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during the development of such a code. (The papcr also includes
some results computed with this code). As well as addressing some
very practical issues in prc- and post-processing, the paper also
includes some uscful insights on vector element theory.
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Abstract

Theoretical and practical issues that impact on the development of (especially) three-dimensional vector finite-element (FEM)
programs are discussed. The theory of vector elements is briefly reviewed, and some troublesome aspects are highlighted: in
particular, the interpretation of the degrees of freedom. The choice of element shape is briefly addressed, as is the evaluation
of the elemental matrices. Several useful references are provided in this context. Data structures appropriate for a three-
dimensional code are outlined, as is the issue of establishing mesh interconnectivity. The topics of mesh generation and lin-
ear algebra are very briefly considered. The paper concludes with some comments on post-processing, in particular, the
computation of fields within the FE mesh.
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based contender, the Finite-Difference Time-Domain Method, the

FEM is rather more challenging lo implement. The aim of this
paper is to “smooth the path” for those intending to implement

1. Introduction

he Finite-Element Mcthod (FEM) has become a popular tool
for high-frequency electromagnetic-field simulation, in par-
ticular, for antennas, microwave circuits, and scattering applica-
tions, However, compared with its main differential-cquation-

their own FEM codes by sharing some of the expericnces accumu-
lated whilst developing FEM codes: the author and his students arc
in the process of dcveloping a three-dimensional vector FEM code,
incorporating higher~order elements, in FORTRAN 90. The focus
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of this paper is on practical coding issucs, but somc subtle theoreti-
cal issucs that impact practically on a code will also be discusscd.
On occasion, some points that, by and large, arc only hinted at in
the literature will be highlighted.

Although Ihe FEM is aiso widely uscd for low-frequency
quasi-static applications (machincs, ctc.), this paper is focuscd on
the high-frequency (i.c., radio-frequency) applications, which arc
of primary intcrest to the Mugazine’s readership.

2. Vector (Edge-Based) Finite Elements

2.1 Background and Literature

Elcctromagnetic finite-element analysis has been revolution-
ized by the development of vector finite clements over the last two
dccades.  Originally known as “cdge eclements™-because the
unknowns were associated with cdges, rather than nodes—for the
lowcest-order clements, at lcast, the term “vector clements” is now
thc morc-widespread current nomenclature. (This is due to the
introduction of highcr-order ¢clements, wherc the unknowns arc no
longer assigned solely along cdges). There arc a number of excel-
lent trecatments of the theory of veetor finite clements; all the mod-
crn textbooks and monographs on the FEM for high-frequency
CEM address this issuc [1, 2, 3, 4, 5). The original paper by
Nedelee remains formidable reading [6], and one should be aware
that not all the higher-order vector elements published satisfy the
criteria in Nedelee’s paper, although such elements may, nonethe-
less, work satisfactorily.

For further rcading, an cxccllent annotated collection of
papers is available (7], and a comprehensive bibliography has been
published [8]. The former contains a number of classic papers, but
1s starting to show its age m somc aspecls, duc to continuing prog-
ress in the field since ils publication. tn particular, therc has been
stgnificant progress on higher-order vector clements, exemplified

by [9].

For the purposc of this paper, we will consider only vector
I‘Es; the consensus in the HF CEM community is that these are the
best clements to use for gencral-purpose three-dimensional elec-
tromagnene codes, Webb's paper [10] remams a classic on vector
clements, cxplaining both the fundamentals of the clements, as
well as the theoretical reasons for their superior performance in
terms of the improved approximation of the null-space of the vec-
tor wave cquation. (1t also addressed some practical implications,
such as improved modcling of corners.) This interpretation is now
generally accepted in the high-frequency FEM  community.
Pcterson and Wilton’s conltribution to the volume edited by Itoh et
al. [11] is an cxcellent trcatment of vector clements. They consider
firstly polynomial-complete vector clements, showing that onc can
formulate and usc such clements. They then discuss the crucial
contribution made by Nedelec in removing certain “wasted”
degiees of freedom, which result in the mixed-order (incomplcetc)
veetor elements in general usage in the FE community.

Note that in two dimensions-for instance, for waveguiding
poblums--homogencously filled waveguides (supporting only TE,

or TM, modes) can be worked using scalar clements, involving
only longitudinal (z-direcled) clectric or magnetic field, or alter-

nately analyzed with two-dimensional vector elements. Inhomoge-
neously filled waveguides can support more complex modes; a
suitable approach here is to use vector clements for the transverse
fields, and conventional scalar Lagrangian elements for the longi-
(udinal ficld. More details specifically on FE analysis for
waveguide analysis may be found in [12].

2.2 Vector Elements and Nedelec’'s Work

Degrees of freedom are central to a FE program. However,
almost all the papers in the CEM litcrature on vector elements con-
centrate on the basis functions, with the degrees of frecdom dis-
cusscd only briefly, if it all. Especially in this context, one strug-
gles to rcconcile modern CEM papers with Nedelec’s seminal
work [6]. This paper is very difficult rcading indccd, and unless
onc has a strong background in functional analysis, onc would be
advised to rcad it in conjunction with the comprehensive treatment
of the material by Salazar-Palma and her colicagues [5]. Their
monograph provides the mathcmatical background necessary to
(ully appreciate Nedelee's work.

Some comments here arc appropriatc. Firstly, Nedelec’s
paper derives the mathematical requirements to be satisfied by
wixed-urder clements. However, nowhere in this paper (nor in his
subscquent work [13]) is the actual clement-interpolation function
cxplicitly proposed-and certainly not using simplex coordinatcs, as
almost universally donc by FEM researchers, Nedelec’s work
instead cuncenirates on the appropriate degrees of freedom, and the
dimcnsion of the accompanying mixed-order polynomial spaces.
What has become widcly know as the Whitney element for sim-

plex clements (iriangles or tetrahcdrons)-the (A,Vlj —XJV&)

form-is indeed a Nedclec-compliant element, but this is far from
clear after an initial reading of his work!

The degrees of freccdom as laid down by Nedelee are not
unique, even for the lowest-order (Whitney) clement above. This is
rather cryptically implied in Definition 4 [6]: for “kth” order elc-
ments, the Ok edge-bascd degrees of {rcedom for three-dimen-
sional clements ( 3k in twa dimensions) are given by

(@i ds, vger,,,

“

where # is a basis (unction and / is the unit vector along cdge a.
P, is the linear space of polynomials of degrec <k. Tor the
Whitney element, with & =1, we sce that ¢ may only be a constant.
In the case of the (A,V/L/—XJVAi) form, this constant is often

implicitly unity, and the associated Nedclee degree of freedom
(which may be viewed as located at the middle of the relevant
cdge, although this is not essential) is the tangential field on this
cdge, multiplicd by the edge length. (It may be shown that the
ntegral of the Whitney element along an edge is constant). Note
that in an FE code, the unknowns which are solved for-usually
also ecalled degrees of freedom—are simply the constants associated
with each basis function. Depending on the choice of ¢ above,
these may be precisely Nedclec's “degrees of freedom,” or related
by a constant.

Many authors pre-normalize the basis functions by the

appropriate cdge lengths: c.g., Wy =/.’,-j(l,-\7/1j—,1jVA,-). Other
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choices of constant are also permissible. Either is quite acceptable,
but one must work consistently: if the edge-lengths are included 1n
the basis functions, then when post-processing is done, the lengths
must be correctly included again in the basis functions. We return
to this subsequently.

An exception to the simplex-based approach is the work of
Salazar-Palma and her colleagues [S]. Their approach starts
directly with Nedelec’s definitions of the various degrees of free-
dom, using a right-angled “parent” triangle element n Cartesian
coordinates. Interpolatory vector functions are then proposed, with
unknown coefficients that are then derived by explicitly enforcing
the standard Lagrangian interpolatory requirement that the function
be non-zero only at its “own” node. (This requires the solution of a
system of linear equations, but this need only be done once for
each element type, and tabulated results are available (5]). This
approach is elegant theoretically. It does, however, limit one to
interpolatory elements. The work of Yioultsis and Tsiboukis also
follows this approach [14].

Higher-order Nedelec-complaint elements are certainly not
unique, and the differences are more than just in terms of constants
as above. There are two classes of such elements, viz., interpola-
tory and hierarchical. The former have the advantage that the
degree of freedom can be associated directly with a field compo-
nent (possibly within a constant, however); the lauer have the
advantage that additional degrees of freedom may be added
directly to the lower-order contributions. (In terms of mesh adap-
tation, this is also known as “enriching the element.””) The hierar-
chical clements for simiplex cloments uswd by many researchers are
generally derived by “inspection,” relying on the natural separation
of the field into normal and tangential field components when the
basis function is expressed in terms of simplex coordinates and the
gradients thereof. The result has been the publication of a large
number of different higher-order elements. Some of thc most
recent are due to Andersen and Volakis {15, 16]. These elements
appear attractive, and were favorably reviewed by other researchers
at the recent “5th Tinite Eloments Workshop for Microwave Engi-
neering” (Boston, June, 2000).

2.3 Coding Implications of
Vector Elements

The above discussion may appear overly thcoretical. How-
ever, as soon as one includes higher-order elements in an FE codc,
one appreciates that an understanding of the nature of the degrees
of freedom is important. In the following, we usc constant tangen-
tial/linear normal (CT/LN) for the Whitney elements (also known
as Hy (curl) elements), linear tangential/quadratic normal (LT/QN)

for the H, (curl) elements, etc. For CT/LN elements, the degrees
of freedom have already been discussed above, and all that is nec-
essary is to ensure that adjoining edges correctly share the degree
of freedom. In a typical code, this is taken into account when
assembling the system matrix from the elemental matrices. This
must take into account the direction ot the edge. A method is dis-
cussed later in this paper that ensures that this is always consistent;
otherwise, one must simply keep track of the relative positive or
negative sense of each degree of freedom. For LT/QN elements,
each edge has an additional degree of freedom, and the same
applies. There are also two degrees of freedom per face. Again, one
simply enforces continuity when assembling the matrix; similar

comments with respect to the sense of the faces apply. For higher-
order elements, there are also volume-centered degrees of freedom.
These are not shared by adjoining clements, and thus do not impact
on the matrix-assembly process.

3. Element Shape

The question of element shape is not a cut-and-dried issue. In
three dimensions, the choices include tetrahedral, brick, hexahe-
dral, and prismatic elements. The reason is that different element
shapes are optimal for addressing different problems. At the risk of
over-simplifying the issue, a one-off code designed for a particular
purpose, with a regular geometry, will be much quicker to develop
using brick elements, without any loss of accuracy, but obviously
with a loss of generality. Tetrahedral elements (“tets”) involve
more work, but have the major advantage of being the only shape
into which an arbitrary geometrical region can reliably be decom-
posed: as such, for a general-purpose code, or one likely to evolve
into such a code. tets are the element of choice. Prismatic elements
(essentially extruded triangles) are especially appropriate for
problems generated by extruded surfaces. A good cxample here is
the FEM/MoM treatment of conformal antennas, where prismatic
elements have been widely used [17.18]. Pyramidal elements are
useful especially in transition regions in brick meshes (e.g.,
between finer and coarser meshes).

4. Evaluating the Elemental FE Matrices

Irrespective of  whether the  variational-functional or
Galerkin-weighted residual formulations arc used, two integrals of
two cnergy-related quantities over the volume (or over the surface,
for two-dimensional analysis) of cach element arc required:

S = J'(wa‘-VxW,)dV, )

v

Ti = jGoem)av @

v

with W, and ¥ being the vector basis functions. These matrices
have various names, including the Dirichlet matrix and metric,
respectively (and also stiffness and mass matrices, although these
latter names are not relevant in clectromagnetics). Closed-form
results arc availablc for these integrals over tets, bricks, and prisms
in the standard texts; for tets, there are also some very useful for-
mulae in papers by Lee and Mitira [19] and Savage and Peterson
[20). The latter was extended by Davidson and Hansmann [21].
Explicit results for other element shapes may be found in [1, 4, 22].
For element orders exceeding “second” order (linear tangen-
tial/quadratic normal), the cxplicit formulae become extremely
cumbersome, and quadrature methods are recommended: sce [23).

5. Data Structures

We have already scen that therc are some significant choices
to be made before a line of code is written. Some choices greatly
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simplify code development, but at the cost of making subsequent
cxtenstons of the code much morc difficull. As an example, the
choice to “hard-wire” brick elements into a code impacts on the
cdge-numbering scheme, which, in turn, impacts on the element-
assembly process, and also manifests itself in the post-processing
step, where the field is finally computed. Some of these matters
appear quite simple—for instance, a brick has twelve edges, a tet
has six-but once this is hard-wired into the code, correctly chang-
ing all the rcferences to the number of edges per element can be
difficult, unless it has been corrcetly coded from the start with this
in mind. Furthcrmore, if one intends to subsequently add higher-
order clements, it is wise to plan this from the start, although it
considerably complicates the original planning. (Arguably, it may
casier to address thesc issues using an object-oriented language,
but the objects themsclves must still be carefully thought through).

Beforc prograimmming starts, it is uscful to establish the major
data structures that will be needed. For a mesh with N, nodes, N,
elements, Ny,
required will includc at Jeast:

edges, and N, faces, the major data structurcs

vertices Dimcnsioned as (N,,,3). This stores the (x, y,z) coordi-

nr

nates of each vertex (node).

nodes Dimensioned as (N,,4). This stores the four nodes associ-

ated with each clement.

eloment_fances Dimensioned as (N‘,,A) . These arc the global faces

associated with each element,

edge_nodes Dimensioncd as (NN,RC,Z). This stores thc global

nodes that cach cdge connects.

face_nodes Dimcensioned as (N_/,S). This stores the global nodes

comprising cach face.

materials Dimensioned as N,. This stores the material number.
Another (usually very much smaller) data-structure will be
required to store the actual constitutive parameters for each matc-
ral.

dof Dimensioned as N, for Whitney clements. These are the
degrees of freedom. For higher-order codes, it is useful to dis-
criminate among the various typcs: for instance, using the hierar-
chical scheme of [24, 19], one would have four vectors, viz.,
dof _el, dof_c2, dof_fl, and dof_[2, as the degrecs of freedom cor-
responding to the edge and face basis functions, cach of two types.

Two major data structurcs omitted herc (deliberately) are the
[S] and [T] matrices. To fully cxploit the power of the FEM,

sparsc storage schemes must be uscd; this is beyond the scope of
the present paper.

Before any clectromagnctic analysis starts, it is neccssary to
build lists of edges and faces, as well as inter-element connectivity.
Before starting this, it is essential to adopt consistent conventions
for edge and face numbering, both locally and globally. A conven-
tion that the author has uscd successfully is to sort the nodes in
cach clement into ascending global order: this ensures that when
edges are assigned, they are always dirccted from lower to higher

node numbers, and thus the edges shared by two or more elements
always have the same vector sense. All the local edge-numbering
schemes in use in the literature are consistent [19, 20] (taking into
account that some number from 0, and some from 1), although the
face-numbering schemes are not {19, 20]. Which one is adopted is
of no import, so long as one is consistent. (Note that the vector
sense of the edges is not always consistent in the literature: for
example, cdge S in [19] has the opposite local sense to [1].)

Building the interconnectivity data is primarily a problem in
list searching. Various tricks can be used to accelerate this, such as

1

3 edge 1 2

Figure la. The simplex coordinates associated with point P
within the element.

3

Figure 1b. The simplex coordinates associated with point P
outside the element.
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the use of “hashing” tables. For instance, when searching for con-
nected elements, onc can build a hash table with four entries for
each element: cach entry corresponds to the sum of the three nodes
comprising each of the four faces. If none of another element’s
hash values is the samec, thc clements cannot be connected
(assuming that none of the node’s numbers are negative!). If the
hashing entries are identical, then one searches through the nodes
of the face to sec if they are individually identical, in which case
the faco-and hence elements—are connected. (Again, adopting a
convention of numbering faccs consistently from lower to higher
global node numbers can be helpful.) The speed-up here comes
from the fact that, usually, only a few faces will have identical
entries in the hash table (although this obviously depends on the
hashing function used), and it is much faster to initially search only
four entries in the hash table per element, rather than all twelve
nodes. Many commercial meshers can also generate element-inter-
connectivity lists, but this tends to tie onc’s code into specific
packages.

Some pre-processing algorithms for FE codes have been dis-
cussed before in this column: see, for example, [25).

6. Mesh Generation

Brick clements are particularly attractive for research codes,
since writing a mesher for specific problems is relatively straight-
forward. Prismatic meshes, which cxtrude triangular meshes, are
also a candidate for doing-it-yoursclf, sincc two-dimensional trian-
gular meshers are of only moderate complexity. However, tetrahe-
dral meshing is not a trivial issue, and using a commercial package
for this is recommended. There are a number available: the author
has used both FF/AM (now CADFIX) from FEGS in the UK, and
FEMAP, from Enterprise Software Products in the USA.

7. Linear Algebra

Although the issuc of matrix solvers for full matrices contin-
ues to attract some attention in the MoM community, the lincar-
algebra problems are largely solved in this regard, with the possi-
bly exception of the question of iterative solvers, (This does not
apply to the issue of fast methods, which is an active and fruitful
research area, at present) The samc is not true, howcver, with
regard to the sparse linear algebra required by an FEM code, where
many challenges remain. Deterministic (driven) problems require
the solution of a sparse system of linear cquations. Dircct-decom-
position methods require techniques for predicting fill-in: the best
reference here is [26]. The fill-in is problematic for scveral reasons.
It is nccessary to predict (either approximately or exactly) the fill-
in pattern; there is a concomitant, and sometimes quite large,
increase in memory requircment, and the indirect addressing
required makes the algorithms difficult to optimize. (Various mesh
re-numbering schemes are available to attempt to minimize fill-in,
but indirect addressing cannot be avoided.) In practice, iterative
solvers are generally preferred. One place where direct decomposi-
tion cannot apparently be avoided in FE analysis is when using the
shift-invert modc of eigenvaluc solvers, which extracts eigenvalues
near a particular valuc, rather than the smallest or largest ones.

Eigenanalysis problems require the solution of a generalized
eigenvalue problem, which is computationally expensive. Work

has recently been completed at Stcllenbosch on the use of the
implicitly restarted Arnouldi technique, implemented within the
public-domain ARPACK library [27]. For the present, readers are
referved to [4, Chapter 9]: of the standard FE texts in clectromag-
netics, it presently offers the most comprehensive and up-to-date
discussion of sparse-linear-algebra issues for the FEM in CEM.

Finally, we comment that for initial testing work, standard
full-matrix lincar-algebra routines from the LAPACK library may
be profitably used. Although obviously very inefficient in terms of
both memory and run time, this permits the FE part of the code to
be debugged without also having to cope simultaneously with the
additional bugs that sparse-matrix storage schemes can introduce.

8. Post-Processing

Once the FEA is complete, the vector degrees of frecdom
need to be post-processed to yield meaningful field data. Unlike
interpolatory nodal-based elements, where a degree of freedom
typically represents a field component at a particular node, hierar-
chical vector clements reconstruct a physically meaningful field
only when summed togcther. Given the degrees of freedom and the
corresponding basis functions, the ficld E‘(»,y,A) can be coni-
puted at any point within the element. Explicitly for CT/LN ele-
ments on tetrahedral, this is

E(x,p,2) = Ejywyy + Ejywi3 + 14 Wi + Egyway + Liggwag + By,

(€)

with L being the degrees of {recdom, and w; being the basis
functions, as previously discussed. Note again here that the lengths
must be included- or not!--in Wy, in a fashion consistent with the
usage when deriving Equations (1) and (2). (This is obvious, but
easy to overlook, since the lengths are often implicd but not con-
sistently retained in some of the litcrature. If the lengths are not
correctly included in the basis function, the result, on a non-uni-
form mesh, will be a field with the corrcct general shape, but with
a very “spiky” behavior. The author spent a rather frustrating time
a while back tracking this particular error down.)

The basis functions w; arc, of course, functions of position,

The simplex coordinates and 1heir gradients must be computed at

Table 1. The cigenmodes (FEM and analytical) for a circular

cavity.

Eigenmode (Multiplicity) | Analytical FEM
TMyyo (single) 2.405 2418
o N 3.824 3.851
M, (pair) 3851
. . 5.123 5.159
TM; g (pair) 0
TMyy4 (singlc) 5.507 5.543
. 6.542 6.395

TE
111 (pai) T
TMy;; (singlc) 6.734 6.705
. 6.975 0.924
TEy,, (pair) 6.954

104 EEE Antermas and Propogation Mogaane Vol. 42, No. 6. December 2000



Figure 2. The TE,, cigenmode for a rectangular cavity.

Figure 3. The TMy,,, eigenmaode for a circular cavity.

\"\Y

Figure 4. The TM, ;4 cigenmode for a circular cavity.

X
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the specified point (x,y,z), a straightforward operation, to com-
pute the wy (x, y,z) terms. But a problematic geomctrical issuc
emerges in a tetrahedral mesh: does the point (x,y,z) lie within
element i? This may need to be evaluated both for a large number
of elements per field point, and the search process then repeated for
each field point, so a reasonably efficient algorithm is clearly
required, The following algorithm has been used to determine this,
via a two-step procedure:

« Firstly, check if the cube defined by the extremal
coordinates of the nodes of element i contains the point

(x,.z). Mathematically, the requirement is that

Ymin SV £ Ymax and
min S Z S Zma - Here, X and X, are the minimum
and maximum x coordinates of the nodes; similarly for
y and z. This is a very fast check, since nothing need be
computed.

Xmin X S Xpax and

¥4

« If the point lies within this cube, compute the four
simplex coordinates 4;. Provided these lie in the range
(0,13, the point lies within the element.

Proof that all the simplex coordinates must lic in this range for the
point to be within the element follows simply from the gcometrical
property that each simplex coordinate is computed from a determi-
nant that is six times the (signed) volume of the tetrahedron
defined by the point in question and three other nodes of the ele-
ment. (It is not often made clear in the FE literature that the “vol-
ume” dcfined by the determinant, c.g., (2, p. 164}, is a signed
quantity. Even more confusingly, the literature often uses the real
volume and this quantity interchangeably. For points inside the
element, the signs cancel to produce positive values for the simplex
coordinates. The sign depends on the clockwise or counter-clock-
wise numbering of the nodes.) Usually, the simplex coordinates are
normalized by the signed volume of the element, so that 3 4 =1.
If a point lies outside the element, the “extra” volume thus contrib-
uting to some of the simplex coordinates must be cancelled by a
negaiive value of at least one other. If the point lies far from the
element, at least one simplex coordinate may also exceed 1.

This is demonstrated in two dimensions in Figure 1 for the
simplex coordinates associated with a point P, located either inside
or outside the element. (In this two-dimcnsional case, the determi-
nant defines twice the signed area, but otherwise the argument is
identical, and rather casier to see in two dimensions than in three).
Note that in the latter case, 4, and A, between them also comprise
the area that defines 4, ; the vertices defining 4;, 4,, and 4, are
{2,3,P}, {3,P,1}. and {P,1,2}, respectively. Clearly, for
Z/I, =1, A, must be negative to cancel the area already included
in Aand A;.

Therc arc some additional complexities that must be kept in
mind in the actual code. Firstly, the {inite precision of the calcula-
tions produces a value within & of 0 (or 1), where ¢ is the
machine precision (this is dependent on both the computer and the
choice of single- or double-precision storage); the code needs to
take this into account. Secondly, it is quitc possible for such field
points w lie on the faces between elements. In this case, cither the
search is stopped as soon as an element is found containing point

(x,y,z) and the field on this element is computed; or all elements

are scarched, and the field computed is the average of all the fields
on the faces of the connected elements. Due to the nature of espe-
cially the lowest-order constant-tangential/linear-normal basis
functions, it is possible for considerable field discontinuities to
exist on clement boundaries. However, these are not necessarily
incorrect, especially in the presence of different materials, where
the normal component must indeed be discontinuous, so one must
be cautious of simply blindly averaging!

Some visualization results, computed with an FE code
(FEMFEKO [28]) using the above post-processing algorithms are
presented in Figure 2 for the TE, , eigenmode in a rectangular

cavity [20]. The E, field component is shown. (Results for the
eigenvalues were presented in [20]; the present author’s code pre-
dicts the eigenvalues with similar accuracy.) The cavity dimen-
sions were 1 m x 0.5 m x 0.75 m, with PEC walls. The FE mesh
had 765 tetrahedral clements, with an average edge length of
0.177 m. The results shown used LT/QN clements, with 4162
degrees of freedom.

Results for a circular cavity, with radius | m and height 0.5 m
and PEC walls, are shown in Figures 3 and 4 for the two lowest
eigenmodes, TM;;, and TM, o, respectively. (The latter is degen-
crate; there is a pair of TM, ;o modes, corresponding to cosg and
sing variation, respectively. This is comoctly predicted by the
code; only one of these two modes computed is shown here.)
Again, the E, field component is shown. The FE mesh for this
example had 497 tetrahedral elements, with an average cdge length
of 0.323 m. The resulis shown use LT/QN elements, with 2242
degrees of freedom. It is also important to note that the cigenvalues
predicted by the code can be placed in one-to-one correspondence
with analytically known results {29, p. 214]; sec Table 1. As
expected with vector elements, the zero-approximate modes (of
which there are 314 for this mesh, the largest with value 0.06802)
do not thus corrupt the eigenvalue spectrum of interest.

9. Conclusion

The FEM is a powerful method, but implementing a three-
dimensional vector FEM code from scratch is not a trivial matter.
To produce a FEM code able to perform only the simplest cavity
eigen-analysis requires at least months of effort; fortunately, sub-
seyuent extensions can grow in an evolutionary fashion from the
initial work. This paper has discussed a number of theoretical and
practical issues, which are either not readily available in the litera-
ture, or rather obscure. It is hoped that this paper will simplify the
task of program development for others wishing to unlock the
potential of this method for the first time.
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