CHAPTER IV

MICROWAVE WAVEGUIDES

4,1 Introduction

The general relationships for TE and TM waves in single conductor waveguides were
derived in Section 2.3. It was shown that the field components are derivable from
Hz and Ez’ respectively, which in turn satlisfy the wave equation in the filler
medium subject to the metallic boundary conditions. It was also shown that the
transverse fields Et’ ﬁt are at right ang1e$+to :ne anotker at all points in the
transverse plane and are oriented such that E., Ht’ and z form a right-handed co-
ordinate system. The important relationships for TE and TM modes of a waveguide
are summarized in Section 2.6, Waveguides of rectangular and circular cross sec-

tion are the ones that are most commonly used, and these are consequently dis-

cussed at length in this chapter.

Also discussed in Section 4.131is a computer program for transmission line/waveguide

problems.

4,2 TE and TM Modes in a Rectangular Waveguide

The schematic of a rectangular waveguide which is a hollow metallic pipe of rec-

tangular cross section is shown in Fig. 4.1. The longer and shorter inside
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Side

wall

Fig. 4.1, Schematic diagram of a rectangular'waveguide.

dimensions of the waveguide cross section are represénted by a and b, respectively,

Because of a very small skin depth (~10

tant to the propagation of fields. in such a system.

cm), the outside dimensions are unimpor-

Plastic waveguides that are

coated on the inside with highly conducting materials are perfectly capable of

propagating microwaves as good as metallic waveguides,

Being a single conductor system, a rectangular waveguide is not capable of support-

ing TEM waves which require waveguides of two or more conductors,

Propagation

down to zero frequencies is consequently not possible in a rectangular waveguide

(see Section 2.6).

In this section we will show that energy propagation in a

rectangular waveguide is possible only for frequencies in excess of ce/2a.

In the following we use the general relationships of Section 2.6 to solve for

fields in a rectangular waveguide.

Transverse Electric or TE wav=ﬁ1
E, =0 (4.1)

Solve for Hz from the wave equation

v2H + K%H =0 (4.3)
Zz € 2
32Hz 32Hz 32Hz 2
+ + +k’H, =0
ax2 ayZ azz €'z

(4.5)

Transverse Magnetic or TM Wav
Hz =0

(4.2)

Solve for E, from the wave equation

vE +kKE =0 (4.4)
z € 2
aZEz azzz %,
2+ 2"“ 2+k€EZ-0
9x oy 9z
(4.6)

We are looking for propagating solutions; i.e., the z-variation is of the type

e-sz. Substituting this, then, in the above equations,
2%, azuz 2 ok, ok .
52+ st + (ke -8 ) H, = 0 >+ -7§-+ (} - B ) E =0
ox dy (4.7) ax dy € 2 (4.8)
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These are second-order partial differential equationms which may be solved by
separation of variables:

jlut - Bz)
(4.10)

Jlwt - Bz) = X' v
H, = X(x) Y(y) e (4.9) E, =X"(x) Y'(y) e

where X and Y are functions of variables | X' and Y' are some different functions

x and y, respectively. of variables x and y, respectively,

Upon substituting in Eqs. 4.7 and 4,8, respectively; to obtain the nature of the

functions X, Y, X', and Y', we get:

2 2 ' 2.y
%9_2-+y2=-%9——’2‘ (4.11) -fl.—d—-i—+y2=-xi,dx (4.12)
dy dx dy dx

z
Where(:;)s -8l = (fzﬂf)'z 4-(~Eﬂf
€ a b

Since the right sides of Eqs. 4.1l and 4.12 are functions of variable x alone, and

the left sides are functions of variable y alone, and yét the equations are to be

gatisfied for all x and y, that would be possible only if each side equals a

2
constant which may be called k,x for Eq. 4.11

H, = (A cos k. x + B sin kxx)

. (C cos ky+D sin k y) ej(wt - B2)
y y (4.13)
where
2 2 2
ky =y -k (4.15)

and k;2 for Eq. 4.12, in which case:

The boundary conditions to be satisfied at the metallic walls are:

oH oH
z z

—— e c—

oan ~ 93X (4.17)

0 for ally

at x = 0 and at x = a corresponding to
right- and left-side walls A and B
(Fig. 4.1), respectively:

oH, OH, 1
—5-5- = —}';- = 0 for 41l x (4.19)

at y = 0 and at y = b corresponding to
the bottom and top walls C and D (Fig.
4,1), respectively.

E = (A' cos k'x + B' sin k'x)
z e %
. (C' cos ki? + D' sin k'y) ej(wt—Bz)
Y y (4.14)
and
2 _ 2 - :2
ko =y -k (4.16)
E, =0 forally (4.18)

at x = 0 and x = a for right- and left-

side walls A and B, respectively.

Ez = 0 for all x (4.20)

at y = 0 and y = b for bottom and top
walls C and D, respectively.
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Upon substituting the above boundary conditions in equations, we obtain:

B = By con B2 con B IR ) | g Lp g B gy S0t - 60

(4.21) (4.22)
where, of course, all integer values of m and n are allowable. While m or n (but
ﬁot both) may be zero in Eq. 4.21, neither m nor n may be zero in Eq. 4.22 because
that would make Ez = 0 and, from Eqs. 2.65 and 2,66 for TM waves, -}Et and ﬁt would
both be zero, which is a trivial solution (completely zero electric and magnetic
fields).

For given values of m and n from Eqs. 4.15 and 4.16, we obtain:

22 2 2 22 22
y a b y a b

N S . (4.23 4.

Ce s == T BES Y et (4.26)
or % v or
2 2.2 2.2 2 22 2.2

Z?I\l?z/'?:. 0 (u'_+nﬂ) (4.25) w nw“'_,nxj (4.26
- " had - - - -l —— . )

The propagation constant B is real only for frequencies larger than or equal to:

ce m2 l'lz CE m2 n2
£> 5 (-a—2+? (4.27) £> (—37*';—2-) (4.28)

The lowest frequency TEmn mode propaga- | The lowest frequency Tymn.modeapragaagr

tion (since a > b) corresponds to the | tion corresponds to Tull node (since

TElo mode .which is possible for frequen- |m # 0 and n ¥ 0, as discuséed abuve:

cies higher than or equal to: and the cutoff frequency for this mode
is: '

cs Ce 1 1
flO = 5a (4.29) fll == ‘l(? + ?) (4.30)

The cutoff frequency of a given mode is that frequency below which 8 is imaginary;
i.e., the wave is an evanescent wave. The wave amplitudes decay rather rapidly

with distance. The cutoff frequencies of TEmn and Tan modes are identical, these
being Tor Redm B 2% DA

LD owecy e By
Cut " ~
(e BHEI] 2 e

e

C
The subscripts m and n in the nomenclature for TE and TM modes represent the

a’ >k
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number of half (einusoidal) cycles of variation of fields along x and y dimensions,

respectively.
constants are identical (from Eqs. 4.25 and 4.26) £
values of m and n, i.e., the two m

patterns,

there is no confusion in the kind of fields that need to be excited if TEmn

™
mn

In the following ej(wt - 82) would be im

mode excitation is desired.

TE Mode

repetitiously.

From

Having solved for HZ

Eq. 4.21:

mnwx
HWw=H cos
Z mn

cos n_"brl

ot B2
A

(4.32)

Mode

™
—— e,

From Eq. 4.22:
bl

- E _ sin XX gin
wn a

and Ez’ it should now be possible to write the transverse

components of fields from the general equations of Section 2.6.

From

>
H
t

Eqs. 2.61 and 2,62:

-8y

2 thz

Y

o [PH o BH L
-8Bz 42
2 \ox 3y
Y
= M ﬁ X z =127 ﬁ

ié mr sin = cos T é4 40)
2 a mn a b -
Y Q
jﬁ_gﬁ mnx any
2 b Hmn cos =3 sin b eﬁhogf
Y
®= Zpg By (4.44)
®= ~Zpp Hy (4.46)
A%

From Eqs. 2.65 and 2.66:

N i
- -i8
Et 2 vth
Y
, ) S ak_ .
_—iB z % Z
2 <l8x dy >
» -+
> we ~ U2 z Et
= zXE =

[ I
&
< ]

Nlow
m |§

mmnx
a
mX
sin

It. should be remembered that even though the wave propagation

nry
b

or TE and TM modes for given
odes propagate at the same velocity, the field

as will be shown in the following, are radically different, and hence

or

plied in all fields and hence not written

e J"/w‘f—Bz)

(4.33)

(4.35)

(4.37)

(4.39)

ej(u$~53)

(4,41)

ej(w{/ e )

(4.43)

(4.45)

(4.47)
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The various electric and magnetic field components associated with the TEInn and
TMImn modes of a rectangular waveguide are now known and may be seen to be
completely different for the two modes, The electric and magnetic field configu-
rations of a few TE and TM modes of a rectangular waveguide are shown in Pig. 4.2,
In the diagrams the electric fields are sketched in bold lines while the magnetic
field lines are shown in broken lines. The reader is advised to look at the

field expressions for a selected mode and see for himself the validity of the
plots in Fig. 4.2,

4.3 Bouncing Wave Picture of Wave Propagation in Waveguides

By looking at the nature of the wave fields in Eqs. 4.32 to 4.47, we can see that
these may be visualized in terms of a plane wave bouncing back and forth between
the various waveguide walls, To illustrate the point, let us consider the case
of TEmo fields.

For the TEmo mode, the fields are:

E, = -jou 7:7 H  sin 3:—’5 oJ (ut - B2) (4.48)

H -y 38 B g gip X J(ut - B2) (4.49)
x  (wu/B) mT " mo a

H, = H_ cos BIX oJ(ut - 62) (4.50)

Hy =E =E =0 (4.51)

(4.52)

where fmo = mce/Za is the cutoff frequency of the TEmo mode (see Eq. 4.27).

Equation 4.48 can be written in terms of equal amplitude incident and reflected
plane waves (sketched in Fig. 4.3):

E=EF, +FE
E= Einc refl
. [ej(mt - k_cos 8 x - k_sin 0 z)

J(wt + k_cos 6 x - k_ sin 6 z]
= Ely e ( € € )

j(mt - ke sin 6 z)

= ZjEly sin (ke cos 6 x) e (4.53)
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Fig. 4.3. Bouncing wave picture of wave propagation in rectangular waveguide,
top view.

Expression 4.53 for plane waves bouncing back and forth between the two side walls
of the rectangular waveguide is identical to the electric field (Eq. 4.48) of the

TE  wave. Also, since the tangential electric field at the side walls x = 0 and

—\
x = a is zero, : @-T&L_{D>¢-c7 Xj :_,égé'
cosOT A e O
“¥ ke cos 6 a = mm (4.54)

and ks sin 8 is equal to B, the wave propagation constant, in which case,

g2 = kg (1 - cos? ) = ki - w?n?/a? = (wz/c:g)(l - fio/fz) (4.55)

Equation 4;54 defines 6 the angle of incidence (and reflection) of the plane
wave/s. 8 is zero for f = fmo’ the cutoff frequency, which means that at cutoff

the wave bounces back and forth without any forward motion. 6 increases as fre-

quencies larger than the cutoff frequency are propagated down the waveguide.

Similar visualization is also possible for TEmn and Tan modes with a plane wave

making a finite angle relative to the xz plane (depicted in Fig. 4.3).

4,4 Wave Velocities

Phase Velocity

Phase veloeity vp of a wave is defined as the velocity of a point of constant

phase. For waves in the waveguide, the points of constant phase correspond to
wt - Bz = constant K (4.56)
At time t + dt, the same constant phase point has moved to z + dz such that
w(t + dt) - B(z + dz) =K (4.57)

in which case the velocity of movement of the constant phase point
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W
-8z _ 9 4,
v B (4.58)

For TEmn

Phawe

\/ﬁloci& (4.59)

which is always larger than the velocity of light c. and approaches c. as fre-

nuencies much larger than the cutoff frequency fmn are propagated. This is

represented in Fig. 4.4. 1t should be remembered at this stage that the phase

3

2
l \
vp/cE or |

Vg% s
1_.___.._.__..______
|
|
" Vo<
[
0
0 1 2 3
f/fc

Fig. 4.4. Phase and group velocity characteristics of guided waves.

velocity is not the energy propagation velocity which must always be less than or
equal to Ce The phase velocity is comparable to the velocity at which, say, the
peak of a ripple (constant phase point) moves along the bank of a water pond. The
peak of a ripple would easily be moving at a velocity much larger than the veloc-
ity of water movement in the pond because different elements of water are experi-
encing the ripple peak at different times. In fact, thec water in the pond may
barely be moving in the horizontal direction and yet the ripple could be moving

at a very fast speed.

Group Velocity

The group velocity Ve of a wave is the velocity at which the energy (signal in-
formation) consisting of a finite (rather than zero) frequency region of the

spectrum propagates.
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A general input signal fi(t) can be written in terms of various frequency

components by the use of the Fourier transforms

1 7 jut
£,(8) = 5 L,, F,(0) &% du (4.60)

where

Fi(w) = J fi(t) e

00

J9t ge (4.61)

The above equations are counterparts to discrete Fourier series where a given
signal, if composed of discrete frequency components, can be expressed as
) Fi(w) AUt

In propagating down a waveguide, the various frequency components of the signal

~jB(w)z and the spectral distribution

undergo different amounts of phase shift e
Fo(w) of the signal at output, neglecting attenuation of the various frequency

components, is given by:
Fo(w) = Fi(w) e~ IB(w)z (4.62)

If the bandwidth of the signal is rather narrow and is centered at w;, We can

expand B(w) around wy

(w - wi) (4.63)

Substituting this in Eq. 4.62, the time variation of the output signal fo(t) is

written from the inverse-Fourier-transform of Eq. 4.62:

. dg
T = T
£ () =5 F () e 1 d(w - uy)

-0

j(wit - Boz)

RACRENE (.60
where t_ = d8 z.
a dw
!
The output therefore is t?% delayed version of the input waveshape which is de-
z

layed in phase, too, by e © |

The velocity of signal propagation vg can now be derived from the delay time in
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propagating a distance z and Vg is given by:
dw

v, =& (4.65)

w

i

For TE_  oOF Tan modes, therefore,

M v, < e {1 - fm/2 £2 (4.66)

In waveguides the group velocity at a frequency f is always less than or equal to

¢ . The variation of vg with frequency is also plotted in Fig. 4.4. It can be
£

seen that for any frequency the product vpvg =c..

///j:;:¥%ome Important Relationships for (Single Conductor) Waveguides

4

U MJ ' A L'Q ~ r
MMWZLK, PR T = 2nn N = Vew? - we (4.67)
¢ Ce¢

where Ag is the guide wavelength or the separation between identital phase points

—

at a given instant of time,. 5g/§ .=—g§1

P Ve

where A€==c2/f is the wavelength at the’signal frequency for electromagnetic waves

in an infinite medium having the pepmittivity of the filler material of the wave-

fciis the cutoff frequency for the mode under consideration. For rectangular

waveguides,

¥ Tor Ogid —7 2
Retangiar A+ @)
tote quides

It is a special feature of rectangular waveguides that the cutoff frequencies for

(4.69)

TEmn and Tan modes (not their fields) are identical. This is not so in any

other geometry, including that for circular waveguides.

377/Ve_ |Eul - 1.
- I . 977 1 e
B 11 - e2fe2 T [ \e ‘

(4.71)
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C
[N} €
v =5 = = (4.72)
p B ,ll-fz/f2
C
2
_du e
Ve "3 " v =c, (4.73)

4.6 The Lowest Frequency Mode —— TEIO Mode — of a Rectangular Waveguiae
e

Of the TEmn or Tan modes of a rectangular waveguide, the TE10 mode has the lowest
cutoff frequency which is given by ce/Za. The next higher order mode is TE20 (and
TEOl mode for waveguides where b = a/2), having the cutoff frequency twice as
much; i.e., c€/a. In several waveguides, the smaller dimension b is slightly
smaller than a/2, which removes the coalescence of the cutoff frequencies of the
TE and TE,., modes and places the TE

20 01
larger than cE/a of the TE

01 mode at a cutoff frequency Ce/Zb slightly

20 mode. Since the propagation of various modes is
possible for all frequencies higher than the cutoff frequency of that mode, one
and only one mode of propagation is possible iny for c€/2a < f < cela for the
TE10 mode. In this frequency region, other modes of the rectangular waveguide, if
excited, say, because of a discontinuity or deformation (including burrs, etc.),
will not propagate very far because of imaginary B and single mode of propagation
would therefore persist in the waveguide. Multimode propagation at higher fre-
quencies has the disadvantage that the various modes propagate at differing

phase velocities, causing interference. The TE. . mode of ¢he rectangular wave-

10
guide is used most often, therefore, to ensure single mode propagation.

The dimension a of the waveguide is therefore picked so that the signal frequency
is at least 15-20 percent higher than the cutoff frequency cE/Za and no more than
90-95 percent of the cutoff frequency of the TEZO mode. Putting it another way,

the recommended operating range of a rectangular waveguide is:

To choowe ¢ cf-é:c ITE’ZO

w> & g4 aﬂut:k O’ki_ (1.15"1.2) '2_5" f. f : (009-0095) _a_ (4.74)
ﬂlr;.wé.:“u_o ) j
A v GSZ‘TE|°

The salient features of some commercially available waveguides are given in

Table 4.1.
The waveguide attenuation for some rectangular waveguides is shown in Fig. 4.5.

The fields associated with the TEl mode are given in Eqs. 4.48 to 4.51 (for m =

0
1). The fields are sketched in Fig. 4.6. A convenient way to excite this mode
,__'———-"""/
{ L "‘“""""T_E_;i: M/
= T
Choos(’_v @ so {C < ,5\‘ ’6‘M‘C [é——‘_//.-——— et /

= T 2y N T P
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TABLE 4.1. Salient features of some commercially available rectangular waveguides.

Inside Dimensions (Inches) Z 05 Theoretical
Clzé%f Recommended CW Power
EIA Fre Frequency Range Rating for
quency
Designation a. b Tolerance c/2a for TElO Mode T.m:regt to
WwR( ) ? + or - CHz GHz Highest
A Frequency
[255164GZ I5kz0 MW
2300 23.000-11.500 .020 0.256 0.32-0.49 153.0-212.0
2100 21.000-10.500 .020 0.281 0.35-0.53 120.0-173.0
1800 18.000-9.000 .020 0.328 0.41-0.625 93.4-131.9
1500 15.000-7.500 .015 0.393 0.49-0.75 67.6-93.3
1150 11.500-5.750 .015 0.513 0.64-0.96 35.0-53.8
975 9.750-4.875 .010 0.605 0./5-1.12 27.0-38.5
770 7.700-3.850 .005 0.766 0.96-1.45 17.2-24.1
; 650 6.500-3.250 .005 0.908 1.12-1,70 11.9-17.2
510 5.100-2.550 .005 1.157 1.45-2.20 7.5-10.7
430 4.300-2.150 .005 1.372 1.70-2.60 5.2-7.5
340 3.400-1.700 .005 1.736 2.20-3.30 3.1-4.5
284 2,840-1.340 .005 2,078 2,60-3.95 2.2-3.2
229 2,290-1.145 .005 2,577 3.30-4.90 1.6-2.2
187 1.872-0.872 .005 3.152 3.95-5.85 1.4-2.0
159 | 1.590-0.795 | .004 | 3.711 | A4.90-7.05 | 0,79-
137 1.372-0.622 .004 4,301 5.85-8.20 0.56-0.71
112 1.122-0,497 .004 5.259 7.05-10.00 0.35-0.46
90 0.900-0.400 .003 6.557 8,.20-12,40 0.20-0.29
75 0.750-0.375 .003 7.868 10.00-15.00 0.17-0.23
62 0.622-0.311 .0025 9.486 12.40-18.00 0.12-0.16
51 0.510-0.255 .0025 11,574 15.00-22.00 0.080-0.107
42 0.420-0.170 .002 14,047 18.00-26,50 0.043-0.058
34 0,340-0.170 .002 17.328 22.00-33.00 0.034-0,048
28 0,280-0.140 .0015 21.081 26.50-40.00 0.022-0,031
22 0.224-0.112 001 26,342 33.00-50.00 0.014-0,020
19 0.188-0.094 .001 31,357 40.00-60.00 0.011-0.015
15 0.148-0.074 .001 39,863 50.00-75.00 0.0063-0.0090
12 0.122-0.061 . 0005 48,350 60.00-90.00 0.0042-0.0060
10 0.100-0.050 .0005 59,010 75.00-110.00 0.0030-0.0041
8 0.080-0.040 .0003 73.840 90.00-140.00 0.0018~0.0026
7 0.065-0.0325 .00025 90,840 110.00-170.0Q0 0,0012-0,0017
) 0.051-0.0255 .0002 115,750 140.00-220.00 |0.00071-0.00107
4 0.043-0.0215 .0002 137.520 170.00-260.00 | 0.00052-0,00075
3 0.034-0,0170 .0002 173,280 220.00-325.00 | 0.00035-0.00047




