Array of arbitrarily oriented and positioned, but identical elements

The array far-field vector potential for the total current, \mathbf{J}, is

$$
\mathbf{A}=\mu \frac{e^{-j \beta r}}{4 \pi r} \iiint_{V^{\prime}} \mathbf{J}\left(\mathbf{r}^{\prime}\right) e^{j \beta \hat{\mathbf{r}} \mathbf{r}^{\prime}} d v^{\prime}
$$

The total current is a sum of identical current elements, \mathbf{J}_{1}, each of which has its own position, $\mathbf{r}^{\prime}{ }_{n}$, orientation (i.e. rotation matrix), \mathbf{R}_{n}, and complex amplitude, α_{n}

$$
\mathbf{J}\left(\mathbf{r}^{\prime}\right)=\sum_{n} \alpha_{n} \mathbf{R}_{n} \mathbf{J}_{1}\left(\mathbf{R}_{n}^{-1}\left(\mathbf{r}^{\prime}-\mathbf{r}_{n}^{\prime}\right)\right)
$$

Substituting in to the vector potential

$$
\mathbf{A}=\mu \frac{e^{-j \beta r}}{4 \pi r} \iiint_{V^{\prime}} \sum_{n} \alpha_{n} \mathbf{R}_{n} \mathbf{J}_{1}\left(\mathbf{R}_{n}^{-1}\left(\mathbf{r}^{\prime}-\mathbf{r}_{n}^{\prime}\right)\right) e^{j \beta \hat{r} \cdot \mathbf{r}^{\prime}} d v^{\prime}
$$

For finite sums, we can always exchange the order of summation and integration

$$
\mathbf{A}=\mu \frac{e^{-j \beta r}}{4 \pi r} \sum_{n} \alpha_{n} \iint_{V^{\prime}} \mathbf{R}_{n} \mathbf{J}_{1}\left(\mathbf{R}_{n}^{-1}\left(\mathbf{r}^{\prime}-\mathbf{r}_{n}^{\prime}\right)\right) e^{j \beta \hat{\beta} \mathbf{r}^{\prime}} d v^{\prime}
$$

We define a new variable, $\mathbf{r}^{\prime \prime}$

$$
\mathbf{r}^{\prime \prime} \equiv \mathbf{R}_{n}^{-1}\left(\mathbf{r}^{\prime}-\mathbf{r}_{n}^{\prime}\right) \quad \Rightarrow \quad \mathbf{r}^{\prime}=\mathbf{R}_{n} \mathbf{r}^{\prime \prime}+\mathbf{r}_{n}^{\prime}
$$

Make a change of variables for the integral. The infinite volume of integration is unchanged

$$
\mathbf{A}=\mu \frac{e^{-j \beta r}}{4 \pi r} \sum_{n} \alpha_{n} \iiint_{V^{\prime \prime}} \mathbf{R}_{n} \mathbf{J}_{1}\left(\mathbf{r}^{\prime \prime}\right) e^{j \beta \hat{\mathbf{r}}\left(\mathbf{R}_{n} \mathbf{r}^{\prime \prime}+\mathbf{r}_{n}^{\prime}\right)} d v^{\prime \prime}
$$

We can exchange the order of any linear operation, such as rotation, and integration. We also pull out the constant phase factor associated with element position.

$$
\mathbf{A}=\mu \sum_{n} \alpha_{n} e^{j \beta \hat{r} \mathbf{r}_{n}^{\prime}} \mathbf{R}_{n} \frac{e^{-j \beta r}}{4 \pi r} \iiint_{V^{\prime \prime}} \mathbf{J}_{1}\left(\mathbf{r}^{\prime \prime}\right) e^{j \beta \mathbf{R}_{n}^{-1} \mathbf{r} \cdot \mathbf{r}^{\prime \prime}} d v^{\prime \prime}
$$

We define a current function to represent the phased current density integral in a particular direction, given by the position unit vector.

$$
\mathbf{I}(\hat{\mathbf{r}}) \equiv \iiint_{V^{\prime}} \mathbf{J}_{1}\left(\mathbf{r}^{\prime}\right) e^{j \beta \hat{\mathbf{r}} \mathbf{r}^{\prime}} d \nu^{\prime}
$$

Now we can write the vector potential in terms of this function

$$
\mathbf{A}=\mu \sum_{n} \alpha_{n} e^{j \beta \bar{r} \cdot \mathbf{r}_{n}^{\prime}} \mathbf{R}_{n} \frac{e^{-j \beta r}}{4 \pi r} \mathbf{I}\left(\mathbf{R}_{n}^{-1} \mathbf{r}\right)
$$

As usual, the magnetic and electric fields are found from the vector potential

$$
\begin{aligned}
& \mathbf{H}=\frac{1}{\mu} \nabla \times \mathbf{A} \\
& \mathbf{E}=\frac{1}{j \omega \varepsilon} \nabla \times \mathbf{H}=\frac{1}{j \omega \varepsilon \mu} \nabla \times \nabla \times \mathbf{A}
\end{aligned}
$$

Using the vector potential above

$$
\mathbf{E}=\frac{1}{j 4 \pi \omega \varepsilon} \sum_{n} \alpha_{n} e^{j \beta \hat{\mathbf{r}} \cdot \mathbf{r}_{n}^{\prime}} \mathbf{R}_{n} \nabla \times \nabla \times\left[\frac{e^{-j \beta r}}{r} \mathbf{I}\left(\mathbf{R}_{n}^{-1} \hat{\mathbf{r}}\right)\right]
$$

The usual approximation for far-field yields

$$
\nabla \times \nabla \times\left[\frac{e^{-j \beta r}}{r} \mathbf{I}(\hat{\mathbf{r}})\right] \simeq \beta^{2} \frac{e^{-j \beta r}}{r} \mathbf{I}_{\perp}(\hat{\mathbf{r}})
$$

where

$$
\mathbf{I}_{\perp}(\hat{\mathbf{r}})=\mathbf{I}(\hat{\mathbf{r}})-(\mathbf{I}(\hat{\mathbf{r}}) \cdot \hat{\mathbf{r}}) \hat{\mathbf{r}}
$$

so that the electric field is

$$
\mathbf{E}=\frac{\beta^{2}}{j 4 \pi \omega \varepsilon} \frac{e^{-j \beta r}}{r} \sum_{n} \alpha_{n} e^{j \beta \hat{\mathbf{r}} \mathbf{r}_{n}^{\prime}} \mathbf{R}_{n} \mathbf{I}_{\perp}\left(\mathbf{R}_{n}^{-1} \hat{\mathbf{r}}\right)
$$

and we see that the un-normalized, far-field antenna pattern of the array is finally

$$
\mathbf{F}(\hat{\mathbf{r}})=\sum_{n} \alpha_{n} e^{j \beta \hat{\mathbf{r}} \cdot \mathbf{r}_{n}^{\prime}} \mathbf{R}_{n} \mathbf{f}\left(\mathbf{R}_{n}^{-1} \hat{\mathbf{r}}\right)
$$

where we have identified the perpendicular component of the current density integral as the unnormalized, far-field antenna pattern of a single element.

$$
\mathbf{I}_{\perp}(\hat{\mathbf{r}})=\mathbf{f}(\hat{\mathbf{r}})
$$

The single element pattern, \mathbf{f}, is just a vector field, and is rotated in the usual manner, by rotating the field vector, and inversely rotating the field argument.

$$
\mathbf{R f}\left(\mathbf{R}^{-1} \hat{\mathbf{r}}\right)
$$

