Small Loop Antenna

For the small square loop antenna, we approximate the loop by four ideal dipoles located at the centers of the side of the loop

$$
\mathbf{r}_{1}^{\prime}=-\frac{l}{2} \hat{\mathbf{y}} \quad \mathbf{r}_{2}^{\prime}=\frac{l}{2} \hat{\mathbf{x}} \quad \mathbf{r}_{3}^{\prime}=\frac{l}{2} \hat{\mathbf{y}} \quad \mathbf{r}_{4}^{\prime}=-\frac{l}{2} \hat{\mathbf{x}}
$$

with current magnitudes and directions given by

$$
\mathbf{I}_{1}=l \hat{\mathbf{x}} \quad \mathbf{I}_{2}=l \hat{\mathbf{y}} \quad \mathbf{I}_{3}=-l \hat{\mathbf{x}} \quad \mathbf{I}_{4}=-l \hat{\mathbf{y}}
$$

The vector potential for a z-oriented, ideal dipole, located at the origin is

$$
\mathbf{A}=\frac{\mu}{4 \pi}(\beta \Delta z) \frac{e^{-j \beta r}}{\beta r} I \hat{\mathbf{z}}
$$

The four dipoles, indexed by i, have distance from current element to field point, R_{i}, current, \mathbf{I}_{i}, and length, l

$$
\mathbf{A}_{i}=\frac{\mu}{4 \pi}(\beta l) \frac{e^{-j \beta R_{i}}}{\beta R_{i}} \mathbf{I}_{i}
$$

For the far-field we can approximate R_{i} in the exponential with the usual first order expansion. (In the denominator we will use the zeroth order expansion, r.)

$$
\begin{aligned}
& R_{1}=r-\hat{\mathbf{r}} \cdot \mathbf{r}_{1}^{\prime}=r+\frac{l}{2} \hat{\mathbf{r}} \cdot \hat{\mathbf{y}}=r+\frac{l}{2} \sin \theta \sin \phi \\
& R_{2}=r-\hat{\mathbf{r}} \cdot \mathbf{r}_{2}^{\prime}=r-\frac{l}{2} \hat{\mathbf{r}} \cdot \hat{\mathbf{x}}=r-\frac{l}{2} \sin \theta \cos \phi \\
& R_{3}=r-\hat{\mathbf{r}} \cdot \mathbf{r}_{3}^{\prime}=r-\frac{l}{2} \hat{\mathbf{r}} \cdot \hat{\mathbf{y}}=r-\frac{l}{2} \sin \theta \sin \phi \\
& R_{4}=r-\hat{\mathbf{r}} \cdot \mathbf{r}_{4}^{\prime}=r+\frac{l}{2} \hat{\mathbf{r}} \cdot \hat{\mathbf{x}}=r+\frac{l}{2} \sin \theta \cos \phi
\end{aligned}
$$

where in the last equality we have used the expression for the radial unit vector in cartesian coordinates

$$
\hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}}
$$

The total vector potential is

$$
\mathbf{A}=\mathbf{A}_{1}+\mathbf{A}_{2}+\mathbf{A}_{3}+\mathbf{A}_{4}=\frac{\mu}{4 \pi}(\beta l)\left[\frac{e^{-j \beta R_{1}}}{\beta R_{1}} \mathbf{I}_{1}+\frac{e^{-j \beta R_{2}}}{\beta R_{2}} \mathbf{I}_{2}+\frac{e^{-j \beta R_{3}}}{\beta R_{3}} \mathbf{I}_{3}+\frac{e^{-j \beta R_{4}}}{\beta R_{4}} \mathbf{I}_{4}\right]
$$

Plugging in from above and simplifying

$$
\begin{aligned}
\mathbf{A} & \simeq \frac{\mu}{4 \pi}(\beta l)\left[\frac{e^{-j \beta\left(r+\frac{l}{2} \sin \theta \sin \phi\right)}}{\beta r} \hat{\mathbf{x}}+\frac{\left.e^{-j \beta\left(r-\frac{l}{2} \sin \theta \cos \phi\right.}\right)}{\beta r} l \hat{\mathbf{y}}-\frac{e^{-j \beta\left(r-\frac{l}{2} \sin \theta \sin \phi\right)}}{\beta r} \hat{\operatorname{x}}-\frac{e^{-j \beta\left(r+\frac{l}{2} \sin \theta \cos \phi\right)}}{\beta r} l \hat{\mathbf{y}}\right. \\
& \simeq \frac{\mu I}{4 \pi}(\beta l) \frac{e^{-j \beta r}}{\beta r}\left[-\left(e^{j \beta \frac{l}{2} \sin \theta \sin \phi}-e^{-j \beta \frac{l}{2} \sin \theta \sin \phi}\right) \hat{\mathbf{x}}+\left(e^{j \beta \frac{l}{2} \sin \theta \cos \phi}-e^{-j \beta \frac{l}{2} \sin \theta \cos \phi}\right) \hat{\mathbf{y}}\right] \\
& \simeq 2 j \frac{\mu I}{4 \pi}(\beta l) \frac{e^{-j \beta r}}{\beta r}\left[-\sin \left(\beta \frac{l}{2} \sin \theta \sin \phi\right) \hat{\mathbf{x}}+\sin \left(\beta \frac{l}{2} \sin \theta \cos \phi\right) \hat{\mathbf{y}}\right] \\
& \simeq 2 j \frac{\mu I}{4 \pi}(\beta l) \frac{e^{-j \beta r}}{\beta r}\left[-\beta \frac{l}{2} \sin \theta \sin \phi \hat{\mathbf{x}}+\beta \frac{l}{2} \sin \theta \cos \phi \hat{\mathbf{y}}\right] \\
& \simeq j \frac{\mu I}{4 \pi}(\beta l)^{2} \frac{e^{-j \beta r}}{\beta r} \sin \theta[-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}] \\
& \simeq j \frac{\mu I}{4 \pi}\left(\beta^{2} S\right) \frac{e^{-j \beta r}}{\beta r} \sin \theta \hat{\phi}
\end{aligned}
$$

in the third step we approximate the sine function by its argument, which we can do because $\beta l \ll 1$. We also replace the square of the side length, l, by the area, S. Though derived for the square loop, the resulting expression is correct for a loop of any shape with area S. The electric far-field is simple related to the transverse component of the vector potential

$$
\mathbf{E} \simeq-j \omega \mathbf{A}_{\perp} \simeq \frac{\omega \mu I}{4 \pi}\left(\beta^{2} S\right) \frac{e^{-j \beta r}}{\beta r} \sin \theta \hat{\phi} \simeq \frac{\eta I \beta}{4 \pi}\left(\beta^{2} S\right) \frac{e^{-j \beta r}}{\beta r} \sin \theta \hat{\phi}
$$

The electric field units are obviously correct in final expression.

