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Abstract—With the proliferation of computers in university cam-
puses, there is a significant need to introduce more courses on ‘‘com-
puter methods'" in the engineering curriculum. Furthermore, working
electromagnetics engineers need a course on the ‘‘computational meth-
ods in electromagnetics'* to better prepare them for the new chal-
lenges that face the microwave industry. This paper summarizes our
three-year experience with such a new course which we introduced as
an elective for seniors. Main features of the new course include: 1) the
inclusion of the finite difference method of solving engineering prob-
lems formulated in terms of partial differential equations. 2) The use
of the finite difference method to solve modern engineering problems
such as the design of microstrip transmission lines as well as eigenvalue
problems including the propagation characteristics in waveguides of
arbitrary eross sections. and 3) the use of the method of moments to
solve dynamic fields problems including radiation from linear antennas
and scattering from two-dimensional inhomogeneous dielectric ob-
jects. Key steps in developing the course will be discussed and results
from the various computer programs written by the students will be
presented.

I. INTRODUCTION

HEN we examined the literature in search of an

eagineering text that deals with computer solutions
of engncering problems formulated in terms of differen-
tial and ‘integral equations, we did not find any. We did
not find any that describes numerical solutions of both
types of formulations in sufficient details for a one-se-
mester course on the subject. Some mathematical books
are available. but none with emphasis on simulation and
application 1o engineering problems. This is also true for
books in the electromagnetic fields area where books spe-
cializing in the solution of differential equations [1} or
integral equations [2]. [3] are available. In addition. texts
with examples dealing with modem engineering design
problems are required. It is also anticipated that some of
the students may not be familiar with methods for solving
simultaneous systems of equations, tradeoffs between di-
rect and iterative methods of solution, and most impor-
tantly. with techniques that may be used to examine the
stability and convergence of the obtained results. For this
purpose, we developed a new course that deals with
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“‘computational methods in electromagnetics’’ and pre-
pared an extensive set of notes that covers these topics.
In addition to covering the introductory material needed
to prepare the students for such a course, the notes in-
cluded many exciting examples of engineering problems
formulated in terms of integral and differential equations.
Over the last three years, a comprehensive package of
computer programs was developed and used by the stu-
dents (o simmulate and solve several engineering problems.
The course was taught twice at the University of Utah and
once at Harvey Mudd College.

This paper describes the structure of the course and pre-
sents some of the design examples used to illustrate the
solution procedures. Key formulation steps will be em-
phasized and sample results will be shown.

II. PRELIMINARIES

To insure smooth flow of the course materials, we de-
cided to start the course with a brief review of methods
often used to solve simultaneous sets of equations and
procedures to check the stability and convergence of the
solution [4]. Many mathematical books may provide ref-
erence for such materials and students were familiarized
with both direct and iterative methods of solution. The
Gauss climination mcthod may be uscd as an ¢xample of
the direct methods, while the Gauss-Seidal procedure may
be used to illustrate iterative methods. The fact that iter-
ative methods are particularly attractive and will converge
faster for diagonally dominated systems of equations, such
as those resulting from the finite difference method, should
be emphasized. Otherwise, reasonably accurate initial as-
sumptions of the variables may be required. If such a good
initial approximation is not available, direct methods of
solution are advisable. Introduction of acceleration fac-
tors to speed up the convergence was also described and
illustrated by examples. The inclusion of the LU decom-
position method was also useful in this introductory sec-
tion. It is also important that the students be awarc and
know how to check the stability and the convergence of
the numerical solution. Among the procedures that may
be implemented for such purposes which do not require
considerable classroom time for their introduction are the
following:

1) Calculation of the determinant of the coefficient ma-
trix. Unreasonably small values of the determinant may
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give an indication that the system of equations is ill-con-
ditioned. _

2) Examination of the sensitivity of the obtained solu-
tion to small variation, one to two percent, in some of the
elements of the coefficient matrix. Excessive sensitivity
of the solution to such small changes may also give an
indication that the system of equations is ill-conditioned.

3) Determination of the condition number. Condition
number is given by ||A]l |4~ where || Al| denotes the
norm of A, and A ™! is the inverse of the matrix A. For
engineering purposes, the condition number often pro-
vides a good indication of the stability of the system of
equations. It is, however, time consuming to calculate be-
cause it requires the calculation of the inverse of the coef-
ficient matrix A4 and then the calculations of the norm of
A and its inverse. One way to calculate the norm of 4 is

N N

at =[5 2 a3

where a;; are the elements of the coefficient matrix.

The only remaining topic in this preliminary material is
the introduction of the power method to solve eigenvalue
problems [5]. This topic may be included in this intro-
ductory section, or may be delayed until needed in apply-
ing the finite difference method for solving eigenvalue
problems. In any case this introductory section should not
consume more than two to three weeks of the course.
Every effort should be made to avoid making the course
have the mathematical class type of flavor and instead the
fact that these methods will be utilized to simulate and
solve engineering problems should be emphasized.

II1. FiNniTE DIFFERENCE METHOD

Many engineering problems in electromagnetics may be
formulated in terms of partial differential equations. This
may include electrostatic problems formulated in terms of
Laplace’s and Poisson’s equations:

respectively, and dynamic fields problems formulated 1n
terms of the Helmholtz equation (V° + k™ )E = juJ
where 4 is the wave number, and the current source J may
or may not be zero. In electromagnetic scattenng and ra-
diation problems, (J # 0) and the propagation constant
k1s known. In waveguide problems, on the other hand.
J = 0. and & is unknown and represents the cigenvalues
(charactenistic modes) propagating in the waveguide. It is
also 1mportant to emphasize that although solutions for
Laplace’s and Poisson’s equations would provide the
vanation of the scalar quantity ¢ (representing electric
potential). many quantities of engineering interest such as
the charactenistic impedance and the velocity of propa-
gation of a microstrip transmission line may be subse-
quently obtained from ¢. We found it most efficient to
introduce the finite difference method in the following se-
quence:
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1) Derivation of the Difference Equation: This deri-
vation is available in many texts [6] and it will only be
briefly outlined here. For the function ¢ (x) shown in Fig.
1, the first order derivative 3¢ /dx may be expressed in
terms of its discrete values. ¢,. ¢.. ¢3, at x; — h, x,. and
X9 + h, respectively, by

(—32 = u forward difference method
ax o h
B - backward difference method
ds 1, h

and
% = —-—¢3 = % central difference method.
oxl, 2h

The central difference method may be interpreted as the
avcrage between the forward and backward difference
equations. It may be worth emphasizing that based on

Taylor series expansion of ¢ at x,, the error in both the
forward and backward methods is on the o.der of (h),
while the error encountered in the central difference
method approximation is on the order of (4°) [6]. Hence,
for small values of the incremental change in x (i.e.. h).
it is more advantageous to use the central difference
method. From Fig. 1. and using the central difference
method. the following equations may be obtained

a_¢ - ¢3 - ‘b:
2 2 N h
9 I
ox vo—h/2 h
9¢ _ 09
. el ) PO
axl h

¢ — 20, + ¢,

W (1)

From (1), and if ¢ is now a function of two independent
variables x and v, we obtain using the central difference
method

b

0’ a¢=<¢;+¢:+¢3+¢4‘4‘30>
ax? = a3y’ h*

(2)

where the various &'s are illustrated in Fig. 2. Equation
(2) is the five-point equal arm difference equation. The
finite difference solution procedure of Poisson's equation
may then be summarized as follows: 2
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Fig. 1. Geometry utilized in the derivation of the difference equation.

IL Q‘

Fig. 2. Geometry illustrating the five-point star used in the two dimen-
sional difference equation.

a) Divide the domain of interest into suitably find grid.
Instead of the continuous variation of ¢ (x, ¥) for a given
charge distribution p(x. ¥), the finite difference solution
will provide discrete numbers of ¢ at the ‘‘nodes’* of the
established grid. b) Apply the difference (2) at each node
of the grid to obtain N equations in the N unknown node
potentials. c) Solve the resulting system of equations
either iteratively or using a direct method as described in
Section II.

2) Tradeoffs in Choosing the Grid Size h: It is impor-
tant to point out that although h should be chosen suffi-
ciently small to allow for a most accurate discrete repre-
sentation of ¢ in the domain of interest, exceedingly small
values of h may cause significant roundoff errors. Fig. 3
shows the tradeoff between the truncation (at nodes) of a
continuous function ¢ and the roundoff error that in-
creases upon dealing with differences of similar numbers.
Hence. in establishing the solution grid, moderate values
of h (specific values of h depend on the dimension and
geometry of the engineering problem to be solved) should
be chosen. and the convergence of the solution should be
checked with a change in the grid size.

3) Difference Equation for an Unequal Arm Grid: In
certain applications, the boundary of the domain of inter-
est. in which a solution for ¢ is desired, does not fit the
regular mesh structure required by the equal arm five-point
star formula. In this case, a very fine mesh may be utilized
to minimize distortion of the shape of the boundary or a
different finite difference formula for a five-point star with
unequal arms should be used. For the geometry of Fig. 4,
the difference representation of the Laplacian operator is
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Fig. 3. Tradeoff between truncation and roundoff errors.
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Fig. 4. Geometry of the five-point unequal arm star for the difference
equation.
given by
, 3% 3% _2 ¢ ¢
Vig=—+-5=173 : + :
ax° dy R log(ag + a3) oo + a3)

%3 P
* ar(on + o) * oo + 04)]

1 1
il Gewmwid %o
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4) Derivative Boundary Conditions: In our discussion
of the solution procedures thus far, we assumed that it is
desired to solve Laplace's or Poisson’s equation subject
10 a known valuc of ¢ on the boundary of the domain of
interest. This boundary condition is known as **Dirichlet
boundary condition’" and is often used in many engineer-
ing problems. Referring to Fig. S, if ¢ is known on the
boundary, we apply the difference (2) only at the interior
nodes. If some of the points in the equal arm five-point
star coincide with the boundary, the left hand point A in
Fig. 5. the boundary value of ¢ at that point will be di-
rectly substituted in the difference equation in this case.
Hence,

&) + &3 + bpo + )
hZ

= F(xq, Yo)

where F(x, y) is a known distribution evaluated at xg. ¥g»
and &L, and 63 are known boundary values of ¢ at two
boundaries 1 and 2, respectively. If the value of ¢ on the
boundary is not known, on the other hand, and instead its
normal derivative is specified, ‘‘Neuman boundary con-
dition,”" the difference equation should then be applied at

3
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Fig. 5. Accounting for derivative boundary conditions in the finite differ-
ence method.

the boundary points to obtain additional equations for the
unknown ¢ at the boundary. Let us assume that ®50.
®g1. * - - etc. on boundary 1 are unknown. Applying the
difference equations at these points will require values of
@ above the boundary ¢,, to complete the fivc-point equal
arm star centered at the boundary point. Hence from (2)
we have

b + - 4¢;
a t Py + ¢'8}:2 $80 P80 _ F(xo 30). (3)

In (3). ¢poand o}, are unknown values of & on the hound-
ary. ¢go = (dpo + ®50)/2 is the average ¢ on the corner
(unknown). and ¢,, is the value of ¢ on the extended mesh
outside the boundary. This extended *‘fictitious’* mesh is
utilized to complete the five-point star difference equation
for points on the boundary. These new unknown values
of ¢'s. @,,. ... should not be solved for the additional
unknowns. but instcad they should be related to values of
¢ inside the boundary by the specified values of the
boundary conditions. Hence,

ézl - d)() _ ég
2h dx

which is the specified value of the derivative

2
ax

B0

80

on boundary 1 (i.e.. 3¢ /3x|}o). If an iterative procedure
such as Liebmann’s method [1] is being implemented to
solve the o distribution, the derivative boundary condi-
tions case may be treated most simply by assigning a new
value for
!
B = b + 20 2 (4)
dx g,

upon the calculation of a new value of ¢,. In this way,
when the iteration reaches the top boundary value ¢},.
the value of @,, on the fictitious mesh point will be ready
for implementation in the five-point cqual arm suar. If
Liebmann’s method is not used and instead a simulta-
neous system of equations for the unknown node poten-
tials is developed. the potential ¢,,, ®,2. etc. should not
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be considered as new unknown quantities and instead
should be eliminated by substituting the appropriate value
of internal ¢'s and the specified value of the derivative
boundary condition such as given in (4). In any case, it is
clear that dealing with derivative boundary conditions re.
quires establishing fictitious grids to facilitate routine
writing of the difference equation at the boundary nodes.
The value of ¢'s at the nodes of the fictitious grid, how-
ever, should not be considered additional unknowns and
instead should be substituted for through the knowledge
of the normal derivative boundary conditions.

3) Difference Equation at an Interface Between Two
Dielectric Media: Interfaces between two different media
are enountered primarily in engineering electromagnetics
applications. This includes the microstrip transmission
lines and partially filled waveguides. For this we derive a
special case difference equation that should be satisfied by
nodes at the interface between the two dielectrics. Fig. 6
illustrates the geometry of the problem, and the difference
equation in this case may be obtained from Gauss' law for
the electric field

§>eE-¢rs=q=o. (5)

q = 0 in (5) because there is no “‘free’” charge enclosed
by the surface s. Substituting E = ~V¢ in (5)

§ eVo - dée =0
or
@ea—d)dc=0 (6)
¢ on

where 3¢ /3 n denotcs the derivative of ¢ on the contour
¢. Detailed substitution of 3¢ /dn in (6) yields

b — & @ — ¢\ h
(|(_h_—>h+€|<“—h >

b — ¢o\ A ¢4~99>
+63< p ) +e»< 5 h

¢1"¢0h ¢1‘¢0 h_
+6:<-T—>~+e|<—h—>§-—0.

Rearranging the terms we obtain
2¢3 + 26,04 + (¢, + 1) ¢,
+ (e + 1), — 4(e, + 1} ¢ = 0.

Actually, a similar derivation may be utilized to obtain a
difference equation at an interface beween anisotropic di-
electric surfaces [7). Interested instructors may include
such a derivation in a homework assignment for the stu-
dents and the results should be verified from (7).

6) Application 1o Microstrip Transmission Lines: The
formulated difference equation with its special cases de-
scribed in the previous sections may be applied to a wide
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Fig. 6. Geometry of grid nodes at the interface between medium. | of ¢,

and medium 2 of ¢,.

TABLE |

CHARACTERISTIC IMPEDANCE OF VARIOUS GEOMETRIES OF STRIP,
MICROSTRIP, AND PARTIALLY FILLED TRANSMISSION LINES. THE RESULTS
OBTAINED BY THE STUDENTS ARE COMPARED TO THOSE PUBLISHED IN {8]

> )
2 — — p—— »
— el . — "
mid |t * ¢ @ o = ¢ \ Y
SN ! | WD | B
[N ' €
e = 126 a =38 a = 2,02 a = 6.00 a =10 w = 1.00 we=10
a = 2.00 » = 8.00 b = 7.0 b = 8.00 b= 1.25 t = 0.002 t = 0.02
b = 0.78 0 x 38 h = 1,00 h = 1.00 d = 081 b = 1.00 h = 0.60
b = 1.732 Cix Co w = 1.00 v = 2.00 € =g €1 = Gy h = 0.40
€= teo Cix 30 ¢Ce t = 0.01 t = 0.001 Gy = 9.6¢,y Ci = 9.8¢c,
€1z Co Cy= ey D = 12,0 Cs = 2.85¢,
Cyx 9.6C, Cam 2358 D = §2.0
37.74¢ 45.88° 48.04° s.02* 80.43° 51.62 03.00°
$7.07% 44.88% 42.78% 62.31% 49.58% 47.41% £88.3p¢
¢ (8) Natheng & Harrington, 1988 **Student's results

vanety of engineering problems. Besides the routine ex-
ercises and homework assignments that the instructor
might assign for students to practice, we found the appli-
cation of the method to a general engineering design prob-
fem. such as that shown in Table . to be the most attrac-
tive and challenging to students. Table I was actually
reproduced from a recent paper [8] where the authors used
a vanational technique to calculate the charactenstic
impedance and velocity of propagation in microstrips or
parually filled coaxial transmission lines. In this kind of
general problem. the student will use difference equa-
tions. developed for both equal and unequal arms, at an
interface between different dielectrics, and may even uti-
lize denivative boundary conditions if symmetry is con-
sidered in the solution. For simplicity, the microstnp
structures with open boundaries may be treated with Dir-
ichlet boundary conditions at antificial boundaries placed
sufficiently far. Clearly. there is a tradeoff for how far
such a boundary should be. Through several tnals, stu-

dents will quickly learn that excessively far boundanes
require very large matrices when a mesh of reasonable
size is used while very close boundaries are inaccurate
unless a reasonable value of ¢ (instead of the assumed
zero value) is known on these boundaries (which is not
the case). Hence, a sufficiently far boundary to justify the
assumption of ¢ = 0 on it while maintaining a reasonably
sized matrix is desired.

The only remaining question to be expected from stu-
dents is how to relate the calculated values of the node
potential to the engineering quantities of interest. such as
the characteristic impedance Z, and the velocity of prop-
agation V¥, in the guiding structures of Table I. Assuming
TEM mode of propagation in these structures, these val-
ues are given by
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where L and C are the inductance and capacitance per unit
length, respectively. If the dielectric loading is assumed
to have no effect on the value of L. then

s/LCo 1
VoV CCO

6. fa
Ji?\/— \[‘ (7

where vy is the velocity of light in air and C is the ca-
pacitance per unit length for air filled transmission line.
From (7) it is clear that Z; and V, may be obtained by
calculating C, (the capacitance per unit length of an air
filled transmission line) and C (the capacitance per unit
length of partially dielectric filled transmission line). Cal-
culation of the capacitance from the obtained potential
distribution may be done through Gauss® law; hence,

<§>eiod§=q=—§evdwdz
s (4

(8)

€e—dc =
c an 9
where the two-dimensional closed surface s in (8) was
replaced by the closed contour ¢. This results in a charge
q in coulombs per unit length. Evaluating (8) by utilizing
the discrete node values of ¢ (see Fig. 7) we obtain

€ (____¢1 2-h¢3> h + ¢ (¢52h¢6> h

O — G\ ¢2—¢4’_"
+‘°< 2h )E“'( 2 )2

+ contributions from other sides of the contour

(9)

=1
C’V

where V is the initially assumed potential difference be-
tween the center conductor and the ground.

The procedure in (9) is then repeated with the trans-
mission line completely filled with air (i.e., the dielectric
is removed) to calculate Cy. Values of C and C, are then
used to calculate the characteristic impedance Z, and the
velocity of propagation as given in (7).

The last row in Table I shows some of the results ob-
tained by the students. They were also interested in ex-
amining the variation of the characteristic impedance and
the velocity of propagation with changes in the transmis-
sion line parameters, including the width of the center strip
and the thickness and type of substrate. To confirm the
accuracy of their computer code, they compared their re-
sults with those published by Green [9) as shown in Fig.
8 and Table II. At this point the students were excited,
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Fig. 7. Geometry of contour c utilized in calculating the capacitance.
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Fig. 8. Characteristic impedance and the velocity of propagation ratio
V,/ ¥, of a microstrip line with PTFE dielectric (¢, = 2.05).

TABLE 11
CHARACTERISTIC IMPEDANCE Z AND VELOCITY OF PROPAGATION ¥V, OF STRIP
TRANSMISSION LINE. RESULTS FOR VARIOUS DIELECTRIC SUBSTRATES ARE
COMPARED WITH THOSE PUBLISHED BY GREEN [9]

DIELECTRIC
CONDUCTING STRIP

—— AR

el d L1771, 0.3125"
S 2}

e

0.0625" + 777
T

1.000°
STRIP LINE GEOMETRY
Strip Teflon Rexolite Atr

Width €. =205 €. =2.65
7 =58.75 7 =57.38 Z =61.81
0.2188" (58.10) (56.72) (61.19)
Vr=0.8508 Vr=0.9285 Vr=1.000

(0.9506) (0.8282)
Z =50.79 2 =48.74 7 =53.07
0.2813" (50.50) (49.50) (52.92)
Vr=0.9569 Vr=0.9372 Vr=1.000

(0.9567) (0.9368)
2 =44.72 7 =43.89 7 =46.50
0.3430~ (44.76) (43.91) (48.82)
Vr=0.0617 Vr=0.9348 Vr=1.000

(0.9813) (0.9430)

() = STUDENT'S RESULTS
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&rst. because of their understanding of the useful finite
ifference method numerical technique. second, because

of their working computer code, and finally, because of

the understanding they developed of the microstrip struc-
.res commonly used in industry.

7) Application 1o Eigenvalue Problems: In the pre-
vious sections, attention was focused on solving partial
‘ifferential equations where the scalar function ¢ was the

nly unknown. In ejigenvzalue problems, including Helm-
holtz equations (V- + k)@ = 0, ¢ is not the only un-
known, but instead both k and ¢ are to be determined.
‘or each value of the eigenvalue k; there is a solution for
., that represents the corresponding eigenfunction. In
waveguide problems, for example, there is a ¢; distribu-

on (field configuration of a propagating mode) for each

alue of the cutoff wave number ;. In this case, by dis-
cretizing the cross section of the waveguide by a suitable
-quare mesh and applying the finite difference represen-
wion of the Helmholz equation at each node, we obtain
tne following matrix equation

(A-N)®=0 (10)

here A is the coefficient matnx that results from applx-
ing the difference equation at each node. X = (4 — hk”)
, the unknown eigenvalues. and / is an identity matnx.
1 (10). both the eigenvalue N and the cigenvector ¢ arc
unknowns and must be determined. There are several
~ays of determining \'s and the corresponding value of
*s. The following is a summary of these options:

1) First (10) can be satisfied only if det (4 — AI] =

0. Hence calculating det [4 — A/] = 0 will result in a
olynomial in X. which can then be solved for the vanous
igenvalues \'s. For each of these eigenvalues, the cor-
responding eigenfunction ¢ may be obtained from (10)
10).

2) The second alternative is to use the power method
for solving eigenvalue problems. In this iterative method
¢ scarch for an eigenfunction ¢ that satisfies the follow-

g equation:

Ad =\ (1)

¢.. when A is multiphied by €. the result will be constant
wltiplied by the same ¢. Hence. the iterative procedure
starts by assuming the vector ¢ (contains the value of o
{ the vanous nodes) and through the repeated multiph-

NOM

2 z 0:/(¢:'L/ + °,-[

IERER]

L)
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its convergence for an arbitrary choice of the initial as-
sumption of the vector & as described elsewhere [5]. The
power method. however. provides the eigenvector ¢ with
the largest eigenvalue A. Since, in waveguide problems,
we are interested in solutions with the smallest eigenval-
ues, i.e.. modes of lowest cutoff frequencies, the power
method should be applied on the 4 ', the inverse of the
matrix A. From (11) we have

AT'AP = NA7T'®
and since A~'A = I we obtain

1
g _ 1
AT N $.
Hence, applying the power method on A™" results in the
& solution with largest 1/\ value which corresponds to
the smallest eigenvalue A.

3) The other available option is to use the double iter-
ative procedure based on Liebmann’s method [1]. The it-
erative procedure starts with assuming a value for the ei-
genvalue X = 4 — h’k°. The potential ¢%*' at the (i. j)th
node in the (k + 1)th iteration is obtained from its known
value in the (k)th iteration by

tk+1)
Y

wR;
(12)

_ (k
=t TR

where w is the acceleration factor | < w < 2 that may be
used to speed up the convergence of the solution and R,
is the residual at the (i. j)th node calculated from

R, =01+ 01+ &isy
+ ¢i—|.j - (4 - h2k2)¢i]'

After a few iterations using (12) to improve the initial
assumption for the ¢'s values, the value of the eigenvalue
A = 4 — h k- should be updated using Rayleigh formula

[6]. [11]:

S S oV >0 ds
kP = —————. (13)

S S ¢’ ds

Replacing V7 in (13) by its difference equation and car-
rving out the integration in (13) using the discrete values
of ¢. we obtain

1] + o‘;‘l + ¢1.1-I - 4¢'J)

kn =

ations of & with A, the solution will converge to a vector
 that satisfies (11) multiplied by A™ where m is the num-
ser of repeated multiplications needed for the solution to
-onverge. Detailed examination of this method will prove

" (14)

where the summation is carried out over all points in the
domain of interest. The iterative procedure involves car-
rying out (12) for a few iterations and then updating the
eigenvalue using (14). The ¢ distribution from (12) should
continue until a convergent solution is obtained. 7
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Fig. 9. (a) Schematic illustrating the geometry and the calculation param-
eters of a single-ndge waveguide. (b) Ratio between cutoff wavelength
of the ndged waveguide X/ and the same guide without ndge \..

Students were asked to write a computer program to
solve Helmholtz's equation for the ridged waveguide
shown in Fig. 9(a). To check the accuracy of their results
they were asked to examine the variation of the cutoff
wavelength of the dominant TE mode with the data pub-
lished many years ago by Cohn [12]. Some of the ob-
tained results are shown in Fig. 9(b) together with the data
from [12]. The reward of this exercise was clearly excit-
ing because students discovered that by changing the
shape of the cross section of the waveguide, the cutoff
frequency of the dominant mode may be reduced by a fac-
tor of 5. In all cases, the axial magnetic field distribution
in the wavcguide cross scction (¢ in this casc) was plot-
ted to illustrate the effect of changing the geometry on the
mode configuration in the waveguide. In solving for TE
modes, however, students should be wamed about the
possibility of obtaining a false convergence. the trivial
TEgo mode. in which ¢ distribution is uniform throughout
the cross section of the waveguide. Avoidance of such a
possibility may be achieved by imposing other constraints
on the vanation of ¢. A typical possibility is to impose
the condition V - B = 0, (B = 0) on the plane of sym-
metry [1].

This concludes the first section of the course which dealt
with the introduction and application of the finite differ-
ence method to the solution of ¢ngineering problems in
electromagnetics.

IV. METHOD OF MOMENTS FOR SOLVING INTEGRAL
EQUATIONS

Many engineering problems are formulated and quan-
tified in terms of integral equations. This includes appli-
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cations in the antenna, signal processing, and the image
restoration areas. In addition, several electrostatic prob-
lems and microstrip transmission line designs may be for-
mulated alternatively in terms of integral equations. It s,
therefore, the objective of this section to introduce the
method of moments which provide an important and very
commonly used procedure for solving integral equations.

A very attractive approach for introducing this method
of solution is to start from the easier to formulate electro-
static problems [13]. In the unique paper on method of
moments for undergraduates [13], the authors started by
trying to calculate the charge distribution on a cylindrical
conductor of radius @ and length 2L. The integral equa-
tion for the known potential on the conductor is first for-
mulated and the charge distribution is then determined
using the method of moment. Since delta functions (point
charges) were used as basic functions to expand the un-
known charge distribution (not piecewise constant func-
tion as shown in Fig. 1 of {13]) and point matching was
used to obtain the desired N equations in N unknowns,
singular terms were encountered on the diagonal elements
of the resulting N X N coefficient matrix. The early ex-
posure of students to this kind of problem and the need
for a special treatment of the diagonal elements are im-
portant aspects of the method of moments. Hence. we fol-
lowed this introductory material in our course [13] and
the reader is referred to this paper [13] for detailed de-
scription of this introductory section.

At this point, the students had the feeling that diagonal
elements were treated on an ad hoc basis and that they
will be required to do so arbitrarily in each problems. To
remedy this situation, we continued with the electrostatic
problems and as an example we tried t0 determine the
capacitance of a square parallel plate capacitor as a func-
tion of the seperation distance between the plates {2]. [3].
The point here was that by showing the students that the
value of the capacitance may be three times its expected
paraliel plate value (due to fringing effects) atd/W = 1
where d is the separation distance and W is the side length
of the square plate, they will be sufficiently motivated to
listen carefully to another example illustrating the use of
the method of moments. This example is formulated as
follows:

For the parallel plate capacitor shown in Fig. 10. the
potential at an observation point 7 due to the charge dis-
tribution on the two conductors is given by

V(F) = —— S ) (15)
d7ey Js IF -r|
where s is the area of the two parallel plates. Following
the procedure of example 1 of the cylindrical rod [13], we
divide each of the parallel plates into small subareas As.
The resulting number of subareas will then be 2N as
shown in Fig. 10. These subarcas will be chosen suffi-
ciently small so that the charge density p may be assumed
constant on each. In essence, we expand the unknown
charge distribution in terms of piecewise coastant. i.e..
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Fig. 10. Schematic illustrating the geometry of the parallel plate capacitor
and its subdivision for the method of moments solution.

pulse, expansion functions

o(r') = (16)

>_3, af  f= {1 As,

= 0 elsewhere
where As, is the area of the nth section and «, is the
unknown magnitude of each pulse. Substituting (16) into

(15) we obtain
S ds'
Asa |7 - ?l |

The integration over s in (15) is replaced by a sum N,
and each includes an integration over only one section
As,. This is because the expansion functions are nonzero
only over one subsection as given in (16). If we choose
to determine the unknown expansion coefficients by uti-
lizing the 2N known values of the potential V at the cen-
ters of the 2 N subsections, we obtain

L
V(F) = — 17
(7) 47e n§| G (17)

2N

] ds'
LI N
41’60 a=1 Ase |[Fay — r’|

(18)

in (18) V = 1 was used at the centers of the N sections on
the top plate (7, 7., - = - . Fy) while ¥ = ~ ] was used
on the lower plate (7y.;. - * * , Tay). Equation (18) pro-
vides 2 N equations in the 2N unknown expansion coeffi-
cients «,. At this point. a decision should be made on how
to handle the integration in cach of these cquations. The
following are the options:

1) Instead of assuming uniformly distributed charge
over each subsection As,, we may assume that such a
charge is localized a,As, = a, at the center of each sub-
section. In this case, a, represents the yet to be deter-
mined unknown point charges at the center of the nth sub-
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section. In this case, (18) reduces to
2N
| = 1 a,
47Teg n=1 |r_l -
;| W o
1 — (19)

47eg n=1 |r2—~ - r",l
As expected from the previous example of the charged
cylindrical rod [13], (19) has the problem of blowing up
along the diagonal of the coefficient matrix (i.e., self terms
involving calculating the potential at the center of a
subarea due to its own charge also assumed to be located
at the center). To overcome this problem we once again
resort to a special treatment of the diagonal elements. This
involves approximating each subarea by an equivalent cir-
cular one of the same area and use values of the potential
equal to that calculated at the center of a circular area [21,
[3]. For a circular area of radius a, the potential at a point
at its center due to its own uniform charge distribution is
given by

1 (o Q a, |As

V,.=—S S Zdpd¢p = ——27a = — |—

4rey Jo Jo p 47eg 2\ 7
(20)

where As is the area of the equivalent circular subarea.
We may now use (20) in (19) for the diagonal (self) terms
in the coefficient matrix.

2) If such an ad hoc treatment of the diagonal elements
is not desirable, we may utilize analytical expressions de-
veloped for the integral in (18) as described elsewhere
[3]. It should be emphasized that by carrying out the in-
tegration in (18) we basically utilized piecewise pulse ex-
pansion functions and point matching for testing. In other
words, in this casc there will be no singularity problem
with the diagonal terms in the coefficient matrix.

3) The final option available to students is to actually
carry out the integration in (18) numerically. Once again,
in this case no singularity problems will be encountered
in the solution.

With these options in mind, students are now prepared
for a formal introduction to the method of moment. Be-
fore we do this in the next section, however, tradeoffs
between the three options 1), 2), and 3) should be em-
phasized. Option 1) is clearly the most efficient while op-
tion 3) is the least efficient from the computational time
point of view. In option 2), we substitute some of the
computational effort and time by an analytical one which,
depending on the problem, may or may not be possible in
all cases. Furthermore, to achieve a specific degree of ac-
curacy, the required size of the matrix (2N X 2N) in
option 1) may be relatively larger. These, as well as other
tradeoffs, should be mentioned so as to enhance the stu-
dent’s depth of understanding. To practice the basicgor-
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mulation of the method of moment, students were asked
to write a program that utilizes the method of moment to
calculate the capacitance of a parallel plate capacitor (in-
cluding the fringing effects). They were also asked to
compare the obtained results for two different expansion
functions and/or testing functions. The obtained results
from some of the computer codes written by students are
shown in Fig. 11 where it is clear that the total capaci-
tance may be three times larger than its parallel plate value
with thc increasc in the scparation distance between the
plates [2]. In this homework problem, most of the stu-
dents used the following two choices of the expansion and
testing functions:

1) delta expansion and delta testing functions with spe-
cial treatment of the diagonal elements,

2) piecewise pulse expansion and delta testing func-
tions. The integration over each square subsection was
performed either analytically or numerically using one of
the known integration methods [3].

The results shown in Fig. 11 agree well with data pub-
lished in the literature [2], [3]. After this practice home-
work problem, the students were formally introduced to
the method of moments solution procedure. The follow-
ing section describes the essential steps we used in the
formal introduction of the method of moments [2].

1) Integral Equation Formulation: As indicated car-
lier, the method of moments is a computational procedure
which is often used to solve engineering problems for-
mulated in terms of integral equations. The following is
a general form of a type of integral equation:

S{ U(r)G(r/r) de" = f(F) (21)

where U(r') is the unknown quantity to be determined
(e.g.. the charge distribution on the plates of the capaci-
tor). f(7) is a known force function (e. g the voltage on
the plates of the capacitor) and G( r/r ) is a known kemel
that reiates the unknown function U(r') to the known (or
measured) function f(7). The kemel G is often referred
to as the Green’s function. The derivation of this integral
equation is an important part of formulating the engineer-
ing problem. Throughout the following examples. bases
for deriving these integral equations will be poumed out.

2) Expansion of the Unknown Quantity U(r') in Terms
of Known Basis Functions: To help us determine U(r’).
we expand 1t in terms of simpler basis functions with un-
known expansion coefficients. Hence,

N

2 a,f,

A=

u(r') =

f.'s are the basis functions, «,’s the unknown expansion
coefhcients. Examples of £, often used in the literature
may include piecewise constant (pulse) basis function, the
very simple delta function (point sources), or the trian-
gular basis functions [2], [14]. Substituting U(r')in (22)
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Fig. 11. Nommalized capacitance C/C; of a paraliel plate capacitor as a
function of 4/ W.
we obtain

N

Y a, S LG(F/F) dv' ~ f(7). (23)
Ar

n=1
From (23) it is clear that the basis function must be chosen
to accurately represent the source in (22) and at the same
time be computationally efficient or analytically possible
to integrate in (23). The tradeoff between accuracy of rep-
resentation and efficiency of compuiation are the main
tradeoffs in choosing the basis functions. -

3) Development of the Necessarv N Equations to Solve
Jor the N Values of the Unknown Coefficients a,,: In (23),
basically, we replaced the unknown function U(r') with
N unknown expansion coefficients a,. n = 1. N
To determine these unknown coefficients. we once again
deﬁne N diffcrent, but known, testing functions 7,. n =
1, - -+, N and perform the inner product of each of these
T,'s wnh (23). Such a procedure results in N equations.
defined as follows:

a,S L fTG(F/r)dv' da
a [
+oee 4 a,,S S LTG(F/r ) dr' da
A Jar’

T,f(r)d

a

-
=], |,

+ oo 4 a,,g S LTG(F/r') de’ da
A JAr

T»G(r/r )dv' dA

= SA Lf(r)yda

10
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o, & SM,J] T,G(F/r') dv' d
+ o+ o, SA S.\,nf"T"G(;/F)d"' dA

= SA T,f(F) dA (24)

Each one of the equations in (24) was obtained by per-
forming the inner product of one of the testing functions
with (23). The inner product is defined as

(T £) = X n | 566/ avas (9)

where T is the testing function and 4 is its domain. From
(25) it is clear that by performing such an inner product
we were able to obtain the required N equations in the ¥
unknown a, values. It is often useful to point out the two
most popular choices of the testing functions T,. First,
the testing function may be chosen o be the delta function
and the procedure is this case is known as the *‘point
matching technique.’” The other popular testing proce-
durc utilized is when the testing functions are taken to be
the same as the bases expansion functions. In this case,
the procedure is known as the Galerkin method. It is in-
teresting to students to note that the first choice of the
testing function basically involves enforcing (24) at N
points (corresponding to the location of the various delta
functions) while in the other the obtained solution effec-
tively minimizes the error in enforcing (24) throughout
the domain ¢’ in a least square error sense [15]. The fol-
lowing are some examples which we used to illustrate the
procedure:

Example 1) Review of Electrostatic Problems: It is very
helpful to students that we go back at this point to the two
clectrostatic examples uscd before the formal introduction
of the method and emphasize the following:

1) In the cylindrical rode problem described in [13].
delta function was used as the expansion function as well
as the testing function. For this, special treatment was
needed for the diagonal elements.

2) In the parallel plate capacitor example, options 2)
and 3) pulse basis functions were used for expanding the
unknown charge distribution while delta function was used
for testing. In option 1), it is clear that delta function was
used for both expansion and testing.

Example 2) Linear Wire Antenna: This example is used
to illustrate the complete solution procedure using the
method of moments, including the derivation of the inte-
gral equation. We started with the derivation of Hallen’s
integral equation [16] to emphasize the fact that G(?/;_')
in (21) represents, in this case. the radiation from a build-
ing block point-source along the antenna. The total radia-
tion is, hence. obtained by integrating an unknown cur-
rent distribution J(z') multiplied by G(7/r') = Ke ™ /R
where K is a proportionality constant over the antenna

12}

length. Hence,

L2 1\ o kR .
S J——(”—)i-—dz'=-!-(c,cosk:+c:sink|:l)
-L/2 R 1
where 7 = Vpo/€o and ¢; = Vy/2 where V, is the applied
voltage across the terminals of the antenna. The solution
procedure at this stage is straightforward and involves ex-
panding J(z') in terms of known expansion functions
(with unknown amplitude cocfficients) and usc, say, a
point matching technigue to solve for these unknown coef-
ficients. We found it adequate at this point to point out
the possibility of using an entire domain basis function.
In this case, the expansion functions are nonzero through-
out the entire length of the antenna and may be used be-
cause a collection of sinusoidal currents are ‘‘known’" to
provide a **good’" guess for the current distribution on the
antenna. The results from a computer program written by
the students are shown in Fig. 12. The input impedance
calculations are obtained from

Vo

Z, =
" / in

where V, is assumed to be 1 V at the input port of the
antenna and [, is the value of the current evaluated at the
input port (z = 0). The input impedance calculations
compare favorably with Hallen's curves available in the
literature [17].

Example 3) Calculation of Two-Dimensional Scattering
(TM Case): In formulating this problem, we once again
utilized the two-dimensional Green's functions which ba-
sically relates the radiation from a line source to the source
intensity. Without completely solving the wave equation
in the cylindrical coordinate system, we proposed a_so-
lution in the form ¥ = (1/4j) Hy' (kp) where HE' is
the Hankel function of second kind and zeroth order [18].
We emphasized the reason for choosing the second kind
because its asymptotic value for large argument kp —
together with the e’™" time harmonic dependance, as-
sumed throughout this paper. has the correct behavior of
an out going wave._ It was also indicated that if the line
source is located at p’ and the observation point is located
at p (see Fig. 13), the form of the solution would be

I . - =
v = HP(E -2 (26)
where | 5 — p'| is the distance between the source and
the observation point. Utilizing (26) and keeping in mind
that the scattered fields are basically generated by an
equivalent current distribution given by j,q distributed
throughout the dielectric scatterer we obtain

— kn S _ . ) —

E'=~—\ J Hy'(kip - p'|)ds. 11
In gther words, once again Green’s function G(?/?) =
Hy'(k|p — p'|) was considered to be the building block
and, hence, multiplied by a current distribution J,, and
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Fig. 13. Schematic illustrating the cylindrical coordinates of a line source
located at p'( p'. @) and an observation point Patpip. @)

integrated over the cross section of the dielectric object.
The total electric field E at any point in space is given by

E=-E'+E

—l kr’ 7 N - - ’

=E'~ 7 S‘J,,,HB' (kB = 0']) ds.

Substituting J, in terms of the total electric field
jeq =jw(£ - 50)_5
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Fig. 14. (a) Cross section of dielectric cylinder. (b) Its digitization into N
small (approximately square) subareas.

we obtain for TM case

. k 2 -
£= B -5 ot - @) EHR (] - 7)) a5

(27)

Equation (27) is the required intcgral cquation for the to-
tal field E.. The solution procedure involves expanding E.
in terms of the piecewise pulse basis function and using
the point-matching technique to determine the unknown
expansions coefficients. This is equivalent to dividing the
dielectric scatterer of interest into N small mathematical
cells (see Fig. 14) and assuming the electric field E.tobe
constant within each. The amplitude distribution of E.in
the cross section is obtained using the point matching.
Utilizing the pulse basis functions and the point-matching
technique, (27) reduces to

: Hyz,z*(kpm)dx' dy m=1,--- N

(28)

where ¢, and E. are the relative complex permittivity and
the electric field. respectively, in the nth cell. E’ and
E._ are the incident and total electric fields in the mth cell,
P i1s represented by

o= N = 1) + (¥ - )

Students were asked to run an already developed com-
puter program to calculate the electric field distribution
within a dielectric scatterer [19], [20]. They first checked
their ability to run the program by reproducing the results
published by Richmond [21]. They were then able to re-
produce some of the more interesting results that may in-
volve the calculation of the electromagnetic power depo-
sition in the human body. Clearly, analytical calculations
of such results is not possible and because of the practical
importance of the problem in hand, the students had cer-
tainly a great deal of appreciation of the usefulness of nu-
merical techniques. Some of the results reproduced by the
students using a TM excitations computer program [19]
are shown in Fig. 15. 1 2
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Fig 15. ta) Cross section of the human body exposed to the radiation fields
of an eight-source annular phase array 119]. The body 1s surrounded by
2 water bolus W and the enlire cross section (i.c.. the body and the bolus)
1s divided into 201 mathematical cells. The symbols indicate the different
ussue types. L 1s lung. H s hean. M for muscle. and B for bone. (b
Magnitude of the electne fields distnbution in the cross section of the
human body at 10 MHz.

V. CONCLUDING REMARKS
In this paper, we summarized our experience with the

introduction of a new course on computational methods
in electromagnetics for seniors and first-year graduate stu-
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TABLE Il
COURSE CONTENTS AND NUMBER OF LECTURES SPENT ON EacH Toric

Subject Number of Lectures

1. Preliminanes:
a. Solution of a linear system of 4
equations (direct, iterative, and semu-
jtcrauve mcthods).
b. Discussion of methods to check 2
stability of the system of equations
and the convergence of obtained

results.
2. Finite Difference:
a. Difference equation, unequal arm 3
grid, denvative boundary condiuons.
b. Examples (lterative and direct 2

methods for solving Laplace’s and
Poisson's equauons).
¢. Solution of propagation 3
characteristics of strip and microstrip
transmission lines (derivation of
difference equation characteristic
ters from calculated potental at
dielectric interface and application of
Gauss' law).
. First midierm examination. Take Home
. Finne Difference (continued)
d. Propagation characteristics in 3
waveguides. resolution of eigenvalue
probiems, power methods.
¢. Solution of eigenvalue problems, 1
double iterative Libmann’s method.
S. Method of moments.
2. Solunon of chasge distribution on 3 2
conducting rod, procedurcs for
dealing with diagonal ciements.
b. Formal introduction of the method of 2
moments, example of parallel plate
capacuor.
S d mudierm examinat Take home
. Method of moments (contnued).
¢. Radianon characteristics of lineas wire 3
antennas. derivations and use of the
method of moments solution.
d. Calculauon of two-dimensional 3
scattenng, derivation of TM case,
method of moments solution,
descripnon of computer program.
Final Exarmnabon Take home
Introduction of Finue Element Method. 2

)

-~

oo

dents. The course combines available techniques for solv-
ing both partial differential and integral equations. Table
111 describes the course content and the number of lectures
spent on each topic. Examples from a large variety of
practical applications were utilized throughout the course.
Problems in microstrip transmission lines, waveguides of
arbitrary cross sections, wire antennas. and two-dimen-
sional TM scattering were included as examples. Table
[V includes a list of the computer programs used in this
course. Copies of these programs are available and may
be furnished upon request from the authors. Although
there exist -other numerical techniques which are often
used to solve electromagnetics problems, efforts were fo-
cused in this course on the detailed discussion of the finite
difference and the method of moments. This provides ex-
amples of solutions to engineering problems formulated
in terms of differential and integral equations. Other tech-
niques, such as the finite element method, were briefly out-
lined at the end of the course. In this regard, emphases
were placed on derivation of variational expressions from
differential equations describing the engincering problem.,
and also on the finite element procedure of converting the
variational expression to a simultaneous system of linear

equations. 1 3
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TABLE IV
LisT of COMPUTER PROGRAMS USED IN THE COURSE

Subyect

Program

1. Solution of N-lincar equations

2. Finite difference method.

3. Method of moments

Gauss elimination method.

. Gauss-Seidel iteration method.

LU decomposition method.

. Conjugate gradient semi-iterative method.
Power method 1o solve eigenvalue problems.

sanoe

a. Electric potential distribution for a conducting
strip placed in 2 square duct.
i. Using the relaxation method.
ii. Using Licb ‘s overrel

b. Solution for the propagation characteristics of
strip and microstrip Tansmission lines.

c. Solution for cut-off frequencies and field
distribution in waveguides (ridged
waveguides).

i. TM modes.
ii. TE modes.

a. Calculation of capacitance of a rectangular
parallel plate capacitor.

b. Calculation of charge distribution on a
conducting strip of given electric potential
distribution.

¢. Radiation characteristics of wire antennas
(Hallen's equation).

d. Calculation of two-dimensional scattering by
inhomogeneous cylindrical structures.
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