Array of arbitrarily oriented and positioned, but identical elements

The array far-field vector potential for the total current, J, is
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The total current is a sum of identical current elements, Ji, each of which has its own position, r’,,
orientation (i.e. rotation matrix), R,, and complex amplitude, a,
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Substituting in to the vector potential
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For finite sums, we can always exchange the order of summation and integration
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We define a new variable, r””
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Make a change of variables for the integral. The infinite volume of integration is unchanged
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We can exchange the order of any linear operation, such as rotation, and integration. We also pull

out the constant phase factor associated with element position.
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We define a current function to represent the phased current density integral in a particular direction,
given by the position unit vector.
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Now we can write the vector potential in terms of this function
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As usual, the magnetic and electric fields are found from the vector potential
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Using the vector potential above
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The usual approximation for far-field yields
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where
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so that the electric field is
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and we see that the un-normalized, far-field antenna pattern of the array is finally
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where we have identified the perpendicular component of the current density integral as the un-
normalized, far-field antenna pattern of a single element.
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The single element pattern, f, is just a vector field, and is rotated in the usual manner, by rotating the field
vector, and inversely rotating the field argument.
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