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Figure 4.23 Geometry of strip capacitor.

the Gaussian contour to calculate the total charge, it is numerically preferred o take
it along the finite difference mesh, midway between the center and outer conductors.
After you write your program, you may compare your results with those given in Table
4.2, which illustrates the variation of C with the width of the center strip W and the
dielectric constant e;.

TABLE 4.2 CAPACITANCE PER UNIT LENGTH pF/m FOR VARIOUS VALUES OF W AND ¢,

Strip Teflon Rexolite
width W (cm) € = 2.05 € = 2.65 Air
0.558 58.97 61.83 53.86
0.7145 67.62 70.51 62.34
0.8733 76.717 79.72 71.29

4.9 NUMERICAL SOLUTION OF ELECTROSTATIC
PROBLEMS—METHOD OF MOMENTS

In section 4.3, we introduced the concept of electric potential and obtained integral
equations that relate the potential to a given charge distribution. For example, if p,(r’)
is a surface charge distribution, it is shown that &(r) is given by

1 p,ds’
®(r) = oo f e (4.59)
where |r — r'| is the distance from the charge distribution r’ to the point r at which the
potential @ is to be evaluated. In all the examples we solved to illustrate the application
of equation 4.59, we assumed the charge distribution in simple geometries and evalu-
ated equation 4.59 to calculate ¢ at specific locations. In many engineering problems,
including the determination of capacitance of a system of conductors of complex
geometry, the charge distribution is not known and instead the potentials of the
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conductors are known. We wish to solve for the charge distribution in equation 4.59
from given potentials on conductors. To emphasize the importance of developing th;g
numerical solution procedure, we reexamine the problem of determining the capacj-
tance of a parallel plate capacitor discussed in example 4.7. It is shown that under the
assumption of having infinitely large parallel plates, that is, the dimensions of the plates
are much larger than the separation distance, we found that the capacitance is given
by

€A
d

where the total separation between the plates d = d, + d, and the medium is assumed
air €, = €; = €. As the separation d increases, the parallel plate approximation be.
comes less and less accurate because of the fringing field effects. Figure 4.24 shows the
variation in the capacitance C as a function of the separation distance d. It is shown
that as d reaches the side length w of the square parallel plate capacitor, C becomes
more than three times larger than C,, which is based on the infinite parallel plate
assumption. This is certainly a significant difference, and more care should therefore
be taken in calculating C. The problem is if such a simplifying assumption is not used,
it is difficult to relate the potential to the charge distribution in a straightforward
manner. Instead, numerical solutions should be used. We will illustrate the method of
moments solution procedure by solving the following examples.
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Figure 4.24 Variation of parallel plate capacitance with the increase of the separa-
tion distance 4.
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EXAMPLE 4.16

Consider a cylindrical conductor of radius a and length L. If the conductor is kept at a
constant potential of 1 V, determine the charge distribution p, on its surface.

Solution

The geometry of the cylindrical conductor is shown in Figure 4.25. The potential at any
point r in space is related to the charge distribution p,(r’) by

1 ps(r’)ds’
4me, Js |r —r'|

P(r) = (4.60)
To help us solve this problem numerically, we divide the conductor into N small sections.
These sections are assumed to be sufficiently small so that the charge distribution is

constant in each. Equation 4.60 then reduces to

E P Bsi (4.61)

411‘6.,,-1 r-—

Figure 4.26 shows the sectioned conductor and total charge (psi As;) on each section.

Equation 4.61 is an equivalent representation of the potential ® at an observation point
r owing to N point charges (p,. As;) located at the center points (r/) of the N sections. The
surface area of each section is As; = 2waA¢;, where A¢; = L/N is the length of each section.
In equation 4.61, the N values of the charge density p,;,i = 1, ..., N are unknown. In other
words, equation 4.61 is one equation in the N unknown values of p,;. To determine these
unknowns, we need N equations, which may be obtained by enforcing the validity of
equation 4.61 at N points at which the potential ® is known. Well, we know that ® = 1V
on the conductor. This means that & = 1V at the N centers of the sections. Therefore,
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Figure 4.25 Geometry of straight
conductor at potential ® = 1 V.
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Figure 4.26 The potential at point
P resulting from a point charge

psi As; located at the center of the
ith section.
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we may obtain the N desired equations by evaluating & = 1 V at the N centers of the
sections shown in Figure 4.26. Hence,

-
1 Ps1 As, Ps2 As, Ps3 Asy psn Asy ]
1= + + + e e TR
47e., _lx; - Xll ltl - le 111 - xal lxl - le
1 [- pa Asy P52 As2 V.3 As, psv Asy :]
1= + + + o e
47e, _lxz - xll Ixz - le lxz - xal lxz - le
1 [ Ps1 Asy P:zA-S'z Ps3 As; Psv ASn ]
1 = + + + . e -+ —
P | PR I " g —— b -] 46

In the set of N equations in equation 4.62, the first equation is obtained by enforcing
the condition that & =1 V at the center x, (i.e., r= x;) of the first section. The
second equation in equation 4.62 is obtained by enforcing & = 1V at the center X3 of the
second section. The charge (p.: As,) is assumed to be located at the center x, of the first
section, the charge p,, As; is assumed located at the center x2 of the second section, and
so on. Equation 4.62 provides the desired N equations in the N unknown values of the

charges p,1, ps2, . . ., psn, assumed to be located at the center of the N sections.
Careful examination of equation 4.62, however, reveals that the self terms,
Ps1 As, Ps2 As, Ps3 As, PsN Asy
Ix, _Ill,l»xz _le’lx:i _XSI’ I IXN —xN'

are singular. These terms result from calculating the potential ¢ at the center of each
section because of its own charge—that is, the source point r' and observation point r are
the same. Solution for the set of equations in equation 4.62 is hence not possible, and some
additional effort is required to remedy the singular behavior of the self terms. To do this,
we examine closely the situation in the ith section shown in Figure 4.27. In the diagonal
elements in equation 4.62, we were trying to evaluate the potential at the center of each
section resulting from its own charge, which is also assumed to be located at the center
of the section. To overcome the singularity problem, therefore, we do not assume that the
charge is located at the center but instead distributed at the surface of the conductor. This
is actually the situation to begin with, and what resulted in the singularity is our desire to
use the point charges approximation in equation 4.61. From Figure 4.27, we may evaiuate
the potential at the center x, of the ith cell as

aeir2 2n psiadd) dxl
-a¢2 Jo \/az+x,2

In equation 4.63, the distance from the charge point on the surface to the observation point
at the center is taken |r - r'} = \/g¥ + (2. Integrating equation 4.63, we obtain

1= —l—p.,(Z'rra) én [x' +Va® + x’z]

4rre,,
2
o [
= Bl €n

2e
o A¢, \2
e, +(%)

d=1=-1 (4.63)
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Figure 4.27 The potential at the
J - center of the ith section resulting

A

from its own surface charge.

For a conductor of small radius as compared to the length A¢, of each section, we obtain

_ Pud At
1= " %e 2o, T =
Syl
2 2|02 (Aei 2
2
= Bl g, 04 (4.64)
€, a

Equation 4.64 may be used for the diagonal (self) terms in equation 4.62, thus resulting
in the following matrix equation:

[ ne Yroap, A6 Zmgde:  2ZndAe Zuaden || N
° a by = xg by = xs by~ x|
rAv s Al ZupAl, ZuaAly
4me, Tan— =—-= ce A y
e b2 — x| 4 a - [x2 — xal Pr2
4re, A Zﬂ—-’ At “4mu en Ab Z%m Ay Ps3
. bes = x, bes = xyf a Pes — xa
4me, Zug AL g AL, VALAS 4TI'(L€n—A—(lV -
e = x| by = x| e = x a
(4.65)
Equation 4.65, which can be further simplified if we choose all the sections of the same
length A€, = A6, = - - - . = At may now be solved by a simple matrix inversion sub-
routine. The result is the charge distribution Ps1, Ps2, - - - ., Psyv ON the surface of the con-
ductor.
-+
Exercise |

Write a computer program that solves for the charge distribution on the surface ofa
conductor of radius a and length L. In addition to the geometry of the conductor, the
input to the program should include the number of sections and the dielectric propcrties
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Figure 4.28 Charge distribution on
a cylindrical conductor of radius
84 a=1mm and length L = 1 m.
The conductor is at a potential of 1
V. (See L. L. Tsai and C. E.
80 | ) ! | | Smith, Moment Method in Electro-
magnetics for Undergraduates,
0 0.2 04 06 08 0 IEEE Trans. on Education, vol.
Length (m) E-21, pp. 14-22, 1979)

€ of the surrounding medium. Check your results with those shown in Figure 4.28 for
a conductor of radius a = 1 mm and of length L = 1 m. The conductor is at a potential
of 1 V, and twenty sections were used to obtain the results shown in Figure 4.28.

One may wonder if it was really worth going through all of this to determine the
charge distribution on the surface of a cylindrical conductor. The answer is that
although it seems too much effort for this simple geometry, the method of moment
solution procedure is general and certainly capable of handling much more complicated
conductor geometries at no additional effort than what we spent in the last example.
The large variation of the charge distribution on the conductor as shown in Figure 4.28
also justifies the spent effort. Many of the electrostatic problems at the end of this
chapter cannot be handled using rigorous solution procedures, and use of numerical
ones such as the method of moment is appropriate. The following example will illustrate
the application of the method of moment to multiconductor problems.

EXAMPLE 4.17

Consider the parallel plate capacitor shown in Figure 4.29a. We wish to use the method

of moments to determine the capacitance as a function of the separation distance between
the parallel plates.



