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8.1 Introduction

. >8.=58 numerical modeling of full-vector electromagnetic wave
_:amaym:ozm with arbitrary structures is difficult. Typical structures
of engineering interest have shapes, apertures, cavities, and material
compositions or surface loadings which produce near fields that can-
not vw resolved into finite sets of modes or rays. Proper numerical
Eom.mrzm of such near fields requires sampling at sub-wavelength res-
o?:w: to avoid aliasirg of magnitude and phase information. The
goal is to provide a self-consistent model of the mutual no:v:zm.ow the
electrically-small cells comprising the structure.

This orm&;mw reviews the formulation and applications of a candi-
m.m.g :E:m.:nm._ modeling approach for this purpose: the finite-
a_m.aamsn.m time-domain (FD-TD) solution of Maxwell’s curl equations.
FD-TD is very simple in concept and execution. However, it is re-
B.N:SZ« robust, providing highly accurate modeling predictions for a
wide variety of electromagnetic wave interaction problems. FD-TD is
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analogous to existing finite-difference solutions of scalar wave propa-
gation and fluid-low problems in that the numerical model is based
upon a direct, time-domain solution of the governing partial differen-
tial equation. Yet, FD-TD is a non-traditional approach to numerical
electromagnetics for engineering applications where frequency-domain
integral equation approaches have dominated for 25 years.

One of the goals of this chapter is to demonstrate that recent
advances in FD-TD modeling concepts and software implementation,
combined with advances in computer technology, have expanded the
scope, accuracy, and speed of FD-TD modeling to the point where it
may be the preferred choice for complex electromagnetic wave pen-
etration, scattering, guiding, and inverse scattering problems. With
this in mind, this chapter will succinctly review the following FD-TD
modeling validations and examples:

1. Electromagnetic wave scattering, two dimensions
a. Square metal cylinder, TM polarization
b. Circular muscle-fat layered cylinder, TE polarization
c. Homogeneous, anisotropic, square material cylinder
d. Circular metal cylinder, conformally modeled
e. Flanged metal open cavity
f. Relativistically vibrating mirror, oblique incidence
2. Electromagnetic wave scattering, three dimensions
a. Metal cube, broadside incidence
b. Flat conducting plate, multiple monostatic looks
c. T-shaped conducting target, multiple monostatic looks
3. Electromagnetic wave penetration and coupling in 2-D and 3-D
a. Narrow slots and lapped joints in thick screens
b. Wires and wire bundles in free space and in a metal cavity
4. Very complex three-dimensional structures
a. Missile seeker section
b. Inhomogeneous tissue model of the entire human body
5. Microstrip and microwave circuit models
6. Inverse scattering reconstructions in one and two dimensions

Finally, this chapter will conclude with a discussion of computing re-
sources for FD-TD and the potential impact of massively concurrent

machines.
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8.2 General Characteristics of FD-TD

Asstated, FD-TD is a direct solution of Maxwell’s time-dependent
curl equations. It employs no potential. Instead, it applies sim-
ple, second-order accurate central-difference approximations [1] for the
space and time derivatives of the electric and magnetic fields directly to
the respective differential operators of the curl equations. This achieves
a sampled-data reduction of the continuous electromagpnetic field in a
volume of space, over a period of time. Space and time discretizations
are selected to bound errors in the sampling process, and to insure
numerical stability of the algorithm [2]. Electric and magnetic field
components are interleaved in space to permit a natural satisfaction
of tangential field continuity conditions at media interfaces. Overall,
FD-TD is a marching-in-time procedure which simulates the contin-
uous actual waves by sampled-data numerical analogs propagating in
a data space stored in a computer. At each time step, the system of
equations to update the field components is fully explicit, so that there
is no need to set up or solve a set of linear equations, and the required
computer storage and running time is proportional to the electrical
size of the volume modeled.

Figure 1(a) illustrates the time-domain wave tracking concept of
the FD-TD method. A region of space within the dashed lines is se-
lected for field sampling in space and time. At time = 0, it is assumed
that all fields within the numerical sampling region are identically zero.
An incident plane wave is assumed to enter the sampling region at
this point. Propagation of the incident wave is modeled by the com-
mencement of time-stepping, which is simply the implementation of the
finite-difference analog of the curl equations. Time-stepping continues
as the numerical analog of the incident wave strikes the modeled tar-
get embedded within the sampling region. All outgoing scattered wave
analogs ideally propagate through the lattice truncation planes with
negligible reflection to exit the sampling region. Phenomena such as in-
duction of surface currents, scattering and multiple scattering, penetra-
tion through apertures, and cavity excitation are modeled time-step by
time-step by the action of the curl equations analog. Self-consistency
of these modeled phenomena is generally assured if their spatial and
temporal variations are well resolved by the space and time sampling
Process.

Time-stepping is continued until the desired late-tine pulse re-
Sponse or steady-state behavior is observed. An important example of
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Figure 1 Basic elements of the FD-TD space lattice: (a) Time-domain

wave tracking concept; (b) Lattice unit cell in Cartesian coordinates [1].
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the lav. _t is the sinusoidal steady state, wherein the incident wave g
assumed to have a sinusoidal dependence, and time-stepping is contin-
ued until all fields in the sampling region exhibit sinuscidal repetition.
This is a consequence of the limiting amplitude principle [3]. Extensive
numerical experimentation with FD-TD has shown that the number
of complete cycles of the incident wave required to be time-stepped
to achieve the sinusoidal steady state is approximately equal to the Q
factor of the structure or phenomenon being modeled.

Figure 1(b) illustrates the positions of the electric and magnetic
field components about a unit cell of the FD-TD lattice in Cartesian
coordinates [1]. Note that each magnetic field vector component is sur-
rounded by four circulating electric field vector components, and vice
versa. This arrangement permits not only a centered-difference analog
to the space derivatives of the curl equations, but also a natural geom-
etry for implementing the integral form of Faraday’s law and Ampere’s
Law at the space-cell level. This integral interpretation permits a sim-
ple but effective modeling of the physics of thin-slot coupling, thin-wire
coupling, and smoothly curved target surfaces, as will be seen later.

Figure 2 illustrates how an arbitrary three-dimensional scatterer
is embedded in an FD-TD space lattice comprised of the unit cells of
Fig. 1(b). Simply, the desired values of electrical permittivity and con-
ductivity are assigned to each electric field component of the lattice.
Correspondingly, desired values of magnetic permeability and equiva-
lent conductivity are assigned to each magnetic field component of the
lattice. The medija parameters are interpreted by the FD-TD program
as local coefficients for the time-stepping algorithm. Specification of
media properties in this component-by-component manner results in
a stepped-edge, or staircase approximation of curved surfaces. Conti-
nuity of tangential fields is assured at the interface of dissimilar media
with this procedure. There is no need for special field matching at me-
dia interface points. Stepped-edge approximation of curved surfaces
has been found to be adequate in the FD-TD modeling problems stud-
ied in the 1970’ and early 1980’s, including wave interactions with bi-
ological tissues [4], penetration into cavities [5,6], and electromagnetic
pulse (EMP) interactions with complex structures [7-9]. However, re-
cent interest in wide dynamic range models of scattering by curved
targets has prompted the development of surface-conforming FD-TD
approaches which eliminate staircasing. These will be summarized
later in this chapter.
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Figure 2 Arbitrary 3-D scatterer embedded in a FD-TD lattice.

8.3 Basic FD-TD Algorithm Details
a. Maxwell’s Curl Equations

Consider a region of space which is source-free and has constitutive
electrical parameters that are independent of time. Then, using the
MKS system of units, Maxwell’s curl equations are given by

OH |

Y td_ X r H (1)
oF 1 - o—

M = Mq X H - Mm va

where E is the electric field in volts/meter; H is the magnetic field
in amperes/meter; ¢ is the electrical permittivity in farads/meter; ¢
is the electrical conductivity in mhos/meter (siemens/meter); p is the
magnetic permeability in henrys/meter; and p' is an equivalent mag-
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netic resistivity in ohms/meter. (The magnetic resistivity term is pro-
vided to yield symmetric curl equations, and allow for the vOmm:uE@

of a magnetic field loss mechanism.) Assuming that ¢, 0,4, and o'
are isotropic, the following system of scalar equations is equivalent to
Maxwell’s curl equations in the rectangular coordinate system (z, y, z)

m%@ - WAWNN B m& - 't (%)
m%N _ w ANMH _ mmm< v (3¢)
mwa _ W Ammw B m%.@ v (4a)

The system of six coupled partial differential equations of (3) and
(4) forms the basis of the FD-TD algorithm for electromagnetic wave
interactions with general three-dimensional objects. Before proceed-
ing with the details of the algorithm, it is informative to consider one
important simplification of the full three-dimensional case. Namely,
if we assume that neither the incident plane wave excitation nor the
modeled geometry has any variation in the z-direction (i.e., all partial
derivatives with respect to z equal zero), Maxwell’s curl equations re-
duce to two decoupled sets of scalar equations. These decoupled sets,
termed the transverse magnetic (TM) mode and the transverse electric
(TE) mode, describe two-dimensional wave interactions with objects.
The relevant equations for each case follow

TM case (E.,H,, and H, field components only)

oH,  1,0E,
at ||:A3 +o'Hy) (5a)
oM,  1,0E,
o mAms ~ ' Hy) (5b)
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== - —-oF, 5
at A Oz Oy QMV (5¢)

TE case (H,, E;,and E, field components only)

xr m z
m% _ WA @w uv (6a)
w%mm _ IWAmMMN <v (6b)

b. The Yee Algorithm

In 1966, Yee {1] introduced a set of finite-difference equations for
the system of (3) and (4). Following Yee’s notation, we denote a space
point in a rectangular lattice as

(4,5,k) = (1Az,jAy kAz) (7a)

and any function of space and time as

F™(i,j,k) = F(iAz,jAy, kAz,nAt) (7b)

where Az, Ay, and Az are, respectively, the lattice space increments
in the z,y, and 2 coordinate directions; At is the time increment;
and i,7j,k, and n are integers. Yee used centered finite-difference ex-
pressions for the space and time derivatives that are both simply pro-
grammed and second-order accurate in the space and time increments,
respectively:

OF™(i,j.k) _ F"(i+3,5,k) = F*(i- ,5,k)
Oz Azx

+0(Ar?)  (8a)

OF"(i,j,k) _ F3(i,5,k) - F*~3(i, j,k)

Sl = ~ +0(At?)  (8b)
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To achieve the accuracy of (8a), and to realize all of the required
space derivatives of the system of (3) and (4), Yee positioned the com-
ponents of £ and H about a unit cell of the lattice as shown in Fig.
1(b). To achieve the accuracy of (8b), he evaluated E and H at alter-
nate half time steps. The following are sample finite-difference time-

stepping expressions for a magnetic and an electric field component
resulting from these assumptions

B g4 3k + 1) =

1-— mwmm.,.t\n\.»t\u\v%
M m..w.+~ 2,k+1/2 n— ..

1 4+ 20,i+1/2 k+1/2)A0 “Hy w?.w +3,k+ 1)
2u(ni+1/2,k+1/2)

DN
* i+ hk+ 1) PG I_H\N k+1/2)At )
HbITpEts) 1+ a5 41/2k+1/7)

[E3(ij+ 4,k +1) = Ep(i,5 + 4, k))/Az+

[EZ(5,k + 4) — EP(i,j + 1,k + 1)]/Ay

NM+-A~‘?~.,\Q+WV“ N.U_M_T,.?kn*.wV

At
+ . . 1y
mﬁsu.?k + Mv 1+

(10)

ntd . . n .
[ G+ 4k + 1) = By G~ 5k + 1))/ Aat
n+ .. n ..
4 G0s = bkt ) = BG4k 4 )y
With the system of finite-difference equations represented by (9)

and (10), the new value of a field vector component at any lattice point
depends only on its previous value and on the previous values of the
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components of the other field vector at adjacent points. Therefore,
at any given time step, the computation of a field vector can proceed
either one point at a time; or, if p parallel processors are employed
concurrently, p points at a time.

c. Numerical Stability

To insure the stability of the time-stepping algorithm exemplified
by (9) and (10), At is chosen to satisfy the inequality [2,10]
‘ IS g
G\%m < L0 1

7 (11)
< Cmax ADIW.“ + Dlueu + Dl—nqv
where cpm,; is the maximum electromagnetic wave phase velocity
within the media being modeled. Note that the corresponding nu-
merical stability criterion set forth in Egs. (7) and (8) of Reference [1]
is incorrect [2]. For the TM and TE two-dimensional modeling cases,
it can be shown [10] that the modified time-step limit for numerical
stability is obtained from (11) simply by setting Az = oo.

d. Numerical Dispersion

The numerical algorithm for Maxwell’s curl equations represented
by (9) and (10) causes dispersion of the simulated wave modes in
the computational lattice. That is, the phase velocity of numerical
modes in the FD-TD lattice can vary with modal wavelength, direc-
tion of propagation, and lattice discretization. This numerical disper-
sion can lead to non-physical results such as pulse distortion, artificial
anisotropy, and pseudo-refraction. Numerical dispersion is a factor in
FD-TD modeling that must be accounted to understand the operation
of the algorithm and its accuracy limits.

Following the analysis in [10], it can be shown that the numerical
dispersicn relation for the three-dimensional case represented by (9)
and (10) is given by

1\ ,(wAt\ 1, (kAc 1 . ,(kAy
AHV sin A 2 v! Az? sin A 2 v+.\v.e~ sin 2
Az

1 k
+Mum5~A Nm v (12)
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where kz,ky, and k. are, respectively, the z,y, and z components of
the wavevector; w is the wave angular frequency; and c is the speed of
light in the homogeneous material being modeled.

In contrast to the numerical dispersion relation, the analytical
dispersion relation for a plane wave in a continuous, lossless medium
is just

W’/ = k2 + k2 4 k2 (13)

for the three-dimensional case. Although, at first glance, (12) bears
little resemblance to the ideal case of (13), we can asily show that
(12) reduces to (13) in the limit as At,Az,Ay, and me..vw.: go to zero.
Qualitatively, this suggests that numerical dispersion can be reduced to
any degree that is desired if we only use a fine-enough FD-TD gridding.

To quantitatively illustrate the dependence of numerical disper-
sion upon FD-TD grid discretization, we shall take as an example the
two-dimensional TM case (Az = o0), assuming for simplicity square
unit cells (Az = Ay = §) and wave propagation at an angle a with
respect to the positive z-axis (k; = kcos a; ky = sina). Then, disper-
sion relation (12) simplifies to

2 . .
At
AIGM“V sin’ AE’IIM V = sin? A&m nwomQV + sin? Al\&mw::uv (14)

(14) can be conveniently solved for the wavevector magnitude, k, by
applying Newton’s method. This process is especially convenient if §
is normalized to the free-space wavelength.

Figure 3a provides results using this procedure which illustrate
the variation of numerical phase velocity with wave propagation angle
in the FD-TD grid [10]. Three different grid resolutions of the prop-
agating wave are examined: coarse (A/5); normal (A0/10); and fine
(X0/20). For each resolution, the relation cAt = 6/2 was maintained.
This relation is commonly used in two- and three-dimensional FD-TD
codes to satisfy the numerical stability criterion of (11) with ample
safety margin. From Fig. 3a, it is seen that the numerical phase ve-
locity is maximum at 45° (oblique incidence), and minimum at 0° and
90° (incidence along eitter Cartesian grid axis) for all grid resolutions.
This represents a numerical anisotropy that is inherent in the Yee algo-
rithm. However, the velocity error relative to the ideal case diminishes
by approximately a 4:1 factor each time that the grid cell size is halved,
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so that the worst-case velocity error for the normal resolution case is
only I.H.wﬁ, and only —0.31% for the fine resolution case.

) Figure 3(b) graphs the variation of numerical phase velocity with
grid resolution at the fixed incidence angles, 45° and 0°(90°). Again
.ﬁ-m relation cAt = 4/2 was maintained for each resolution. Here, :,
is seen that the numerical phase velocity at each angle of incidence
diminishes as the propagating wave is more coarsely resolved, even-
tually reaching a sharp threshold where the numerical phase velocity
goes to zero and the wave can no longer propagate in the FD-TD grid.
This represents a numerical low-pass filtering effect that is inherent in
the Yee algorithm, wherein the wavelength of propagating numerical
modes 5.5 a lower bound of 2 to 3 space cells, depending upon the
En.%ymp:oz direction. As a result, FD-TD modeling of pulses having
m.::& duration (and thus, infinite bandwidth) can result in progres-
sive pulse distortion as higher spatial frequency components propagate
more slowly than lower spatial frequency components, and very high
mvwa_p_. frequency components with wavelengths less than 2 to 3 cells
are am.gmn»mm. This numerical dispersion causes broadening of finite-
ms..uuro: Pulses, and leaves a residue of high-frequency ringing on the
trailing edges due to the relatively slowly propagating high-frequency
components. From Figs. 3(a) and 3(b), we see that pulse distortion can
be muoﬂ:ima by obtaining the Fourier spatial frequency spectrum of the
desired pulse, and selecting a grid cell size so that the principal spectral
noEvo_ﬂ.mz.am are resolved with at least 10 cells per wavelength. This
would limit the spread of numerical phase velocities of the principal
spectral components to less than 1%, regardless of wave propagation
angle in the grid.

.mz addition to numerical phase velocity anisotropy and pulse dis-
tortion mﬁonam, numerical dispersion can lead to pseudo-refraction of
E..ovvmwn_:m modes if the grid cell size is a function of position in the
grid. wzn.r variable-cell gridding would also vary the grid resolution of
Eowm.ymwrzm nhumerical modes, and thereby perturb the modal phase
<m_00;.% distribution. This would lead to non-physical reflection and
refraction of numerical modes at interfaces of grid regions having dif-
%mnoa cell sizes (even if these interfaces were located in free space),
._zm”.wm physical waves undergo reflection and refraction at interfaces
of dielectric media, having different indices of refraction. The degree of
non-physical refraction is dependent upon the magnitude and abrupt-
ness of the change of the modal phase velocity distribution, and can be
estimated by using conventional theory for wave refraction at dielectric

8.3 Basic FD-TD Algorithm Details 301

interfaces.

We have stated that, in the limit of infinitesimal At and §, (12)
reduces to (13), the ideal dispersion case. This reduction also occurs
if At, 6, and the direction of propagation are suitably chosen. For
example, in a three-dimensional cubic lattice, reduction to the ideal
dispersion case can be demonstrated for wave propagation along a lat-
tice diagonal (k, = k, = k, = k/V/3) and At = §/(cV/3) (exactly the
limit set by numerical stability). Similarly, in a two-dimensional square
grid, the ideal dispersion case can be demonstrated for wave propaga-
tion along a grid diagonal (k; = k, = k/v2) and At = §/(cv/2) (again
the limit set by numerical stability). Finally, in one dimension, the
ideal case is obtained for At = §/c (again the limit set by numerical
stability) for all propagating modes.

e. Lattice Zoning and Plane Wave Source Condition

The numerical algorithm for Maxwell’s curl equations defined by
the finite-difference system reviewed above has a linear dependence
upon the components of the electromagnetic field vectors. Therefore,
this system can be applied with equal validity to either the incident-
field vector components, the scattered-field vector components, or the
total-field vector components (the sum of incident plus scattered).
Present FD-TD codes utilize this property to zone the numerical space
lattice into two distinct regions, as shown in Fig. 4(a), separated by a
rectangnlar virtual surface which serves to connect the fields in each
region [11,12].

Region 1, the inner region of the FD-TD lattice, is denoted as the
total- field region. Here, it is assumed that the finite-difference system
for the curl equations operates on total-field vector components. The
interacting structure of interest is embedded within this region.

Region 2, the outer region of the FD-TD lattice, is denoted as
the scattered-field region. Here, it is assumed that the finite-difference
system for the curl equations operates only on scattered-field vector
components. This implies that there is no incident wave in Region 2.
The outer lattice planes bounding Region 2, called the lattice trunca-
tion planes, serve to implement the free-space radiation condition (dis-
cussed in the next section) which simulates the field sampling space
extending to infinity.

" The total-field /scattered-field lattice zoning illustrated in Fig. 4(a)
provides a number of key features which enhance the computational
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Figure 4 Zoning of the FD-TD lattice: (a) Total fleld and scattered
:m_.n_ regions [11,12]; (b) Near-to-far fleld integration surface located in
the scattered fleld region [12].

flexibility and dynamic range of the FD-TD method:

Arbitrary incident wave. The connecting condition provided at the
interface of the inner and outer regions, which assures consistency of
the numerical space derivative operations across the interface, simulta-
neously generates an arbitrary incident plane wave in Region 1 having
a user-specified time waveform, angle of incidence, and angle of polar-
ization. This connecting condition, discussed in detail in Coﬁ almost
completely confines the incident wave to Region 1 and yet is transpar-

ent to outgoing scattered wave modes which are free to enter Region
2.
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Simple programming of inhomogeneous structures. The required conti-
nuity of total tangential £ and H fields across the interface of dissimilar
media is automatically provided by the original Yee algorithm if the
media are located in a zone (such as Region 1) where total fields arec
time-marched. This avoids the problems inherent in a pure scattered-
field code where enforcement of the continuity of total tangential fields
is a separate process requiring the incident field to be computed at all
interfaces of dissimilar media, and then added to the values of the time-
marched scattered fields at the interfaces. Clearly, computation of the
incident field at numerous points along possibly complex, structure.
specific loci is likely to be much more involved than computation o
the incident field only along the simple connecting surface betweern
Regions 1 and 2 (needed to implement the total-field /scattered-field
zoning). The latter surface has a fixed locus that is independent of the
shape or complexity of the interaction structure that is embedded i1
Region 1.

Wide computational dynamic range. Low levels of the total field i1
deep shadow regions or cavities of the interaction structure are com
puted directly by time-marching total fields in Region 1. In a pur
scattered-field code, however, the low levels of total field are obtaine
by computing the incident field at each desired point, and then adding
to the values of the time-marched scattered fields. Thus, it is seen tha
a pure scattered-field code relies upon near cancellation of the inciden
and scattered field components of the total field to obtain accurate re
sults in deep shadow regions and cavities. An undesirable hallmark o
this cancellation is contamination of the resultant low total-field level
by subtraction noise, wherein slight percentage errors in calculatiny
the scattered fields result in possibly very large percentage errors i1
the residual total fields. By time-marching total fields directly, th:
zoned FD-TD code avoids subtraction noise in Region 1 and achieve
a computational dynamic range more than 30 dB greater than that fo
a pure scattered-field code.

Far-field response. The provision of a well-defined scattered-field re
gion in the FD-TD lattice permits the near-to-far field transformatior
illustrated in Fig. 4(b) [12]. The dashed virtual surface shown in Fig
4(b) can be located along convenient lattice planes in the scattered
field region of Fig. 4(a). Tangential scattered E and H fields compute:
via FD-TD at this virtual surface can then be weighted by the frec
space Green’s function and then integrated (summed) to provide th
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far-field response and radar cross section (full bistatic response for the
assumed illumination angle) [12-14). The near-field integration surface
has a fixed rectangular shape, and thus js independent of the shape or
composition of the enclosed structure being modeled.

8.4 Contour Path Interpretation
a. Usefulness

The Yee algorithm for FD-TD was originally interpreted as
direct approximation of the pointwise derivatives of Maxwell’s time-
dependent curl equations by using numerical central differences [1].
Although this interpretation is useful for understanding how FD-TD
models wave propagation away from material surfaces, it sheds little
light on what algorithm modifications are needed to properly model
the physics of fine geometrical features such as wires, slots, and curved
surfaces requiring sub-cel] spatial resolution. Modeling of such features
has become Increasingly important as confidence in the basic predictive
powers of FD-TD has grown.

Recent work has indicated that extension of FD-TD modeling to
wires, slots, and curved surfaces can be achieved by departing from
Yee’s original pointwise derivative interpretation. As shown in Fig. 5,
the new idea involves starting with a more macroscopic (but still local)
combined-field description based upon Ampere’s Law and Faraday’s
Law in integral form, implemented on an array of electrically small,
spatially orthogonal contours. These contours mesh (intersect) in the
manner of links in a chain, providing a geometrical interpretation of
the coupling of Ampere’s Law and Faraday’s Law. This meshing re-
sults in the filling of the FD-TD modeled space by a three-dimensional
chain-link array of intersecting, orthogonal contours. The presence
of wires, slots, and curved surfaces can be accounted by incorporat-
ing apprapriate field behavior into the contour and surface integrals
mEv_mszsnm Anmpere’s Law and Faraday’s Law at selected meshes,

and by deforming contour paths as required to conform with surface
curvature,

b. Equivalence to the Yee Algorithm in Free Space

We shall first demonstrate the equivalence of the Yee and contour
path interpretations for the free-space case [15]. For simplicity, FD-TD
expressions will be developed for only one field component in Fig. 5(a)
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Figure 5 Examples of spatially orthogonal contours in free space: (a
Ampere’s Law for E,; (b) Faraday’s Law for H, [15].
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an{ one field component in Fig. 5(b); extension to all of the rest will
beseen to be straightforward.

Applying Ampere’s Law along Cj in Fig. 5(a), and assuming that
the field value at a midpoint of one side of the contour equals the
average value of that field component along that side, we obtain

% || Il.l
y D. &.Wu = X H. &N_ AHMPV
rﬂ~ Qu

lij o .
WM\M €FE;(t,5,k)dS) ~ Hy(i,j — 4,k)Az + H,(i + },5,k)Ay

— Ho(4,5+ 4, k)Az — Hy(i — },5,k)Ay
(15b)
Now, further assuming that FE,(i,j,k) equals the average value
of E, aver the surface, $;; that Az = Ay = §; and that the time

derivative can be numerically realized by using a central-difference ex-
Pression, (15b) reduces o

ﬁmw.ru:.?w.. “.u - @MANT?\GV -

82
€0 At

— (15¢)
NNH+WT?N| W,\av - NNM.‘.WTTN'T .W.q\avn_..

nt+d . . +31 . )
L By L5 k) - By~ 1,5k
where the superscripts indicate field values at time steps n,n + w, and
n+1. Isolation of EF*!(i, j, k) on the left hand side then yields exactly
the Yee time-stepping expression for E, for the free-space case that was
obtained directly from implementing the curl # equation.

In an analogous manner, we can apply Faraday’s Law along con-
tour C, in Fig. 5(b) to obtain:

ad —_ — -
mwl\ mw.&.m‘nﬂl.x M.\.&NN me\v
n .m.m Qn

9

H\m E:Nc.ézmmwnlm%.;.:WEEIFQJL,SD@
2

+ Ex(i,7+ 4,k)Az + Ey(i — 4,5, k)Ay
(16b)
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ot | HE G k) = HETAG )]
0 At

(16¢)
[EP(i,j+ 3,k) = EXG,G — 3,k) +
)

| Ey(i-3.5,k) = E(i+ 3,5.k)

Isolation of Nﬁ?w?.&f on the left hand side yields exactly the Yee
time-stepping expression for H., for the free-space case, that was ob-
tained directly from implementing the curl £ equation with finite dif-
ferences.

c. Example 1: Application to the Thin Slot

To illustrate how the contour path interpretation provides the ba-
sis for FD-TD modeling of fine geometrical features requiring sub-cell
spatial resolution, we first consider the thin slot in a planar, perfectly-
conducting screen of finite size and thickness subjected to TE illumi-
nation [15]. Figure 6 illustrates the canonical slot geometry studied
here, and the Faraday’s Law contour paths, C;.C3, and C3, used to
derive special FD-TD algorithms for the longitudinal magnetic field
compornents, H;, located immediately adjacent to the screen.

The following briefly summarizes the assumptions concerning the
near-field physics that are incorporated into the Faraday’s Law models
of Fig. 6. First, for contour C; (away from the slot), field compo-
nents, H, and E,, are assumed to have no variation in the y direction
(perpendicular to the screen). Evaluated at the z midpoint of contour
Ci1,H,, and E, are assumed to represent the average values of their
respective fields over the full z interval. At contour C; (at the opening
of the slot), H, is assumed to represent the average value of the mag-
netic field over the entirety of the free-space part of ;. Here, E, is
again assumed to have no variation in the y direction, and E, is again
assumed to represent the average value over the full = interval. At
contour C3 (within the slot), H, is assumed to represent the average
value of the magnetic field over the full y interval, and H, and E, are
assumed to have no variation in the z direction (across the slot gap).
Finally, for C;,C3, and Cs3, the portions of the contours located within
the conducting screen are assumed to have zero electric and magnetic
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Figure 8 Faraday’s Law contour paths for a 2-D planar conduct
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fields.

After applying Faraday’s Law of (16a) for the three contours sub-
ject to the above assumptions, the following special FD-TD time-
stepping relations are obtained for the H, components immediately
adjacent to the screen

Away from the slot (contour Cy)

M —
M (z,00) - B ¥ (oym0)

At
(17a)
By~ $w) = Eg(e + $,50)] - (3 +0) - Ex(z,0 - §) -6
poé(3 + )
At the opening (aperture) of the slot (contour C3)
.NNM—L.WAHG‘@OV - NNHI*AHO‘QOV ~
At -
EXzo,v0 + 3)- 9 — EXNzo,y0 — £) -6+ (17b)

[E} (zo — §,%0) — E2 (%o + 5,30)]- (§ + @)
po - [6(3 +a)+9(5 - @)

Within the slot (contour C3)

0 (20,9) - B2 H(zo,) _ E2@oy+8)-9- EX(z0,y=$)-g
At - Hogd

(17¢)

In (17c}, we note that the slot gap distance, g, cancels on the right hand
side, reducing the time-stepping relation for H, in the slot to that of
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a one-dimensional wave (+y-directed) in free space. For completeness,
we also note that no magnetic or electric field components in the FD-
TD space grid, other than the H, components immediately adjacent
to the screen, require modified time-stepping relations.

The accuracy of this contour integral model implemented on a
coarse FD-TD grid (having 1/10 wavelength cell size) will be examined
in section 8.8a for two cases: (1) a straight slot in a thick conducting
screen; and (2) a U-shaped lapped joint in a thick conducting screen,
exhibiting resonant transmission and gap-field phenomena. Excellent
correspondence with high-resolution method of moments and FD-TD
numerical benchmarks will be shown.

d. Example 2: Application to the Thin Wire

A second illustration of how the contour path interpretation per-
mits incorporation of near-field physics (yielding special-purpose time-
stepping expressions that were not obvious from the previous pure
finite-difference perspective) is provided by considering coupling to a
sub-cell diameter wire [16]. Figure 7 illustrates the Faraday’s Law con-
tour path used to derive the special FD-TD algorithm for the circum-
ferential magnetic fields immediately adjacent to the wire. Although
only H, is shown, the analysis is easily generalized for the other adja-
cent, looping magnetic field components.

The following briefly summarizes the assumptions concerning the
near-field physics that are incorporated into the Faraday’s Law model.
First, the near scattered circumferential magnetic field components
and the near scattered radial electric field components are assumed
to vary as 1/r near the wire, where r is the distance from the wire
center. With r constrained to be less than 0.1 wavelength at any point
in C (by FD-TD spatial resolution requirements), the 1/r singularity
behavior of the scattered H, and E; fields is assumed to dominate the
respective incident fields, so that the total H, and E; fields also take
on the 1/r singularity. Finally, the near total H, and the near total
E, fields, evaluated at the z midpoint of the contour, are assumed
to represent the average values of their respective fields over the full
z interval. These assumptions can be concisely summarized by the
following expressions, assumed to apply on and within contour C of
Fig. 7

8.4 Contour Path Interpretation 31
Thin (_.../ Incident field componests: E,, Hy (TM case)
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Figure 7 Faraday’s Law contour path for thin-wire model [16’

z

6 s .
Hy(z,z) ~ QQAM.NoV . Au N+er-(2-2)

6 6 6. (8)
NwHAS‘Nc n*n Mv >~ N_HAM,NQ u_u Mv ﬂ

E,(0,2)=0

E.(8,z) ~ E.(6,20) - [1 + ¢2 - (2 = 20)] (18d

where ¢; and ¢, are arbitrary constants that need not be known.
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Using the field expressions of (18a)-(18d), we can now apply Fara-
day’s Law of (16a) along contour C. We find that the 1/z variations in
Hy and E; yield natural logarithms. Further, the linear, odd symme-
try variation in z assumed for H, and E, integrates out. This yields
the following expression

+1 _1
NNH mA.w..NoleNW u.Aquov ~
At -

[E2(§,20 = §) = E2(8,20 + §)] - 11n () + E2(6,2)
podin (£)

where ry (assumed to beless than 0.5 §) is the wire radius. Isolation of

m&iw@,w& on the left hand side of (19) yields the required modified
time-stepping relation. As stated, the analysis is easily generalized
to obtain similar time-stepping relations for the other circumferential
magnetic field components immediately adjacent to the wire. It should
be noted that no other magnetic or electric field components in the FD-
TD space lattice require modified time-stepping relations. All other
field components are time-stepped by using the ordinary free-space
Yee algorithm of section 8.3.

The accuracy of this contour integral model implemented on a
coarse FD-TD grid will be examined in section 8.8b for four cases:
(1) TM illumination of an infinitely long wire over a very wide range
of wire radius; (2) broadside illumination of a two-wavelength long
(antiresonant) dipole; (3) broadside illumination of a four-wire bundle
where the entire bundle diameter is less than one space cell; and (4)
coupling to a single wire and a wire-pair within an aperture-perforated
metal cavity exhibiting a moderate-Q (30 to 80) resonant response.
Excellent correspondence with either method of moments numerical
results or experimental data will be shown.

(19)

8.5 Radiation Boundary Conditions

A basic consideration with the FD-TD approach to solve electro-
magnetic field problems is that most such problems are usually consid-
ered to be “open” problems where the domain of the computed field
is ideally unbounded. Clearly, no computer can store an unlimited
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amount of data, and therefore, the field computation zone must b-
limited in size. The computation zone must be large enough to enclos:
the structure of interest, and a suitable boundary condition on th.
outer perimeter of the computation zone must be used to simulate th.
extension of the computation zone to infinity. This boundary conditios
suppresses spurious reflections of outward-propagating wave analogs t«
some acceptable level, permitting the FD-TD solution to remain valic
for all time steps (especially after spurious reflected wave analogs re
turn to the vicinity of the modeled structure). Outer lattice boundar:
conditions of this type have been called either radiation boundary con
ditions (RBC’s), absorbing boundary conditions (ABC’s), or lattic:
truncation conditions.

The radiation condition cannot be directly obtained from the nu
merical algorithms for Maxwell’s curl equations defined by the finite
difference systems reviewed in section 8.3. Principally, this is becaus:
these systems employ a central-difference scheme which requires know]
edge of the field one-half space cell to each side of an observation point
Central differences cannot be implemented at the outermost lattic:
plane since, by definition, there is no information concerning the field
at points one-half space cell outside of the outermost lattice plane.

This section will develop the theory and numerical implementatio
of a very useful radiation condition in Cartesian coordinates. Th
radiation condition is appropriate for effectively truncating a two- o
three-dimensional FD-TD space lattice with an overall level of spuriou
reflections of 1%-5% for outer lattice planes located 10-20 space cell
from a target surface. The radiation condition will be derived using -
recent theoretical approach, wave equation factoring. An approach t.
improvement of the currently used radiation boundary condition wil
also be summarized.

a. One-Way Wave Equations |

A partial differential equation which permits wave propagatios
only in certain directions is called a “one-way wave equation.” Figur:
8 shows a finite, two-dimensional Cartesian domain, €2, on which th:
time-dependent wave equation is to be simulated. In the interior o
2, a numerical scheme (such as the algorithms of section 8.3) whicl
models wave propagation in all directions is applied. On 9%, the oute
boundary of Q, only numerical wave motion that is outward from Q i
permitted. The boundary must permit outward propagating numerica
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I

Figure 8 Numerical plane-wave analog incident upon left grid boundary
of & 2-D Cartesian computational domain.

wave analogs to exit  just as if the simulation were performed on a
computational domain of infinite extent. A scheme which enacts a
one-way wave equation on dQ for this purpose is called a radiation
boundary condition (RBC).

b. Derivation by Wave Equation Factoring

The derivation of an RBC whose purpose is to absorb numerical
waves incident upon the outer boundary of a finite-difference grid can
be explained in terms of operator factoring. For example, consider the
two-dimensional wave equation in Cartesian coordinates

1
~\HH+QS\| GIN.Q: ”c AMOV

where U is a scalar field component; the subscripts zz, yy, and tt denote
second partial derivatives with respect to z,y, and ¢, respectively; and
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c is the wave phase velocity. The partial differential operator here is

1
L m\bw + bw - Mmbw ,y (21a
which uses the notation U« * \W\w i [- ;.mym.,wqu\ Wx - rf,ﬁ ; I l,\_
9 o' ik

2 _ . D2 = . p? =
baﬂ%. bcnlﬂ. bsuyﬂ (21b

The wave equation is then compactly written as
LU=0 (22

The wave operator, L, can be factored in the following manner:

LU=LYL U =0 (232

where L~ is defined as

I-=p, -2t /i (231

with
§S=— (23«

The operator, L*, is similarly defined except for a “ 4 ” sign befor
the radical.

Engquist and Majda [17] showed that at a grid boundary, say :
z = 0, the application of L~ to the wave function, U, will exact]
absorb a plane wave propagating toward the boundary at an arbitrar
angle, 8. Thus,

L7U =0 (2

applied at z = 0 functions as an exact analytical RBC which absor!
wave motion from the interior of the spatial domain, Q. The operato
L*, performs the same function for a plane wave propagating at a
arbitrary angle toward the other z boundary in Fig. 8 at z = h. Th
presence of the radical in (23b) classifies L~ as a pseudo-differenti:
operator that is non-local in both the space and time variables. This
an undesirable characteristic in that it prohibits the direct numeric:
implementation of (24) as an RBC.
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Approximations of the radical in (23b) produce RBC’s that can be
implemented numerically and are useful in FD-TD simulations. The
numerical implementation of an RBC is not exact in that a small
amount of reflection does develop as numerical waves pass through
the grid boundary. However, it is possible to design an RBC which
minimizes the reflection over a range of incident angles. The Mur
RBC, used in current FD-TD electromagnetic wave codes, is simply a
two-term Taylor series approximation to the radical in (23b), given by
[11]

1
V1-82~1- m% (25a)

Substituting (25a) into (24), we obtain

AF _ D mclwv: = (25b)

Multiplying (25b) through by Dy, and identifying the differential op-
erators as partial derivatives, we obtain the following approximate,
analytical RBC which can be numerically implemented at the z = 0
grid boundary

1 c .
Urt — MQ:+M~\.§HO (26)

Equation (26) is a very good approximation to the exact RBC of (24)
for relatively small values of S = ¢D, /D, which satisfy the Taylor series
approximation of (25a). This is equivalent to saying that (26) presents
a nearly reflectionless grid truncation for numerical plane wave modes
which strike the z = 0 grid boundary at small values of the incident
angle, 6. Analogous approximate, analytical RBC’s can be derived for
the other grid boundaries

1

U, + MQ: - WQ_E =0, z = h boundary (27a)
1 c

ch - MQ: + MQHH =0, y=0 UogbﬂmvH% ﬁw.N_UV

1
Qﬁ + MQ: - WQHH =0, y=h boundary A&ﬂnv
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For the FD-TD simulation of the vector Maxwell’s equations,the RBC’
of (26) and (27) are applied to individual Cartesian components of ]
or H that are located at, and tangential to, the grid boundaries.

The derivation of RBC’s for the three-dimensional case follows th
above development closely. The wave equation, given by

QHG.TQQQ..TQ«NN - .Olu.&lq: =0 Awmw

has the associated partial differential operator
1
smcw+bw+uw|mmbw (28b

L can be factored in the manner of (23a) to provide an exact radiatio
boundary operator, L~, having the same form as that of (23b), bu
with § given by

1

el )] e

Again, L~ applied to the scalar wave function, U, at the z = 0 gri
boundary will exactly absorb a plane wave propagating toward th
boundary at an arbitrary angle.

Using the Taylor series approximation of (25a), we obtain an aj
proximate RBC at z = 0 in differential-operator form

=~ 7 T2p, * 2D,
Multiplying (29) through by Dy, and identifying the differential ope
ators as partial derivatives, we obtain the corresponding approximat
analytical RBC which can be numerically implemented at the z =
lattice boundary

Ab D, cD? abquuo (@

1 c c
Uzt — MQ:.*. MQE\.T MQNNHQ Aw_

Equation (30) is a very good approximation of the exact RBC of (2
for relatively small values of § given by (28c). This is equivalent :
saying that (30) presents a nearly reflectionless lattice truncation f
numerical plane wave modes which strike the z = 0 lattice bounda:
close to broadside. Analogous approximate, analytical RBC’s can |
derived for the other lattice boundaries:
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1 ‘v ‘U,, =0 = hboundar (31a)
QH~+MQ:IM~S\I.M zz — U, T = y

Uye — ~Ust + “Uss+ 2U.. =0, y=0boundary (31b)
(44

U+ 2U— SUpe = SU. =0, y=hboundary  (31¢)
v le 2 2
1 c c _ 31d)
Uyt — =Un + MQHB + MQS\ =0, z= OTOﬁb&@Hw A
c
U + WQ: - msa - WQ_E =0, 2z = hboundary (31e)
c .

For the FD-TD simulation of the vector Maxwell’s equations, the
RBC’s of (30) and (31) are applied to individual Cartesian compo-
nents of E or H that are located at, and tangential to, the lattice
boundaries.

Equations (26) and (27), representing approximate RBC’s for a
two-dimensional grid, and (30) and (31), representing approximate
RBC’s for a three-dimensional lattice, have been found to be very
effective when implemented using the differencing scheme proposed v%
Mur (discussed below). These RBC’s truncate an FD-TD space grid
or lattice with an overall level of spurious reflections of only 1%-5% for
arbitrary targets, if the outer grid or lattice planes are located Elwo
space cells from the target surface. This level of suppression of spurious
reflections has been found sufficient to permit highly accurate compu-
tational modeling of scattering. For example, the radar cross section of
three-dimensional targets spanning 9 wavelengths (96 space cells) has
been modeled with an accuracy of 1 dB over a 40-dB dynamic range
using an FD-TD space lattice having outer planes located os._w 0.75
wavelength (8 cells) from the target surface, as is shown in section 8.7.
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Figure 9 Points near the r=0 boundary used in the Mur differencin
scheme.

¢. Mur Differencing Scheme

A simple and successful finite-difference scheme for the two-tern
Taylor series RBC'’s of (26), (27) and (30), (31) was introduced by Mu
[11]. For clarity, this scheme is illustrated for the two-dimensional gri
case at the z = 0 grid boundary. Referring to Fig. 9, W™(i,7) rep
resents an individual Cartesian component of E or H that is locate
at, and tangential to, the grid boundary at z = 0. The Mur schem:
involves implementing the partial derivatives of (26) as numerical cen
tral differences expanded about the auxiliary W component, S\:Awl.v
located one-half space cell from the grid boundary at (0,4). In the firs
step of the derivation of the Mur scheme, the mixed partial 2 and

derivatives on the left hand side of (26) are written out using centra
differences
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nt1 iy dw—l oy .
mSMH Awu&vl ,%.s.lAMfwv Awwm‘v
Wt =
(3.4m) 2At

?:::.:-61;5; | ?,Lcs's.-,ss_
Az Az

2At

Next, the partial ¢ derivative on the left hand side of (26) is written

out as an average of time derivatives at the adjacent points (0,5) and
(1,7)
1p*w™ >wr
= — | — — y Hv
S\:_&Lé wﬁ ot? (0,5) + ot2 (1,9)

1 W10, 5) — 2W™(0,5) + W™-1(0, 5) (32b)
= mﬁ At?
1

W ) = 2Wn(1,5) + W11, )
t At?

And, the partial y derivative on the left hand side of (26) mm written n.ucﬂ
as an average of y derivatives at the adjacent points (0,5) and (L, 4)

179?wn Pwn
= — ; H‘
g@e—AWL..Sv M —H %Qn AOTNV + lll%@w A .NL

(32¢)

= 1Wr(0,5 4+ 1) - 2w n(0,5) + Wr(0,5 - 1)
B m— Ay?

Wr(Lj+ 1) - 2Wn(1,5) + W*(1,j - :_
+ A

8.5 Radiation Boundary Conditions

Substituting the finite-difference expressions of (32) into (26) and
ing for W"+1(0, 5), we obtain the following time-stepping algorith;
components of W along the z = ) grid boundary which implen
the Taylor series RBC of (26)

. _ .\, CAl— Az . ne
wnrtl0,5) = —wn 1(1,5) + ALT Ds_%i_?: + W o,

2Azx n . " .
t AT Az V(0,5) + Wr(1, )]

(cAt):Az Ny s —
+ Ay (Al F A1V (05 +1) —2W™(0,5) + wr(o, j

WAL+ 1) - 2w (1, 5) + wr(r - 1)]

For a square grid, Az = Ay = 4, and the Mur RBC at X =0 ca
written as

cAt—-§

n+1 Y — _un-1 .
w Ac..‘vl w Q?wv.*.abn.*.m

W1, 5) + w10, )

26
At s W0,5) + wr(, )]

+

TR 1= 2W™(0,5) + Wr(0,j - 1)
2%(cAt + 6) »J " &

FWILI+ 1) - 2wn(1,5) + wr(nj - 1)]
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Analogous finite-difference expressions for the Mur RBC at each of
the other grid boundaries, z = h,y = 0, and y = h, can be derived
by substituting into (27a), (27b), and (27c), respectively, in the same
manner. More simply, these Mur RBC’s can be obtained by inspection
from (33) and (34) using coordinate symmetry arguments.

The derivation of Mur finite-difference expressions for the radia-
tion boundary condition in three dimensions follows the above devel-
opment closely. For clarity, the Mur scheme is again illustrated at the
z = 0 lattice boundary, with Fig. 9 now representing individual Carte-
sian components of E or H located in lattice plane z = kAz. Here,
the Mur scheme involves implementing the partial derivatives of (30)
as numerical central differences expanded abous the auxiliary W com-
ponent, W™(1 j k), located one-half space cell from the grid boundary
at (0,4,k). The partial derivatives, W,,, Wy,, and W,y are identical in
form to (32a), (32b), and (32¢), respectively, and are evaluated in lat-
tice plane 2 = kAz. The partial derivative, W,,, is expressed as an
average of z derivatives at the adjacent points (0,7, k) and (1,7,k)

1ro*wn I>wr
=3[ 030+ S5 (1,5.)

w [
“N3ikn) 2

=

E«\ﬂ\sﬁcfw@\n + Hv | Mvﬂ\w_ﬁo..w., \ﬂv + «\«\amcu.w.,\n .I Hv Awmv
Az?

B =

Wr(1,5,k+1) = 2W™(1, 5, k) + W(1, 5, k — 1)
+ Az _

Substituting these finite-difference expressions into (30) and solving
for Wn+1(o, 5, k), we obtain the following time-stepping algorithm for
components of W along the z = 0 lattice boundary which implements
the Taylor series RBC of (30)
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wnt ;. k) = W=y k) + At - Ag

abs + D& :\w\:}_..:.u—..w.u xqv

n-1 . 2Az
OB W,k 4w k)]

(cAt)’ Az
S Av AT —— W0, "0, ;
MDQMAQDNATDHVHS\ Acfwnfuv\ﬂvqu\«\ ﬁogungn*.S\:AOublH.

PV LI LE) = 21,4, 1 wn (s,

+ (cAt) Az
—_— T n . n .
2822(cAT T Ag) V(05 k + 1) - 2wn(0,j &) 4 w0,k —

LGk 1) =21, k) 4w g 1)

For a cubic lattice, Az = Ay = Az — (3
can be written ag y # =4, and the Mur RBC at z =

W0, 5, k) = —Whly gy, CAL=§
(1,4, :33&

(W1, 5, k)

26
ALV O0.5.k) + W, 5, k)

+ W0, 5,k)] +

(cAt)?

P 28t + 1,k) 4w, 4 4 W™(0,j - 1,k)

WL+ 1k) ~ aWn(1, 5 k) 4 W™ML7 ~ 1L,k) + W0, 5,k + 1)
W05k~ 1) £ wr(r, g+ D+ W15,k - 1))

(37)
r RBC at each of the
= O, and 2 = \wu can

Analogous finite-difference expressions for the My
other laitice boundaries, z = hyy =0,y =4 »
2 - b
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Figure 10 Points near the £ = 0, ¥ = 0 grid corner used in the special
corner radiation boundary condition (square grid case).

be derived by substituting into (31a)-(31e), respectively, in the same
manner. More simply, these Mur RBC’s can be obtained by inspection
from (36) and (37) using coordinate symmetry arguments.

d. Special Corner RBC

Upon inspecting (33) and (36), it is clear that the Mur finite-
difference scheme for the two-term Taylor series RBC’s cannot be im-
plemented for field components located at grid corners, since some of
the necessary field data used in the Mur expressions at these points is
outside of the grid and not available. It is necessary to implement a
special corner radiation boundary condition at these points which: (1)
utilizes available field data in the grid; (2) yields acceptably low levels
of reflection of outgoing numerical wave modes; and (3) is numerically
stable.

Figure 10 illustrates the two-dimensional grid geometry for a sim-
Ple and stable special corner RBC used successfully since 1982 for a
wide variety of two- and three-dimensional FD-TD simulations begin-
ning with that of [12]. The special corner RBC uses a first-order ac-
curate propagation argument wherein the value of a corner field com-
ponent, for example W(0,0), is taken to be just the time-retarded
value of an interior field, W, located along a radial line connecting
the corner point to the center of the grid. This propagation argument

assumes that each scattered numerical wave mo. s radially out
at the corner point. For simplicity, we further assume that the rel
cAt = §/2is maintained, so that if W is located exactly one cell-w
6, inward along the radial line, the time retardation of the out;
numerical wave in propagating from W to W (0,0) is exactly two
steps. Overall, the special corner RBC s given by

W™1(0,0) = fragiar - W

where f,adia1 is the attenuation factor for the radially outgoing v
In two dimensions, we have from Fig. 10

ot = A&MH,H va

=N

W' = (1 =sina)(1 ~ cosa) W™=1(0, 0)
+ (1 - sin a)cosa W™1(1,0)
+sin (1 - cos ) W"1(0, 1)
+sina cosaWn™=1(1,1)

where deenger is the radial distance, in cell-widths, from W to the ce
of the grid, and « is the azimuth angle of the radial line at w(o.
Zo.? that the value of W" ! s determined by simple linear inter
lation of the four surrounding field values, including W (0,0), at t

step n — 1. Extension to three dimensions is straightforward, yield
for Wnt1(0,0, k)

\:&EH A &nM“.H Hv (4
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W™ = (1 - sinB)(1 - cos B sin a)(1 - cos B nOmDvﬁ:LAo,PS
+ (1 ~ sin 8)(1 — cos B sin @) cos 8 oOmQﬂﬂ:LC,ovS

+ (1 - sin 8) cos § sin a (1 — cos 8 oOvavlvﬂ:LAc,rE

+ (1 — sin B) cos? 3 sin oOvalﬁl_L:, 1,k)

+ sin (1 — cos § sina)(1 — cos B nOvaﬁl_Ao,c,\n +1)

+ sin B(1 — cos (3 sin a) cos § nomQ%:LC.oLn +1)

+ sin 3 cos 8 sina (1 — cos 8 oOva—\l-\ualAcL,k+ 1)

+sin B cos? 3 sina oompﬂq\uaiﬁ,fk +1)

(40b)
where J3 is the elevation angle of the radial line at W0, 0,k). Here, note
that the value of W™ is determined by simple linear interpolation

of the eight surrounding field values, including W(0,0,k), at time step
n — 1. Special RBC’s for field components along the other corners of
a three-dimensional lattice can be obtained by inspection from (40)
using coordinate symmetry arguments, and properly defining angles o
and f.

e. Generalized and Higher-Order RBC’s

Trefethen and Halpern [18] proposed a generalization of Em Z.co.
term Taylor series approximation to the radical in (23b), considering
the use of the rational function approximation

V1= 82~ r(8) = msﬂ% (41)

on the interval [-1,1], where p,, and g, are polynomials in § of %mwmm
m and n, respectively; and r($) is said to be of type TP:V With
S = ¢eD,/ Dy, the [-1,1] approximation interval on § is equivalent to
approximation of the exact one-way wave equation of (24) along the
T = 0 grid boundary for the range of incident wave angles § = —90°
to 6 = +©Oo .

For example, by specifying r(S) as a general (2,0) approximant,
the radical is approximated by an interpolating polynomial of the form

V1 - 5%~ py+ py§? (42a)

8.5 Radiation Boundary Conditions
resulting in the general second-order, approximate, analytical R1

Ust — wq., ~pc Uy =0 (

The choice of the coefficients, py and p,, is determined by the me
of interpolation that is used. Standard techniques such as Padé, |
square, or Chebyshev approximation are applied with the goal ¢
terpolating the radical optimally over the [-1, 1] range of S, the
producing an approximate RBC whose performance is good over a
rarge of incident wave angles. Mur’s two-term Taylor series ap;
imation of (25a) is now seen in a more general sense as a Padé |
interpolant, i.e., with coefficients Po=+1 and p;, = lw in (42b).

Higher-order rational function approximations to the /T -
term were proposed in [18] as a means to derive an approximate |
having good accuracy over a wider range of incident wave angles 1
that possible with (42). For example, the use of the general type (
rational function

2
VI—5t s ot mS "

o + ¢25°
gives the general third-order, approximate, analytical RBC

90 Uzt + Sa» Qaee - E'ao Ut - p2c Q:E =0 2

Appropriate selection of the P and ¢ coefficients in (43) produces
ious families of RBC’s, as suggested in (18]. For example, gy = p,
l,p; = Iw, and ¢; = lw gives a Padé (2,2) approximation in (4
with the resulting RBC functioning better than (26) for numer
waves impacting the z = ( grid boundary at all angles. Figure
depicts two ways of quantifying the improved performance of the P.
(2,2) RBC relative to Mur’s Padé (2,0) condition [19,20). In Fig. 11¢
the theoretical numerical wave reflection coefficient is plotted as a fu
tion of angle of incidence for the two Padé RBC’s. In Fig. 11(b), the
tal squared-error in a test grid due to imperfect RBC’s (generated b
smooth, finite-duration, cylindrical outgoing pulse centered in the gr
is plotted as a function of time-step number for the two RBC’s. We.
that the theoretical improvement of reflection coefficient for the Pa
(2,2) RBC (most pronounced near normal incidence, 0°) translates
about a 10:1 actual reduction of total error energy in the test g
as the outgoing pulse propagates radially through the Cartesian g
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Figure 11 Improved performance of the Padé (2,2) RBC relative to the
Mur condition: (a) Theoretical reflection coefficient; (b) Total squared-

error in a test grid [19,20].

boundaries. This reduction in grid noise is worthwhile, permitting in
principle extension of FD-TD modeling to targets having correspond-
ingly reduced radar cross section. As a consequence, the Padé (2,2)
RBC and similar higher-order conditions are currently being studied
as potential replacements for the long-used Mur RBC.

8.¢ FD-TD Modeling Validations in 2-D

8.6 FD-TD Modeling Validations in 2-D

Analytical and code-to-code validations have been obtained
tive to FD-TD modeling of electromagnetic wave scattering for a
variety of canonical two-dimensional structures. Both convex an«
entrant (cavity- type) shapes have been studied; and structure mat
compositions have included perfect conductors, homogeneous and i
mogeneous lossy dielectrics, and anisotropic dielectric and perme
media. Selected validations will be reviewed here.

a. Square Metal Cylinder, TM Polarization

Here, we consider the scattering of a TM-polarized plane v
obliquely incident upon a square metal cylinder of electrical size k,
2, where s is the side width of the cylinder [12]. The square FD
grid cell size is set equal to s/20, and the grid truncation (radia
boundary) is located at a uniform distance of 20 cells from the cyli
surface.

Figure 12 compares the magnitude and phase of the cylinder
face electric current distribution computed using FD-TD to that ¢
puted using a benchmark code which solves the frequency-domain
face electric field integral equation (EFIE) via the method of mom:
(MOM). The MOM code assumes target symmetry and discretizes «
half of the cylinder surface with 84 divisions. The FD-TD compt
surface current is taken as 7 x Han, where 7i is the unit normal ve.
at the cylinder surface, and Hy,, is the FD-TD value of the magn
field vector component in free space inmediately adjacent to the cy
der surface. From Fig. 12, we see that the magnitude of the FD-
computed surface current agrees with the MOM solution to better t
+1% (£ 0.09 dB) at all comparison points more than 2 FD-TD «
from the cylinder corners (current singularities). The phase of the ]
TD solution agrees with the MOM salution to within £3° at virtu.
every comparison point, including the shadow region.

b. Circular Muscle-Fat Layered Cylinder, TE Polarization

Here, we consider the penetration of a TE-polarized plane w
into a simulated biological tissue structure represented by a 15 cm
dius muscle-fat layered cylinder [21]. The inner layer (radius = 7.9 ¢
is assumed to be comprised of muscle having a relative permittivity
72 and conductivity of 0.9 S/m. The outer layer is assumed to



