.97 71.30 24.43

4pipe 5.2K/80.2K 111.2 505.83 93.1
5pipe 9.5K/195K 167.22 >2000 267.2

Amir’s and MINCE approach; as such they are too ex-

pensive to be applicable for large CAD problems.

B.3 Dynamic variable ordering

As the search proceeds, conflicts are encountered

and conflict-induced clauses are added to the constraint

database. Thus, the activity-connectivity information

changes dynamically. While activity based heuristics up-

date this information (VSIDS, DLIS, etc.), connectivity

based variable orders are derived only statically.

Contemporary partitioning based methods are not

suitable to be employed dynamically, mostly because of

their time complexity. The problem is exacerbated due

to a significant increase in the clause database due to

added conflict clauses.

C. Contributions of this research:

Efficient CNF-SAT decision heuristics should analyze

both variable activity and clause connectivity simultane-

ously so as to exploit constraint-variable relationships for

faster constraint resolution. Moreover, the updated (due

to conflict clauses) variable activity and clause connec-

tivity information should be utilized dynamically during

the search process. Furthermore, the time to analyze

constraint-variable relationships should be a small frac-

tion of the overall solving time. This paper proposes an

efficient technique to guide SAT diagnosis that attempts

to fulfill the above criteria/requirements.

Before proceeding into the search, our approach an-

alyzes high activity variables and identifies the clauses

in which they appear. These clauses contain other vari-

ables that “connect/link” to these high activity variables.

This connectivity information is extracted, in decreasing

order of variable activity, from the entire clause-variable

database. Iterative application of the above procedure

produces an order for SAT search. This analysis is re-

peated and a new order is derived every time the search

is restarted. Our variable order generation procedure is

generic and can be implemented within any SAT solver.

Moreover, the time to compute the order is negligible,

even for large instances. Furthermore, our technique

improves the performance of SAT engines by orders of

magnitude.

II. Analyzing Constraint-Variable

Dependencies

It is our desire to derive a variable order for SAT search

by analyzing clause-variable relationships. To achieve

this, we propose a constraint decomposition scheme

by simultaneously analyzing variable-activity as well as

clause connectivity. We begin the search for such an or-

der by first selecting the highest active variable and store

it in a list (var ord list). The SAT tool should branch on

this variable first. Now, we need to identify the set of

variables related (connected/dependent) to this highest

active variable. This information can be obtained by an-

alyzing all the clauses in which the highest active variable

appears. Such clauses are identified and marked. These

clauses act as a chain connecting the highest active and

its related variables. These related variables are termed

as Level-1 connectivity variables. Subsequently, Level-1

connectivity variables are ordered according to their ac-

tivity in the remaining problem (unmarked clauses) and

appended to the var ord list. The reason for ordering

Level-1 connectivity variables according to their activity

in the remaining problem (as opposed to their overall

activity) is because they might be implicated due to any

decision on the highest active variable.

Variables related to the Level-1 connectivity variables

are to be identified next. For this purpose, the clauses

corresponding to Level-1 connectivity variables are an-

alyzed and the Level-2 connectivity variables are ex-

tracted. These Level-2 connectivity variables are also

ordered according to their activity in the remaining prob-

lem and appended to the var ord list. This procedure

is applied iteratively until all the variables are ordered.

This order is used by the SAT engine to resolve the con-

straints. This procedure can be visualized as shown in

Fig. 4.

In general, there might be more than one variables that

have the same highest activity measure. In such cases,

we need to decide whether to select just one of them,

all of them, or a subset of the highest active variables

as the top-level partition. It is difficult to answer this

question analytically; however, this decision affects the

variable order inasmuch as it affects the granularity of

the decomposition. To elaborate this issue further, let us

analyze the application of our algorithm for the circuit

shown in the Fig. 1.

The operation of our algorithm can be visualized for

the example circuit shown in Fig. 1. It can be observed

from the circuit that the activity of variables {7, 5, 6, 8}

is the highest. If we select only the variable 7 as the top-

level variable, then the resulting decomposition would

appear as shown in Fig. 5(a). The generated variable

order would be {7, 6, 5, 8, 3, 4, 9, 1, 2}. If we select



Fig. 4. Constraint Decomposition analyzing constraint-variable
relationship

two of the highest active variables, say 7 and 5, then

the decomposition changes as shown in Fig. 5(b). The

resulting variable order would be {7, 5, 6, 8, 1, 2, 3, 4,

9}; this is a different order than the previous one.

Fig. 5. Constraint-Variable relationship and SAT search order

To come back to our question of how many top vari-

ables to select, we ran experiments with different thresh-

old values for the number of top-level variables. In par-

ticular, we experimented with: 1) just one top variable;

2) 5% of total variables; 3) 7%; 4) 10%; 5) 12%; and

6) all the variables with the highest activity. Results

were inconclusive for all cases except when 5% and 7%

of the total variables are selected for the top-level par-

tition. Only in these cases, we found that the derived

variable order provided consistent improvement in per-

formance of the SAT engine. For the other cases, the

results were mixed. Now we present the results for these

two cases (5% and 7% top-level threshold) and analyze

them further.

III. Experimental Results and Analysis

The proposed algorithm has been implemented within

the diagnosis engine of the MiniSAT solver [19]. The

choice for MiniSAT was dictated by its open source code,

efficient resolution procedures (it outperforms zCHAFF

and GRASP on many large instances) and also because

it implements intelligent mechanisms to invoke search

re-starts. Our implementation modifies the variable or-

dering scheme of MiniSAT. Using our modifications, we

ran experiments on satisfiable and unsatisfiable instances

selected from a range of applications. There are a large

number of CNF-SAT instances that are easily solved by

MiniSAT - in less than a minute. We wanted to analyze

the robustness of our approach by experimenting with

problems of large size and difficult nature. Therefore,

the benchmarks selected for experiments are those which

take a long time to solve - where there exists enough

scope for improvements. These experiments are depicted

in Table II.

In the table, the run times of original MiniSAT solver

are compared with those obtained by the modified ver-

sion of our decision heuristics. Threshold values of 5%

and 7% correspond to the order derived by selecting 5

or 7 percent of the total variables in the top-level parti-

tion. At every search re-start, we re-analyze the updated

clause-variable dependencies to recompute the variable

order. The CPU times reported for our procedure in-

clude both the time to compute the variable order, as

well as the time to resolve the constraints. It can be

observed that our modifications significantly outperform

the original MiniSAT implementation.

Let us now comment on the selection of threshold val-

ues. It can be observed from the table that for instances

that have fewer than 7000 variables, a threshold value of

5% results in better performance. Whereas for instances

with larger than 7000 variables, a larger threshold value

of 7% provides better results. This result is intuitive

and not surprising. For smaller problems, a more fine-

grained decomposition provides a better variable order.

On the other hand, for large problems, the performance

gain might be offset due to larger computational over-

heads when the same fine-granularity decomposition is

employed. Based on these observations, we conjecture

that perhaps a low threshold value is better suited for

smaller size problems and a higher one for larger prob-



TABLE II

Run-time Comparison of our proposed approach with MiniSAT

Modified MiniSAT
Bench- Vars/ MiniSAT 5% 7%
mark Clauses Time(sec) Time(s) Time(s)
Urq3 5 43 / 334 184.13 130.46 154.2
hanoi5 1931 / 14468 40.65 18.69 49.77
color 10 3 300 / 6475 81.63 8.72 4.11

clus set1 1 1200 /4800 242.73 11.37 170.64
c5315 opt 4992 / 14151 56.65 19.52 32.96
4pipe 5237 / 80213 139.57 42.76 155.11
4pipe k 5095 / 79489 186.91 92.7 218.81
4pipe q0 k 5380 / 69072 48.04 49.56 53.21

engine 4 6944 / 66654 62.59 53.32 48.3

5pipe 9471 / 195452 68.29 40.8 63.11
5pipe k 9330 / 189109 1362.06 956.16 397.15

5pipe q0 k 10026 / 154409 653.82 618.37 123.27

TABLE III

Variable Order Re-computation at Search Restarts

Static Dynamic
Bench- % Thres- Rest- Conf- Deci- Time Rest- Conf- Deci- Time
mark hold arts licts sions (sec) arts licts sions (sec)
Urq3 5 5 27 7.64 M 11.1 M 143.88 26 6.8 M 9.9 M 130.46
hanoi5 5 16 107K 244 K 18.81 16 98 K 219 K 18.69
color 10 3 5 14 40 K 57 K 4.1 15 70 K 96 K 8.72
clus set1 1 5 23 1.88 M 2.96 M 561.59 15 70 K 133 K 11.37
c5315 opt 5 14 44 K 107 K 12.74 14 57 K 185 K 19.52
4pipe 5 15 74 K 257 K 76.49 15 65 K 257 K 42.76
4pipe k 5 15 66 K 482 K 58.57 15 64 K 334 K 92.7
4pipe q0 k 5 16 104 K 346 K 61.2 16 103 K 400 K 49.56

engine 4 7 14 41 K 95 K 54.38 14 42 K 121 K 48.3
5pipe 7 15 69 K 514 K 89.93 14 57 K 777 K 63.11
5pipe k 7 – – – >1000 18 204 K 885 K 397.15
5pipe q0 k 7 19 364 K 1.29 M 405.77 17 179 K 790 K 123.27

lems. This suggests that our variable ordering scheme

should be adaptive to the problem size. Based on the

number of variables, we should automatically decide on

what threshold to choose.

Amir’s approach [16] tries to resolve a similar problem

by analyzing clause-to-variable ratio. Unfortunately, for

our experiments we are not able to derive any conclu-

sions regarding the threshold value based on the clause-

to-variable ratio. However, this work is currently in

progress and this issue requires further research.

A. Search Restarts: Re-computation of the Variable Or-

der

We now highlight the importance of dynamically

updating/re-computing the variable order. MiniSAT au-

tomatically invokes search restarts after a certain num-

ber of conflicts are encountered. As and when conflicts

are encountered, conflict-induced clauses are added to

the database. This, in turn, changes both variable activ-

ity and clause connectivity. Therefore, this updated in-

formation should be re-analyzed as and when the search

is re-started. Table III depicts the performance im-

provements when the clause-variable relationship is ana-

lyzed and exploited dynamically. The columns under the

“Static” heading contain run-time statistics when the or-

der is computed only once at the beginning of search,

and not re-computed during restarts. On the other hand

the columns under the “Dynamic” heading show run-

time statistics when the variable order is recomputed at

search restarts. Note that this dynamic clause-variable

analysis almost always improves the performance of the

solver.

IV. Conclusions and Future Work

This paper has advocated for the need to analyze

constraint-variable relationship to derive a variable or-

der to guide SAT diagnosis. For this purpose, we have

proposed a algorithm that decomposes the constraints

by analyzing variable activity together with clause con-

nectivity to derive a variable order. Our approach is very

fast, scalable and improves the performance of the SAT

engine. Preliminary results have been promising and en-

courage further research.

Clearly, a missing piece of the puzzle is to identify a

definitive threshold value, along with an adaptive strat-

egy, to derive a variable order according to the problem

size and/or constraindness. We are currently working to

overcome this problem with the help of a new metric.



Also, we are exploring a dynamic variable order update

strategy to be employed when conflict clauses are added

to the database - this is as opposed to variable order

re-computation at restarts.
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