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Numerical Integration

8.1

Introduction

560

Frequently, many engineering problems
require the evaluation of the integral

b

I =/ f(x)dx, (8.1)
a

where the function f(x) is called the in-
tegrand and a and b are called the limits
of integration. If the function f(x) is con-
tinuous, finite, and well behaved over the
range of integration a < x < b, the inte-
gral (1) can be evaluated using the avail-
able mathematical techniques. If f(x) de-
notes a simple function such as a poly-
nomial, an exponential, or a trigonomet-
ric function, the integrals are well known
from calculus. If f(x) involves more com-
plicated functions, often, standard tables
of integrals can be used to evaluate the in-
tegral (1) in closed form. The analytical or
closed form expressions for the integrals,
if available, are very valuable, since they
are exact and no error is involved in their
evaluation. In addition, the influence of
changing some physical parameter of the
engineering problem on the integral can
be studied easily. Finally, the closed form
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fx

y

> x  Figure 8.1 Integral as area under the
curve.

expressions of the integral (/) can be used to verify the accuracy of numerical
integration.

On the other hand, the function f(x) may be a complicated continuous function
that 1s difficult or impossible to integrate in closed form. In some cases, f(x) may
not be known in analytical form: it may be known only in a tabular form, where the
values of x and f(x) are available at a number of discrete points in the interval a to
b (may be. from an experimental study). The limits of integration may be infinite or
the function f(x) may be discontinuous or may become infinite at some point in the
interval a to b. In all these cases, the integral (/) can be evaluated only numerically.

The integral of a function f(x) between the limits a and b basically denotes
the area under the curve of f(x) between ¢ and & as shown in Fig. 8.1. Integration
is also known as quadrature. A simple. intuitive approach to evaluate the integral
in Eq. (8.1) is to plot the function f(v) on a grid or graph paper and count the
number of boxes or rectangles that approximate the area under the curve of f(x).
(Sce Fig. 8.2.) The product of the number of boxes and the area of each box gives
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v Figure 8.2 Evaluation of an integral
using a grid or graph paper.
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an estimate of the total area under the curve (i.e., the integral, I'). This estimg
can be refined, if necessary, by using a finer grid. However, the method used js Very

impractical and inaccurate in many cases.

Engineering Applications

»Example 8.1

A semiinfinite solid body, initially at temperature T;, is suddenly exposed to a fiyjy
at temperature Ty at the face x = 0 as shown in Fig. 8.3. If the diffusivity of g,
material (@) is constant, the unsteady state temperature distribution in the body

T(x, 1), is governed by the equation

46 do
—+2n— =0
dn? ndn
subject to
6(n) >0 as n— o0
and
6(0)=1,
where
g LT
Ty — T,
and
X
= dar

Determine the temperature distribution in the body.

M
|

Figure 8.3

Semi-infinite solid.

(a)

(b)
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Solution

The solution of Eq. (a) is given by

o) =cr+cz [ e, (t
where the constants ¢; and ¢, can be evaluated, using Eqys. (b) and (c), as ¢; = 1 and
= — 72_; Thus, the solution becomes

T-T; 2 " 2
(n) = =1-— “ dz.
= 7—= N (8)
The right-hand side of Eq. (g) is known as the complementary error function and
the integral of Eq. (g) cannot be evaluated in closed form. <
»Example 8.2

The axial displacement (du) of an elemental length (dx) of the bar, shown in Fig. 8.4,

under a load P is given by
du o P

ix " ETEA @

where E is Young’s modulus and A is the cross-sectional area. Determine the
axial displacement of the bar for the following data: P = 5000 Ib, | = 10 in,
E =30 x 10%(1 — 0.01x — 0.0005x2) psi. and A = Age=01% = 2¢=0.1x {p2,

Solution

The axial displacement of the bar at x = { can be determined by integrating
Eq. (a) as

!
= fdu = A %dx, (b)

where the integral can be conveniently evaluated using a numerical integration
procedure.

BRR I
N R

scction B-B

! Figure 8.4 Nonuniform bar under axial
load.
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pExample 8.3

The turning moment developed at various positions of the crank from the inpe;
dead center in a multicylinder intcrnal combustion engine is shown in Fig. 8.5. If the
speed of the engine is 1,500 rpm, determine the power developed.

Solution

The power developed per cycle (one revolution of the crank) can be found as the
area under the turning-moment—crank-angle diagram. The integral of the functigy
f(x) can be evaluated analytically as follows:

1.5
I = f(x)dx = 5.5606613. (a)
0

Thus, the area under the turning moment diagram per one cycle of the engine s
given by

47
5.5606613 (100) (-3——) = 2,329.249805 Ib-ft/rcv.
A
6 l '
| | / \

5 f :
= f(x) = 0.84885406 + 31.51924706 x | \
= — 137.66731262 x2 + 240.55831238 x* |
8 4 | 17145245361 x* + 41.95066071 x*
2 | ! .
5 !
:u,: 3 /\
= : 7
=
g 2 .
2
g
2

1 . N\

. .

0.00 0.25 0.50 0.75 1.00 1.25 1.50

Crank angle. x [1 unit = 4_3"_ radian]

Figure 8.5 Turning moment diagram.
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8.3

The power developed by the engine (P) can be determined by multiplying the power
per cycle and the speed of the engine. This gives

P =2329.249805 x 1500 = 3.4938747 x 10% Ib-ft/min

_3.4938747 x 10°
© 33,000

= 105.874991 hp

Newton-Cotes Formulas

The Newton-Cotes formulas are the most commonly used numerical integration
methods. They are based on replacing a complicated function or tabular data by
some approximating function that can be integrated easily; that is,

b b
I=/ f(x)dx%/ Pmix)dx, (8.2)

a
where pp (x) is the approximating function, usually taken as an mth-degree polyno-
mial, viz., :
Pm(x) = amx™ + a,,,_lx"'_1 +. a2x2 + aix + ag, (8.3)

where the coefficients of the polynomial (constants) am, am—1, ...a;, ag are deter-
mined such hat f(x) and p,(x) have the same values at a finite number of points.
(See Section 5.3.) Figure 8.6 shows the approximation of f(x) using three of the
simplest polynomials, namely, a constant, a straight line, and a parabola.

8.3.1 Rectangular Rule

The function or data of f(x) can also be approximated using a series of piecewise
polvnomials shown in Fig. 8.7. In this approach, the range of integrationa < x < b
is first divided into a finite number (n) of intervals or strips such that the width of
cach interval is given by

h=Ax =

(8.4)

n

The discrete points in the range of integration are then defined as xg = a, x1. x3, ..
Xp—1.and x, = b with

"y

xi=a+ihi=012,...,n. (8.5)

The values of the function f(x) at the discrete point x; is assumed to be known
as f,(i =0.1.2,...,n). As shown in Fig. 8.7(a), the simplest approximation to the
function f(x) is a piecewise polynomial of order zero (i.e., a series of constants)
Clearly. from Fig. 8.7(a). the function f(x) can be approximated over the interval
X; < x < x,, either by the value of f; or f;,. If the values of f; are used (i.e., f(x)
is approximated by its values at the beginning of each interval), the area under the
curve f(x)in the interval x; < x < x;4 is taken as (f;h) and hence the integral (I)
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L f(x)
f(x)
po(x) = ay,
constant
ao L
% .
0 a b
(a)
L f(x)
f()
P (0) = ag+ayx,
straight line
0
0

Figurc 8.6 Different types of
approximation of f(x).

is evaluated as
b n-1
I= / fx)dx ~h <Z f,-) (86)
a i=0

On the other hand, if the values of f;,; are used (i.e., f(x) is approximated by its
values at the end of each interval), the area under the curve f(x) in the interval
x; < x < x;41 is taken as (f;11h) and hence the integral (I) is evaluated as

b n—1 n
l=/ f(x)dx%h(Zf,-H) Eh(Zf,) 8.7
a i=0 i=1
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$f(x)

2
TN
/\, ZANI5)

> X

Figure 8.7 Approximation of f(x) by
piecewise polynomials of degree 0 and 1.

For a monotonically increasing function. Eq. (8.6) underestimates and Eq. (8.7)
overestimates the actual value of the mtegral. (See Fig. 8.8.) On the other hand.
for a monotonically decreasing tunction. Eq. (8.6) overestimates and Eq. (8.7) un-
derestimates the true value of the integral. In practice, the rectangular rule leads
to large truncation errors for general nonhnear functions f(x) and, hence. is not
commonly used. However. the method serves to illustrate the basic concepts used in
numerical integration and Newton - Cotes formulas. An improvement in accuracy of
the piecewise-constant approximation (rectangular rule) can be achieved by using
the average value of f, and 7, ., in theanterval x; < x < x;41 as shown in Fig. 8.9.
In this case. the integral (/) 1~ cvaluated as

I n—1 : )
r= [y (£, (8.9)

1=0
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X % Xn
a b
(a) Underestimate for [
ALY

(b) Overestimate for / of I.

f(x)

fx

> X

Numerical Integration

Figure 8.8 Under- and over-estimation

I B L Figurc 8.9 Approximation of f(x) by

a b (fi + fig)/2Inx; < x < Xj41.
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8.3.2 Trapezoidal Rule

The trapezoidal rule is extensively used in engineering applications because of
its simplicity in developing a computer program. The method corresponds to the
approximation of f(x) by piecewise polynomials of order one [ p; (x) = cyx+co], that
is, by straight-line segments as shown in Fig. 8.7(b). In this case, the area under the
curve f(x) in the interval x; < x < x;41 is equal to the area of thc trapczoid; hence

the name trapezoidal rule. Denoting the areas of the trapezoids as I, I, .. ., I, we
have (Fig. 8.10)
fo+ fi h+ £
I = h, I, = h,...,
: ( 2 ) 2 ( 2 )
I = (%) h,..., and I, = (f:—l;—f) h. (8.9)

The integral can be evaluated as

b n h
1:/ Fdxx Y =3 (fo+2fi 42+ 2t f). (R10)
a i=l

8.3.3 Truncation Error in Trapezoidal Rule

The basic truncation error ( E) of the trapezoidal rule is given by

/fmd [ﬂ“Hf(b)](b—a), 8.11)

where the first term on the right-hand side of Eq. (8.11) denotes the exact integral
and the second term represents the approximate integral given by the trapezoidal
rule. Note that only one segment is considered in the interval for simplicity. (Sce
Fig. 8.11.) To derive a more convenient expression for the error, we use Taylor’s

fo)

f(x)

Figure 8.10 Trapezoidal rule.
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Truncation error

f&®
Y

Trapezoid area,
[\R [f(a);f(b):l (b - a) | g

Figure 811 Truncation error.

series expansion of f(x) about the midpoint of the range, x = %Q:

2
fO) = F@ + 3 @+ 5 @+ (8.12)

Here y = x — X, a prime indicates a derivative, and the function f(x) is assumed to
be analytical in the interval a < x < b. Equation (8.12) can be used to express

. b h/2 yz
/ fx)dx = / {f(i) +yvf(X)+ E"f”(f) +-- ] dy, (8.13)

—h/2
where y = —h/2 and y = +h/2 can be seen to correspond to x = a and x = b,
respectively. By carrying out the integration in Eq. (8.1 3), we obtain
b . 2 h/2 1 ;3 h/2
f f(x)dx = f(¥) (,v)l_/,,’/.: + o5 + if”()z) 5 N
a =/ \<hy2 —h/2
1 .
=hf(X)+ ﬂh-‘f’ () + - (8.14)
Substituting x = @ and x = b into Eq. (8.12) yields
fla)= f(x) hf’(' +1 h 2f”(') (8.15
=f(x)—-=f(X)+=z|3 — .
a=j=s v az) ’ )
ho Y[R\, .
f(b):f(x)+§f(x)+§ 3 ffex)y+---, (8.16)
where the values of v at x =a and x = b are takenas x — X =a — X = —% and

x — % =h— & = +4. respectively. Noting that (b — a) = h, the second term on the
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right-hand side of Eq. (8.11) can be expressed as

f@+f®_h[ o ko 1o, b
—2——]—2[f(x) 2f(x)+8hf(x) ---+f(x)+2f(x)

(b—a)[
1 2= = 1 3o =
th @t =@+ TR+ (8.17)

Substituting Eqs. (8.14) and (8.17) into Eq. (8.11) and truncating the higher order
derivative terms yields

E= [hf(f) + 2—14h3f”<f> + - ] —~ [hf(i) + —é—h3f”(i) +-- ]

N_l 3 prre= )
~ (). (8.18)

This shows that the error of the trapezoidal rule (per segment or step) is proportional
to f”(¥) and k3. Thus, the error can be reduced by reducing the value of h = b — a.
The error in the multisegmented trapezoidal rule, Eq. (8.10), can be determined

by summing the errors of the individual segments (xg, x1), (x1, x2), ..., (Xn_1, X»).
Since the range of integration is divided into n equal segments, we have h = bn;“
and hence 3 .
1 (b—-a "o ,
Ex -ﬁ( - ) ;f (%), (8.19)

where x; is the midpoint between x; and x; ;. By defining an average value of the
second derivative

~t _ l Z 14 = )
f=- ‘;f (%), (8.20)

Eq. (8.19) can be written as

b—-a

n

- 1 2 i 1 2z 2 )
EN_E(b_a)( ) f'=-sb-aktf =002, (821)

This indicates that the error of the multisegment trapezoidal rule, Eq. (8.10), is
proportional to h% (since (b — a) is fixed).

8.3.4 Truncation Error in Rectangular Rule

The foregoing procedure can be used to evaluate the truncation error in rectangular
rule. The error can be expressed. for a single segmenta < x < b, as

b
E =/ f(x)dx — f(a)h, for Eq. (8.6), (8.22)

and

b
E= f f(x)dx — f(b)h. for Eq. (8.7), (8.23)
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where the first term on the right-hand sides of Eqs. (8.22) and (8.23) denotes the
exact integral and the second term represents the approximate integral given by the
particular rectangular rule. Taylor’s series expansion of f(x) about a is given by

(x"'a)z "
T @y +---.

f@x)=fl@+&—-a)f(@a)+
The integration of Eq. (8.24) yields
b h y?
[ rwax= [ | f@+sr' @+ Gr' @+ dy

h
4.

h 3

2
= f@ylt + f'(a) % + f(a) %
0

0
K2 Y W3
=f@h+ f@=+f@F+
where y = x —a and h = b — a. Thus, Eq. (8.22) gives
N TN
E=f(a)—2-+f (a)-6—+"'-
Similarly, Taylor’s series expansion of f(x) about b can be expressed as

(b—x)?
2!

fx)=f(b)—(b—-x)f'(b)+ ) —---.

The integration of Eq. (8.27) gives

b b 32
/ f(x)d.r:/ f(b)—yf’(b)+§f”(b)._... dy
h h
= f(b) ¥I§ — f'(b) ﬁ + "(b) —yj -
- 0 2|, 6|,

he ho,
= fbh = < f'th) + = f1(B) =,
where v = b — x and h = b — a. Thus. Eq. (8.23) yields

h*

h3
———f'(b — by — ..
E 2f()+6f()

(8.24)

(8.25)

(8.26)

(8.27)

(8.28)

(8.29)

Equations (8.26) and (8.29) indicate that the error of the rectangular rule per step is
proportional to h* and f'(a) or f'(b). By proceeding as in the case of the trapezoidal
rule. the error in a multistep rectangular rule can be expressed as (see Problem 8.5)

1 b—a\ - 1 ,
E= E(b—-a) (—T—) f = i(b——a)hf, for Eq. (8.6),

(8.30)
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and
E= —%(b —a) (b—;—“) j'=-36-ahf, forEq 87, (83D

where f” in Egs. (8.30) and (8.31) denotes the average value of the first derivative at
the discrete points a, x, x2, ..., X,—1 and x1, X2, ..., x,_1, b, respectively. This shows
that the error in a multistep rectangular rule, Eq. (8.6) or (8.7), is proportional to &
since (b — a) is fixed.

»Example 8.4
Determine the value of the integral / = fab f(x)dx, where
f(x) = 0.84885406 + 31.51924706x — 137.66731262x>
+ 240.55831238x3 — 171.45245361x* + 41.95066071x° (a)
with @ = 0.0 and b = 1.5 using trapezoidal rule with different step lengths.
Solution

The value of the integral given by the trapezoidal rule with # steps is

h
1=5(fo+2f1+2fz+-~+2fn_1+fn), (b)
where h = (b —a)/n and f; = f(x = a+ih). For n =1 with h = 1.5, Eq. (b)
becomes -
Iz(fm);u/( >)(b_a). ©

Since @ = 0.0, b = 1.5, f(a) = f(0.0) = 0.84885406 and f(b) = f(1.5) —
0.84542847. Eq. (c) gives the value of the integral as I = 1.2707119. The exact
value of the integral. determined analvtically. is 5.5606613. Thus, the error in the
one-step trapezoidal rule is 77.148186%. Using n = 3 with # = 0.5, the values of the
function f(x) are given by

fo = f(0.0) = 0.84885406. f; = f(a + ) = f(0.5) = 2.8566201, f> = f(a + 2h)
= f(1.0) = 5.7573166. and f3 = f(a + 3h) = £(1.5) = 0.84542847.

The trapezoidal rule with n = 3 gives the value of the integral as
1
I = 5’ fo+2/1 + 2/ + f3) = 47305388, (d)

Compared with the exact value of the integral, 5.5606613, the error in the trapezoidal
rule is 14.928484%. The significancc of /. for n = 1 and 3, is shown in Fig. 8.12. The
results given by the trapezoidal rule withn =1.2.3,4,5,6,9, 12, and 15 are shown
in Table 8.1.



574 Chapter 8

Numerical Integration

0 - L B ! ; (
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1.25 1.50
Figure 8.12 Significance of trapezoidal rule.
Table 8.1
Number of steps  Step length ~ Value of the  Percent
(n) (h) integral (7) error
1 1.5 1.2707119 77.148186
2 0.75 3.8171761 31.353920
3 0.5 4.7305388 14.928484
4 0.375 5.0828342 8.5929899
5 0.3 5.2516432 5.5572190
6 0.25 5.3448267 3.8814559
9 0.16066667  5.4640293 1.7377790
12 0.125 5.5061684 0.97997248
15 0.1 5.5257416 0.62797815

Exact value of the integral: 5.5606613

8.4 Simpson’s Rule

The accuracy of the trapezoidal rule can be improved by reducing the step size / (or
increasing the number of segments n). However, the round-off error increases with

a reduction in the step size h. Another way of obtaining a

more accurate estimate of
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an integral is to use higher order polynomials for approximating the function f(x).
For example, we can use piecewise quadratic functions to approximate f(x), which
corresponds to the case of m = 2 in the Newton-Cotes formulas (Fig. 8.6). This
mecthod is also known as Simpson’s one-third rule. As a further improvement, we
can use piecewise cubic functions to approximate f(x), corresponding to the case
of m = 3 in the Newton-Cotes formulas. The method is also known as Simpson’s
three-eighths rule.

8.4.1 Simpson’s One-Third Rule

As just stated, the integral
b
I = / f(x)dx (8.32)
a

is evaluated using a parabola or second-order polynomial for approximating f(x).
Assuming that a < x;_; < x; < x;41 < b, the three points (x;_1, fi—1), (x;, f;) and
(xix1. fi+1). as shown in Fig. 8.13, are used to define a second-degree polynomial,
p2(x). By making the polynomial

pa(x) = czx2 +c1x + ¢ (8.33)

pass through the three points shown in Fig. 8.13, the constants cq, c1, and ¢; can
be determined. For this, we take the origin at x;(x = 0 at x;) so that x; _; and x;;
correspond to —h and +h, respectively. Such a choice of the origin does not influence
the final result. By using the relations

For x,_;.

prix =—h) = fi_| = ca(=h)? +cy(=h) +¢o = cah? — c1h + ¢ (8.34)

i)

Figure 8.13 Simpson’s one-third rule.
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For x;,
p2(x =0) = f; = c2(0)* + ¢1(0) + co = co; (8.35)

For Xi+1»
p2(x =h) = fis1 = c2(h)’ +c1(h) + o = 2h? + c1h + ¢ (8.36)
the solution of Egs. (8.34) through (8.36) can be found as

_ fic1=2fi+ fina o4 = fis1 — fiz1
2h2 ' ©l 2h

(See Problem 8.46.) The area (/) under the second-degree polynomial ps (x) betweey
x;—1 and x; 41 can be determined as follows:

_ Xit+1 ’ h 2
1 =f p2(x)dx = / (czx +c1x + co) dx
X

i1 —h

, and ¢g = f;. (8,37)

_c 3 a g h
=2 +3 @)+l

2
=302k +2ch. (8.33)
By substituting for ¢ and ¢p from Egs. (8.37), Eq. (8.38) gives
= sffi-1=2 fi+ fin h
1= 5h ( 572 ’ +2hf,-=§(f,-_1+4f,~+f,~+1). (8.39)
The term “1” in Simpson’s one-third rule refers to the presence of the factor *1»

in Eq. (8.39). Note that two segments are used in deriving Eq. (8.39). Thus, for a
multistage application of Simpson’s one-third rule, we need to divide the range
a < x < b into n segments of equal width h = ;“ The number of segments must
be an even number so that Eq. (8.39) can be applied for groups of two segments,
The integral in Eq. (8.32) can be evaluated as

b n/2

I = (x)dx =~ Z (I—)J , (8.40)

where (1_)1 denotes the value of / corresponding to the jth pair of segments and is
given by Eq. (8.39) with i = 2j — 1. Equation (8.39) and (8.40) lead to

n-— n—2
I~ {0+4 Z f,+2 > f,~+f,,]. (8.41)

i=1.3.5,. i=2,4,6,...

»Example 8.5

Determine the value of the integral described in Example 8.4 with a = 0.0 and
b = 1.5 using Simpson’s 1 rule with different step sizes.
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Solution

Simpson’s % rule gives the value of the integral, with n steps, as

h
1=§(f0+4

n— n—2
fit+2 fi + fn) : (a)
) 4,6,...

i=1,3,5,... i=2,

Forn =2 and h = 0.75, Eq. (a) gives

h
I'=3(h+4fi+h), (b)

where fo = f(0.0) = 0.84885406, Jf1 = f(0.75) = 4.2424269, and L= 1.5 =
0.84542847. Thus, Eq. (b) gives I = 4.66599753. Noting that the exact value of the
integral is 5.5606613, the error in Simpson’s % rule is 23.7064321%. For n = 4 and
h = 0.375, Eq. (a) gives

h
1=§(f0+4f1+2f2+4f3+f4)» (c)

where fo = f(0.0) = 0.84885406, fi = f(0.375) = 29153550, f, = f(0.75) =
4.2424269, f3 = f(1.125) = 5.5493011, and f4 = f(1.5) = 0.84542847. Thus, Eq. (c)
gives | = 5.50472009 with an error of 1.0060172%. By proceeding in a similar
manner. the value of the integral is computed for n = 6, 8, 10, and 12. The results
are given in Table 8.2,

8.4.2 Simpson’s Three-Eighth’s Rule

In this method, the integral is evaluated by approximating the function f(x) by a
third-degree polynomial, p3(x), as shown in Fig. 8.14. By assuming the polynomial

p3(x) as
p3(x) = C3X3 + czx2 + c1x + ¢, (8.42)
Table 8.2
Number of  Steplength  Value of the  Percent
steps (n) (h) integral (/) error
2 0.75 4.6659975 16.089163
4 0.375 5.5047202 1.0060153
6 025 5.5495892 0.19911586
8 0.1875 5.5571246 0.063602172
10 0.15 5.5592151 0.026008544
12 0.125 5.5599494 0.012802755
14 0.10714286  5.5602551 0.0073060603
16 0.09375 5.5604043 0.0046220263

Exact value of the integral: 5.5606613
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f(0)

4

1e
for Ji

\/Pa (x) fisn
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_

Xi+1 Xi+2

Figure 8.14 Simpson’s three-eighth’s

‘4 h >I<7 h —»—*—1—- h 4..[ rule.

the constants cg, 1, ¢, and c¢3 arc determined by making the polynomial pass

through the four points (x;_1, fi-1), (xi, fi), (xi+1, fi+1)> and (x;42, fi+2). By taking
the origin at x; (x = 0 at x;), x;_1, x;+1, and x; 4, can be assumed to correspond to

(8.43)

(8.44)

(8.45)

x = —h, h, and 2 h, respectively. Such a choice of the origin does not influence the
final result. By using the relations
For Xi—1,
p3x =—h) = fi_1 = k> c3+ K2y — h c1 + c;
For x;,
p3(x = 0) = fi = co;
For x;41,
pyx =h) = fiqg =h ca+h*cr+hey + co;
For x;42,

p3x=2h = firo=8h c3+4h ey +2hci+co
the solution of Egs. (8.43) through (8.46) can be determined as
co = f

1
c|p = ﬁ(_ﬂ+: +6 fl'+1 ——3f' -2 ﬁ_l);

1
0= z—h—:(fi—l =2 fi+ fi+1);

3 (fiv2=3 finn+3 fi — fi-1)-

T 6h

(8.46)

(8.47)

(8.48)
(8.49)

(8.50)
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(See Problem 8.47.) The area (/) under the third-degree polynomial p3(x) between
xi—1 to x; 4> can be found as

_ Xi+2 2h
I = / p3(x)dx = / (c3x3 + sz2 +ci1x + c()) dx
h

Xi-1

! 2h 2 3 2h €1, 5 2h o
=3 O AT T 6D e w,

— 2_3(15;14) + 63—2(9/13) + %(3}:2) +co(3h). (8.51)

By substituting for cq to ¢3 from Egs. (8.47) through (8.50), Eq. (8.51) gives
;_ 1sn? (f,-+2 —3fiy1 +3fi - fi~l> ApTE (fm ~2f; +f,-—1)

4 6h3 242
3n% (~fixz | 6fina 3 2f,-_1)
+7( 6h | +3hf,
3h
=g Viea +3fis1 +3fi + fia] (8.52)

The term ;—’ in Simpson’s three-eighths rule refers to the presence of the fac-
tor % in Eq. (8.52). Note that three segments are used in deriving Eq. (8.52).
Thus. for a multistage application of Simpson’s three-eighths rule. we need
to divide the range @ < x < b into n segments of equal width h = "n;“
The number. of segments n must be a multiple of 3 so that Eq.(8.52) can

be applied for groups of three segments. The integral in Eq.(8.32) can be
evaluated as

I=| fldex)’ (1); . (8.53)

«

where (I_), represents the value of / corresponding to the jth group of three seg-
ments and is given by Eq. (8.52) with i = 3 — 2. The use of Egs. (8.52) and (8.53)
vields

n-2 n—-3
1%%’[&% Z irhon+2 > ﬁ+f,,] (8.54)
=147, i=3.6.9....
It can be shown that the truncation error in using Eq. (8.54) is of the same order as
that of Simpson’s one-third rule. But the use of Eq. (8.54) requires the number of
segments to be a multiple of 3. Hence. Eq. (8.54) is rarely used by itself. Often both
Simpson’s one-third and threc-cighths rules arc used together so that the number of
scgments # need not be constrained in any way. If the number of segments is even.
Simpson’s one-third rule can be used. On the other hand., if the number of segments
is odd. Simpson’s three-eighths rule can be applied. for instance, for the first three
scgments and Simpson’s one-third rule can be used for the remaining even number
of segments.
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Table 8.3
Number of Steplength  Value of the Percent
steps (n) (h) integral (I) error
3 0.5 5.1630173 7.1510205
6 0.25 5.5357828 0.44740185
9 0.16666667  5.5557156 0.088941850
12 0.125 5.5590858 0.028332422
15 0.1 5.5600042 0.011816609
18 0.08333333  5.5603180 0.0061741355
21 0.071428575  5.5604572 0.003670180
24 0.0625 5.5605288 0.0023839022

Exact value of the integral: 5.5606613

»Example 8.6

Determine the value of the integral described in Example 8.4 with a = 0.0 and
b = 1.5 using Simpson’s 3 rule with different step sizes.

Solution

Equation (8.54) gives the value of the integral according to Simpson’s % rule for n
steps. Forn = 3 and h = 0.5, Eq. (8.54) gives

3
=3 Up+3h+30+ A, (a)

where fo = f(0.0) = 0.84885406. f; = f(0.5 = 2.8566201, f, = f(1.0) =
5.7573166. and f3 = f(1.5) = 0.84542847. Equation (a) gives I = 5.16301737
with an error of 7.1510187%. For n = 6 and h = 0.25, Eq. (8.54) gives
3h

I=2o+3i+32+2fi+3fs+3f5+ fol, (b)
where fo = f(0.0) = O84883d06. f = f(0.25) = 3.2544143, f, = f(0.5) =
2.8566201. f3 = f(0.75) = 4.2424269. f; = f(1.0) = 57573166, fs = f(1.25) =
4.4213867.and fo = f(1.5) = 0.84542847. Thus. Eq. (b) gives I = 5.5357828 with an
error of 0.44740185%. By proceeding in a similar manner, the value of the integral
is computed for n = 9, 12, 15, and 18. The results are shown in Table 8.3.

8.4.3 Truncation Error

As n the case of trapezoidal rule. the basic truncation error (E) in Simpson’s
one-third rule, considering only two segments in the interval a to b, is given by

b -
E=/ f(x)d_\—-(b—a—a>[f(a)+4f(x1)+f(b)], (8.55)
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where the first term on the right-hand side of Eq. (8.55) denotes the exact integral,
while the second term represents the approximate integral given by Simpson’s one-
third rule. (See Fig. 8.15.) We expand f(x) using Taylor’s series about the midpoint
of the range, x1, that is,

! )72 n y3 " y4 nn yS n
f(x)=f(x1)+Yf(x1)+§f () + 57 f (1) + 7 f () + 5 [ )+
' ' ' ' (8.56)
where y = x — x1. Equation (8.56) can be used to express the integral of f(x) as

b h y2 ¥
/ fx)dx =/h FG0)+yf ) + 7f"(X1)+ ?f"'()q)

»

),4
"
+ﬁf (X1)+ 120

f”m(xl) + .. } dy’ (857)

where y = —h and y = h correspond to x = a and x = b, respectively. By carrying
out the integration in Eq. (8.57). we obtain

b W2\ | 33 h
/ fxydx = fo) 1%, + £/(x) 7 + f7(x1) 3
a —h —h
#\I' AV AYe
+f 7 (xp) (ﬁ) + f 7 (xy) (m + 7 (x1) (7~20) + ...
—h ~h —h
h3 " hs "
=2hf(x]) + 5+ s/ ) (8.58)

f(x)

Truncation error

'\ N

k \%- Area predicted by
RX\ Simpson’s - rule

a " b

X,

—h —— b — Figure 8.15 Truncation error.
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Substituting x = a(y = —h), x = x1(y = 0), and x = b(y = h) into Eq. (8.56) yields
h? 3
f@@) = fx1) —hf (1) + —2-f"(x1) - -6—f"'(x1)

h4 " h5 mn
o £ ) = g D (8.59)

fGx) = flx); (8.60)

h? h3
f(b) = f(x1) +hf'(x1) + Tf”(xl) + '6—f”/(x1)
h5 mn
_“1—2'6f (x) +---- (8.61)

Now the second term on the right-hand side of Eq. (8.55) can be expressed, using
Egs. (8.59) through (8.61), as

h4 "
+§Zf (x1) +

h — ’ h2 " h3 "
(_é_g) [f(xr) —hf (xp)+ —2—f (*x1) — ?f "(x1)

+h4f””(’ " " (x) + -+ 4fx)
53l DTl W 1

hZ h3
+f(x)) +hf'(x1) + 7f”(x1) + gf’"(xl)

h4 s h5 1
+2j‘:f 1)+ 557 (x) + -

b—a " h4 " -
=( 3 )[6f(x1)+h2f (x1)+§f (x1)+---]. (8.62)

Substituting Egs. (8.58) and (8.62) into Eq. (8.55) and (runcating terms involving
derivatives higher than the fifth gives

b—a 1 b—a 3 1" 1 b—a > "
EN\}(T) f(X1)+§(T) f (-Y1)+@<——2—‘) f (xl):‘
b—a\ (b-a\’ _, b—a\ 1 (b—a\* .,
—[(b-a)f(xl)'i”(—g—‘) (T) f (x1)+(-—6—>1—2-( > ) f (Xl):\

~ 1 (b )Sfm/( )
~ "2 x‘

1 s "
z_é_Oth (x1). (8.63)
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8.5

This indicates that the error of Simpson’s one-third rule (per each pair of segments)
is proportional to 4> and f””(x1). Thus, the error will be zero if f(x) is a third-order
polynomial, since f"” = 0.

The error in a multisegmented Simpson’s one-third rule, Eq. (8.54), can be
found by summing the errors of the individual pairs of segments (xg, x2), (x2, X4), - . .,
(Xn—2, xn):

E~—— (xj). (8.64)

By defining an average value of the fourth derivative, /7, as

- 2 n—1
f" = ; ( Z f////(xj) ) (865)
j=135,...
Eq. (8.64) can be expressed as follows:
L sn—m
E=x —%h 3 f

R Y i
AT

-0 (h4) . (8.66)

This indicates that the error in a multisegment Simpson’s one-third rule, Eq. (8.41),
is proportional to 4%, since (b — a) is fixed.

By following a similar approach, the truncation error in a multisegment
Simpson’s three-eighths rule can also be shown to be proportional to k*. (See
Problem 8.8.)

General Newton—-Cotes Formulas

As stated carlier, the Newton-Cotes formulas are derived by using a polynomial of
order m to approximate the function f(x). That s,

b b
/ f(xydx = / Pm(x) dx, (8.67)

d

where
Pm(X) = Cmx™ + o™ o x4 opx + 0. (8.68)

Numerical integration formulas corresponding to m = 0 (rectangular rule), m = 1
(trapezoidal rule), m = 2 (Simpson's one-third rule), and m = 3 (Simpson’s three-
cighths rule) have been derived in Sections 8.3 and 8.4. Formulas corresponding
to higher order polynomials can also be derived. An estimate of error associated
with any formula can also be derived as outlined earlier. A summary of some of
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Table 8.4
Value Name of Formula Estimate of Number of
of m formula h=(b—-a)/n truncation error segments of
width h
(in each group)
0 Rectangular  hfj or hfj 41 %hzf’ or —%hzf’ 0
1 Trapezoidal  &(fi_1 + f) Lt i 1
2 Simpson’s B(fic+4fi + fixD) —agh> " 2
one-third
: s 3h ¢ .4 3F ) _3h5 m 3
3 Simpson’s gfisr+3fi + fiv1+ fis2) ol f
three-eighth )
4 Boole’s 2 (7fi_p +32fi_1 +12f; —gaeh fV 4
+32fi41 +7fi2)
5 — S (19f; 2 + 75 fi—1 + 50 — 58 b7 £ 5

the Newton-Cotes formulas, along with the associated error estimates, is given in
Table 8.4.

Richardson’s Extrapolation

In many engineering problems, the integrals are to be evaluated very accurately. One
possibility is to use a large number of segments (n) in the trapezoidal or Simpson’s
method to reduce the truncation error. However, beyond a certain number of
segments, the round-off error begins to dominate and the accuracy of the result
may suffer as shown in Fig. 8.16. Also, the computational effort required will be

Trapezoidal
rule

Simpson's

Error in computed value

i ‘ .

Figure 8.16 Variation of accuracy with
Number of segments increasing number of segments.
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more with larger number of segments. Another possibility to improve the accuracy
is to use a higher order Newton—-Cotes formula. Alternatively, the accuracy of
the estimated integral can be improved by using a scheme known as Richardson’s
extrapolation, in which two numerical integral estimates are combined to obtain
a third, more accurate value. The computational algorithm, which implements
Richardson’s extrapolation in an efficient manner, is known as Romberg integration.
This is a recursive procedure that can be used to generate the value of the integral
to within a prespecified error tolerance.

Richardson’s extrapolation is a numerical procedure that can be used to
improve the accuracy of the results obtained from another numerical method,
provided an estimate of the error is available. The procedure can be used not only
in numerical integration of functions, but also in other methods such as numerical
integration of differential equations. In this section, we consider the application of
Richardson’s extrapolation procedure to trapezoidal and Simpson’s rules.

8.6.1 Trapezoidal Rule

The truncation error in multisegmented trapezoidal rule is given by Eq. (8.21):

1 27 '
E = -E(b —a)h” f". (8.69)

If Iy(hy) denotes the value of the integral (approximate value) given by the
trapezoidal rule and Ej(hy) indicates the truncation error with a step size i1, the
exact value of the integral can be expressed as

I~ Iy(hy) + Ey(hy) = Iy (hy) + chi, (8.70)

where ¢ = —ﬁ(b - a)f” is a constant. Similarly, if />(h,) denotes the value of the
integral given by the trapezoidal rule with a step size h and E(h;) represents the
associated truncation error, we can write

I = Iy(hy) + Ea(ha) = Iy(hy) + ch3 (8.71)

by assuming that f” is constant regardless of the step size. Equations (8.70) and
(8.71) can be used to obtain

Iy(hy) + chi =~ I(h) + ch3,

or
. Ir(hy)y — 11 (hy)

5 B

&

(8.72)

Substituting this expression of ¢ into Eq. (8.71) yields an improved estimate of the
integral (/) as
Lr(hp) — I ()

()1}

[ = [hy))+

(8.73)
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It can be shown [8.3] that the error of this estimate is O (kh*), which means that we
combined two estimates given by the trapezoidal rule, which has an error of 0 (h2),
to yield a new estimate having an error of O(h?*). This can also be seen for the

special case where the interval is halved (h2 = %1) Using hy = '% we find thyt
Eq. (8.73) gives

L(hy) — I1(hy)

I = L(hy) + 3

4 1
% 312(112) — 311(/11). (8.74)

It can be verified that this expression is identical to the one given by Simpson’s
one-third rule with a step size of h;. Note that the estimate given by Simpson’s
one-third rule has an error of O (h*).

»Example 8.7

Using the results of the trapezoidal rule given in Table 8.1, find an improved estimate
of the value of the integral using Richardson’s extrapolation.

Solution

Usinghy = 1.5,1; = 1.2707119,h; = 0.75,and I, = 3.8171761, we find that Eq. (8.74)
gives the improved estimate of

4 1 : ) S
I = 3(3.8171761) - 3(1.2707119) = 4.66599750,

which corresponds to an error of 16.0891619%. Similarly, by using h; = 0.5, [} =
4.7305388, hy = 0.375, and I, = 5.0828342, Eq. (8.74) yields the improved estimate
of [ as

I = 2(5.0828342) - %(4.7305388) = 5.20026600,

which corresponds to an error of 6.48115899%. It can be seen that, in both the cases,
the value of the integral predicted by Richardson’s extrapolation is superior to the
original estimates.

8.6.2 Simpson’s One-Third Rule

The truncation error in a multisegmented Simpson’s one-third rule is given by
Eq. (8.66):

1 47
E=x —T‘S-b‘(b - a)h f . (875)

If I)(hy) and I>(hy) denote the values of the integral given by Simpson’s one-third
rule with step sizes h and h;, and the corresponding error estimates are given by
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E1(h1) and E;(hy), respectively, we have

I~ Ii(h1) + Ey(hy) ~ Iy(hy) + ch? (8.76)
and
I~ L(hy) + Ex(hy) = L(hy) + ch. (8.77)
These equations yield
I(hy) —
o~ 202 = 1) | (8.78)
hi — k3
Substituting this expression into Eq. (8.77) gives an improved estimate of the integral

(I) as
I (hy) — Ii(hy)

G-}

It can be shown that the error of this estimate is O(hS). This implies that we
combined two estimates given by Simpson’s one-third rule, which has an error of
O(h*). to obtain a new estimate having an crror of 0(116). When h; is taken as %h‘l,
Eq. (8.79) gives

I =~ Lhy) + (8.79)

l"‘161(1) 11(h) -
~ ghth) = o hihy). (8.80)



