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Currents Induced in the Human Body for Exposure
to Ultrawideband Electromagnetic Pulses

O. P. Gandhi and Cynthia M. Furse

Abstract— The frequency-dependent finite-difference time-domain
((FD)2TD] method is used to calculate internal electric fields and
induced current densities in a 1.31-cm resolution anatomically-based
model of the human body for exposure to ultrawideband vertically
pularized electrumagnetic pulses (EMP's). From a single (FD)?TD
simulation, two ultrawideband puises with frequencies up to 1500 MHz
are examined using a convolution technique. The complex permittivities
£*(7) for the various tissues are known to vary a great deal over the
wide bandwidth of these two pulses. In the (FD)2TD formulation, these
frequency-dependent :*(7) are described by the best-fit second-order
Debye equations for the sixteen tissues that are used to define the
anatomically-based model. The vertical currents passing through several
sections of the body are compared for a shoe-wearing model standing on
a perfectly conducting ground plane, and a barefoot model suspended in
air. For the first pulse, currents on the order of 1 to 4 mA per V/m of
incident fields are calculated with the highest values calculated for the
sections through the bladder and slightly above it. For the second pulse,
currcents on the order of 4 mA per V/m of incident ficlds were calculated.

I. INTRODUCTION

The anatomically-based modcl of the human body has previously
been used to calculate induced currents for exposure to vertically-
polarized electromagnetic pulses (EMP’s) [1]. These EMP's had
risetimes on the order of 10-30 ns, durations on the order of 100-300
ns, and bandwidths of 0—100 MHz, so the conventional nondispersive
finite-difference time-domain (FDTD) method was used. In this
method the tissue properties were assumed to be independent of
frequency and were taken at a central frequency of 40 MHz. While
the conventional FDTD method which ignores the dispersion of
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the tissues’ dielectric properties may be appropriate for narrowband
irradiation, it is clearly not suitable for wideband irradiation such
as that due to short pulses with subnanosecond risetimes and pulse
durations on the order of a few nanoseconds. The FDTD algorithm
was consequently modified to incorporate the frequency dispersion
of the dielectric properties for the various tissues [2], [3]. Using
a second order Debye equation to model the frequency dispersion
of the complex permittivity, €*(w), the relation between E and D
was solved in the time domain along with Faraday’s and Ampere’s
laws to give the frequency-dependent FDTD [(FD)*TD] method.
Using this method, this paper gives currents and specific absorptions
(SA’s) induced in the human body for exposure to two ultrawideband
electromagnetic pulses with instantaneous bandwidths up to 1500
MHz.

II. THE FREQUENCY-DEPENDENT FINITE-DIFFERENCE
TIME-DOMAIN ((FD)>*TD) METHOD

The time-dependent Maxwell’s curl equations used for the FDTD
method are
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where the flux density vector D is related to the electric field E
through the complex permittivity £*(7) of the local tissue by the
following

D(w) = " (w)E(w). 3)

For the conventional FDTD method the complex permittivity €*(w) is
assumed to be independent of the frequency w. Then (3) is substituted
into (2), and (1) and (2) are solved iteratively in the time domain.

For the (F)*TD method ¢*(w) is dependent on the frequency w,
and (3) must be converted to a form which can be solved iteratively in
the time domain along with (1) and (2). This conversion may be done
by choosing a rational function for ¢ (w) such as the second-order
Debye equation {2]
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Rearrangirg (4) and substituting in (3) gives
D(u) = (w)E(w)
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where the zero (static) frequency dielectric constant is given by
£s = €a1 +Es2 — oo (6)

Given ¢ time dependence, we can write (5) as a differential
equaton in the time domain
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For the (FD)>TD method, (1) and (2) are solved subject to (7).
Similar to [1]-[4] the space and time derivatives in these equations are
approximated by divided-differences, and these equations are solved
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fur E-H-D iteratively. The detailed derivation of these equations is
given in {2].

A similar derivation using a first-order Debye equation is given in
[S], using a second-order Lorentz equation is given in [6], using a
second-order Debye equation for homogenous tissues is given in [7],
and using a second-order Debye equation for heterogeneous tissues
is given in [3]. A different derivation but similar application of this
approach is given in [8].

Another approach to frequency dependent FDTD calculations is
to convert the complex permittivity from the frequency domain and
convolve this with the time-domain electric fields to obtain time-
domain fields for the dispersive materials. For some rational forms
of complex permittivity, this discrete convolution can be updated
recursively. This approach has been applied to materials described
hy a first-arder Debye equation in [9]-[11], a second-order Lorentz
equation in [12], and a gaseous plasma in [13].

[I1. MODELING OF BIOLOGICAL TISSUE
PROPERTIES USING THE DEBYE EQUATION

The measured properties of biological tissues (muscle, fat, bone,
blood. intestine. cartilage, lung, kidney, pancreas, spleen, liver, heart,
brain/nerve. skin, and eye) were obtained from {14). Optimal val-
ues for 7,1.7,2.55. 7 and 72 in (4) were obtained by nonlinear
least-squares matching to the measured relative permittivity and
conductivity for fat and muscle. All of the other tissue properties fall
roughly between these two. The values of these two sets of optimal
relaxation constants were averaged to obtain optimal average values
This was done to facilitate volumc-avcraging of the
tissue properties in cells of the heterogeneous man model. Using
these averaged relaxation constants, optimal values for <,;. <,2, and
<~ were again found using least-squares matching and are given in
Table I [3]. The comparison between the measured tissue properties
and those computed from the Debye equation are shown in Fig. |
for fat and muscle. This figure shows the magnitude of the dielectric
constant. for simplicity in evaluating the broad-band fit, and the fit
of the particular values of relative permittivity and conductivity is
equally good. Similar comparisons were also obtained for the other
tissue types.
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Fit of second-order Debye equation (4) to measured tissue properties of: (a) muscle and (b) fat.

TABLE 1
DEBYE CONSTANTS FOR TISSUES 7; = 46.25 ns AND 7o =
0.0907 ns (AVERAGE OF OPTIMUM FOR FAT AND MUSCLE)

Tissue Eoo £a1 )

Muscle 40.0 3948. 59.09
Bone/Cartilage 34 312.8 7.11

Blood 35.0 3563. 66.43
Intestine 39.0 4724. 66.09
Liver 36.3 2864. 57.12
Kidney 35.0 3332. 67.21
Pancreas/Spleen 10.0 3793. 7391
Lung 100 1224. 13.06
Heart 38.5 4309. 54.58
Brain/Nerve 32.5 2064. 56.86
Skin 23.0 3399. 55.59
Eye 40.0 2101. 56.99

The 1.31-cm resolution anatomically-based man model has pre-
viously been described in {1]. This man model has been used for
studies up to 915 MHz. Although the cell size at this frequency is
about A./5.5 in muscle, this model appears to give sufficiently good
results at this frequency. This is probably because the high absorption
of the tissues ameliorates the dispersion errors caused by having a cell
size larger than A/10 commonly used in FDTD simulations. Muscle
is the tissue with the smallest wavelength, so other tissues are better
modeled.

IV. INDUCED CURRENT CALCULATIONS

The total current distribution in layer k¥ may be calculated one of
two ways. The first is

éQZODZ(l] k (8)

where é is the FDTD cell size (6 = 1.31 cm), and the summations
are carried out for all cells in a given layer. This method calculates
the current which would be measurcd by a loop-type current meter
around the layer. With a broadband incident pulse, parts of the layer
may have positive-directed currents. while other parts simultaneously
may have negative-directed currents. These currents may cancel each
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other out in the summation of (8), giving the impression that the

total current is relatively low.
The second total current distribution calculation is given by

_ £2 6Dl (ls ] 3 k )

Li(t)=6 Z — )
nH

This gives a better measure of the total current passing through the

layer and will give values greater than or equal to (8). Calculations

involving 8D /8t were used instead of H for calculation efficiency.

V. THE CONVOLUTION METHOD

The convolution method [15] was used to allow calculation of the
response of the body to several different waveforms using a single
FDTD or (FD)*TD simulation with an impulse excitation. The band-
limited impulse response is stored and convolved with the frequency
spectrum of the waveform of interest to give the response of the
body to that particular waveform.

The impulse response of several layers of the body was found for
both of the current calculations given in (8) and (9). Two (FDY*TD
simulations were made, one with the man model wearing shoes and
standing on a perfectly conducting ground plane, and the other with
the man model suspended in air (the isolated model). The shoe-
wearing condition was modeled by a 2.62-cm (24) thickness of
rubber (cr = 1.0) between the foot and the ground plane. The
frontally-incident plane-wave was vertically-polarized. For a cell size
of 6, = 6, = 6. = 6 = 1.31 cm, the time step was 6. = 6/2c, =
21.83 ps. A rectangular pulse 6 time steps = 6 8, = 131 ps in duration
was used as the impulse incident waveform. The currents induced in
each layer by a waveform of interest, E?*, are then found from

- _ }' Edes t .F '™P(¢
F{Eime(t)}
where
E*(1) desired time domain incident waveform;
EV(L) impulse ume domain incident wavetorm (rectangular
pulse of width 66t = 131 ps):
I"vit) impulse response current;
Iy desired response current:
F Fourier transform.

As in [15]. a rectangular pulse was chosen for convenience. Any
other pulse with significant frequency components covering the entire
hand of the desired incident wavetorm could be used. Equation (10)
does not result in a divide by zero when using the rectangular pulse,
because in the band of interest, the spectrum of the rectangular pulse
1s almost exactly 1.0.

The convolution method was validated by comparing the resuits
obtained running the (FD)?TD method with the rectangular pulse,
and convolving the time-domain output with the desired waveform
to the results obtained running the (FD)*TD method directly with
the desired waveform. The results were virtually indistinguishable.
The use of the convolution method is only efficient if two or more
wavetorms are to be analyzed.

VI. CouPLING OF AN ULTRAWIDEBAND PULSE TO THE HUMAN BobY

The first ultrawideband pulse. prescribed for the time domain 0
<t < 10 ns, is shown in Fig. 2(a). This pulse has a rise tme of
about 0.2 ns and a total time duration of about 7-8 ns. The frequency
spectrum of this pulse is shown in Fig. 2(b). Most of the energy in the
pulse ic concentrated in the 200-900 MHz band with the peak of the
energy about 500 MHz. The incident field was taken to be vertically
polarized, since this polarization is known to result in the strongest
coupling for standing individuals. The temporal varations of the
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Fig. 2. (a) The first prescribed electromagnetic pulse of peak incident field
= 1.1 V/m and (b) its frequency spectrum.

layer-averaged vertical currents for the various sections of the body
were calculated for both grounded shoe-wearing and ungrounded
barefoot exposure conditions of the model. 'the current vanations
calculated using (8) for some representative sections such as those
through the eyes, heart, and bladder are shown in Fig. 3(a)-(c),
respectively. )

The peak time-domain current for each layer of the body is shown
in Fig. 4 for the current calculations using (8). The maximum peak
current of 3.5 mA, which is 3.2 mA per V/m occurs at a height
of 96.3 cm (38 in.) above the bottom of the feet. A very similar
result had previously been observed for calculations using isolated
and grounded models of the human body for plane-wave exposures
at frequencies of 350-700 MHz where the highest induced currents
on the order of 3.0-3.2 mA per V/m were calculated for sections of
the body that are at heights of 85-100 cm above the feet [16], [17].

The frequency spectra of the currents shown in Fig. 3(a)~(c) for
the various sections of the body are shown in Fig. 5(a)(c). As
expected, components from low frequencies to frequencies in excess
of 1000 MHz are observed. From Fig. 5(a)—(c) it is obvious that any
instrumentation to measure the induced currents through the feet or
at any location of the body must have a bandwidth in excess of 1000
MHz and subnanosecond response time.

The currents analyzed thus far have been calculated using (8),
which represents the total currents which would be measured using
a loop-type current meter around a layer of the body. For these
ulrawideband pulses, however, the positive and negative currents
which are simultaneously present in the body as seen in Fig. 3 will
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Fig. 3. Currents induced for the various sections of the body calculated using
(8) for the incident pulse of Fig. 2: (a) section through the eyes (168 3 ¢m
above bottom of feet). (b) section through the heart (135.6 cm above bottom
of feet), and (¢) section through the bladder (91.0 cm above bottom of fect).

often at least partially cancel each other out, so the current summation

given in (9) actually gives a better measure of the magnitude of

the current passing through each layer. Using the calculation in (9),
the currents were again calculated for the grounded shoe-wearing
man model and for the isolated model, and the temporal variations
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Fig. 4. Peak currents induced in the various sections of the body for
grounded shoe-wearing and ungrounded barefoot (isolated) conditions of the
model. Incident field is the EMP of Fig. 2. Currents are calculated using (8).

of the currents are shown in Fig. 6(a)-(c) for the sections through
the eyes, heart, and bladder, respectively. The peak current passing
through each layer is shown in Fig. 7. and. as expected. the values
are significantly higher than those shown in Fig. 4.

A second ultrawideband pulse is shown in Fig. 8(a). Its frequency
spectrum is shown in Fig. 8(b) and is found to extend from zero
to over 1000 MHz. Using the convolution method, the currents are
found from the same (FD)*TD simulation that was used to obtain
results for the first EMP. The peak currents calculated using (8) in
each layer are shown in Fig. 9. Peak values on the order of 5 mA per
V/m are obtained, which are similar to the values shown in Figs. 4
and 7 for the ultrawideband pulse of Fig. 2. Calculating the layer-
averaged currents using (8) or (9) did not significantly change the
results for this pulse, as simultaneous positive and ncgative curreats
were not generally observed in a single layer. This is perhaps partly
because the pulse itself has very little negative component.

VII. SPECIFIC ABSORPTION CALCULATIONS
The layer-averaged specific absorption for layer k is given by

ZE(1 jokt) 9D k1)
Z (i,4.k) ot

where &t is the time step (6¢ = 21.83 ps) used for time-domain
calculations, .V, is the number of cells in the kth layer of the body,
and p{i. j. k) is the mass density in kg/m® for each of the cells in the
corresponding layers. The layer-averaged specific absorption for the
EMP in Fig. 2(a) is shown in Fig. 10 as a function of height above
the feet for both the grounded, shoe-wearing model and the isolated
model. Note that because of the very limited time duration of the
pulse (7-8 ns) the specific absorptions are on the order of 0.02 to
0.20 plikg.

S-'\la_verk = (1 l)

VIII. ToTAL ENERGY CALCULATION
The total energy, W, absorbed in the body is calculated from

W_6t6322E igk.t) aD(’aj’k 324 (12)

For the model exposed to the first ultrawideband pulse shown in
Fig. 2, the energy is virtually all absorbed in the first 6 to 8§ ns.
The total energy absorbed by the body exposed to a single pulse is
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Fig. 5. Frequency spectra of the currents shown in Fig. 4. Incident field is
the ultrawideband EMP of Fig. 2. Currents are calculated using (8): (a) section
through the eves (168.3 cm above bottom of feet), (b) section through the heart
(135.6 cm above bottom of feet), and (c) section through the bladder (91.0
cm above bottom of feet).

calculated to be 2.0 and 1.91 pJ for isolated and grounded, shoe-
wearing conditions, respectively.
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Fig. 6. Currents induced for the various sections of the body calculated using

(9) for the incident pulse of Fig. 2: (a) section through the eyes (168.3 cm

above bottom of feet), (b) section through the heart (135.6 cm above bottom
of feet), and (c) section through the bladder (91.0 cm above bottom of feet).

IX. PROJECTIONS FOR HIGHER PULSE
AMPLITUDES AND REPETITION RATES

In the event the body is irradiated by a train of pulses, it is
recognized that the SA and absorbed energy should be multiplied
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by the square of the peak incident field amplitude and the pulse
repetition rate.

To illustrate, suppose that the pulse peak amplitude is 1 kV/m
rather than 1.1 V/m that has been assumed for the ultrawideband
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Fig. 9. Peak currents induced in the various sections of the body for
grounded shoe-wearing and ungrounded barefoot (isolated) conditions of the
model. Incident field is the EMP of Fig. 8. Currents are calculated using (8).
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pulse of Fig. 2. Furthermore, suppose that the pulse repetition rate is
1000 pulses per s rather than a single pulse. For such a train of pulses
for any 6 min period there would be 3.6 x 10° pulses. Peak specific
absorption for the various sections of the body (from Fig. 9) would be
on the order of (0.18 pJ/kg)(10°V/m /1.1 V/m)? (3.6 x 10° Pulses) —
53.5 ml/kg. Similarly the total energy absorbed by the body in any
6-min period would be 0.59 and 0.57 J for isolated and grounded,
shoe-wearing conditions, respectively. Both the SA’s and the whole-
body absorption are considerably less than the 6-min averaged values
of 144 J/kg and 10080 J, respectively, that are suggested in the
ANSUVIEEE C95.1-1992 RF safety guidelines [18].

For a 1 kV/m peak amplitude pulsc the induced peak currents
for the various layers of the body can be similarly scaled from the
values given in Figs. 4 and 7 for a 1.1 V/m peak amplitude pulse
shown in Fig. 2. Induced peak currents on the order of 1.1-3.2 A are
calculated for a 1 kV/m peak amplitude pulse, and the values would
be proportionally higher for larger amplitude pulses.

X. CONCLUSION

Using the (FD)*TD and convolution methods, this paper describes
the currents induced in a 1.31-cm resolution anatomically-based mod-
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els of the human body for exposure to ultrawideband electromagnetic
pulses. Specific absorptions and total energy absorbed in the body are
also calculated. Using a scaling factor to examine higher-amplitude
pulse trains, the SA’s and whole-body absorption were found to
-be well within the ANSI-IEEE safety guideline for the two pulses
examined.
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New Method for Measuring Transfer Impedance and
Transfer Admittance of Shields Using a Triaxial Cell

B. Vanlandschoot and L. Martens

Abstract—Two performance parameters of a cable or connector shield
are its surface transfer impedance Z7 and its surface transfer admittance
Y7. A new method for measuring these properties is presented. The
use of two different terminations for the cable or connector under test
(CUT) allows to determine both Z1 and Y7. Through characterization
of the inner and outer transmission lines of the triaxial cell, using time
domain reflectrometry, Zr and Y7 can be determined in amplitude as
well as in phase. The phase is obtained by de-embedding the measured
S-parameters up to the CUT. The de-embedding of the measurements
also allows to extend the frequency range up to 3 GHz. To illustrate this
method a solid shield with a circular aperture and a coaxial cable with
a braided shield have been measured and compared, respectively, with
theoretical predictions and published results.

I. INTRODUCTION

The triaxial cell [1]-[3] is generally used for measuring the
shielding performance of coaxial cable and connector shields. If the
shield under test is a cable or connector shield, equations that describe
the coupling through the shield can be derived using the “Green’s
function technique” [2]. Most of the transfer impedance and the
transfer admittance measurements presented in literature are done up
to 30-200 MHz (e.g., [2]-[8]). The coupling parameters are isolated
by suppressing (by using a short-circuited, respectively, an open
feeding line) the influence of onc of the two coupling phenomena.
In many papers, where measurements are presented up to 1 GHz
{31, [4], [6], resonances are observed above 200 MHz which makes
interpretation difficult. Measurements of the amplitude of Z7 using
the line injection method are made up to 3 GHz and reported in [9].
At even higher frequencies, as mentioned in [1], [8] dn overall figure
|Zr £ Zr| (ZF: capacitive coupling impedance) can be measured
since at these frequencies the two coupling parameters can no longer
be separated in a simple manner. In [5], [8], [9], [12] methods
for measuring the complex coupling parameters are presented and
discussed. Measurement results including the magnitude and phase of
the transfer impedance Zr and transfer admittance Y7 are published
for canonical cases (such as a copper tube with holes) and for
commonly available coaxial cables only up to 200 MHz.

In thic paper, we will describe a new method hased on a triaxial
cell for measuring the transfer impedance and the transfer admittance
in magnitude and phase. New in the method is the use of two
different terminations for the connector under test (CUT) and the de-
embedding of the measurements which allows us to obtain accurate
values for the complex transfer impedance Z7 and the complex
transfer admittance Y7 up to 3 GHz. Because we focus our research
on high frequencies, the start frequency has been chosen to be
45 MHz (lowest measurement frequency of the HP8510 network
analyzer). In Section II we discuss the triaxial cell. the de-embedding
procedure and theoretical equations are explained in Sections III and
IV. In Scction V we apply thc mcthod to two cxamplcs.
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