SUMMARY OF METHODS

General:

FDFD:

* FPrequency domain methods (FDFD,MOM,FE)
* Time domain methods (FDTD)

Frequency domain methods can be used for time domain

analysis. Write a time-domain equation as a function of the
nodal unknowns. Use the Freq. domain method to sclve to the
nodal unknowns at each time step (iteratively), with
boundary conditions changing as a function of time step.
This takes a lot of computer time, so is rarely done, except
with FE-TD, which is gaining popularity.

Time domain methods can be used for frequency domain

analysis. Run a time-domain simulation to steady-state, and
convert to the frequency domain using signal processing
techniques. Fourier transform (DFT or FFT) is most commonly
used. Desampling generally improves efficiency significantly.

Several methods have been developed to improve efficiency for

specific applications. See below.

Start with frequency domain differential equation and
boundary conditions, and discretize the problem into N
nodes.

Apply difference formula to convert differential equation
to difference equation at cach node. This gives you N
equations and N unknowns.

Obtain a sparse and banded matrix equation.

Alternately (much more efficient storage) don’t use a matrix
equation; solve iteratively using SOR.

Storage requirement: (SOR method) N nodal unknowns
(matrix meth) NxN matrix
could reduce with sparse storage melhods

cputime: roughly proportional to N
more iterations required as N incrcascs

Accuracy:
first order (5-point difference) equal-sized arms: h
second order (9-point difference) any sized arms: h?
third order (9-point difference) any sized arms: h?

Good for closed-boundary problems. Open-region problems can
be done, but boundary conditions are often a problem.

Problems: May be slow te converge.



* Start with time domain differential equation, and initial
conditions. Apply difference formula to convert to
difference cguation. Iterate to steady-state.

* Solved iteratively, no matrix.
* Storage: N nodal unknowns

* Cputime: roughly proportional to N
more iterations generally required as N increases

* Accuracy:
first order (square cells): h?
sgggHﬁsg?@g?ﬁ(éagﬁ¥g)or rectangular cells): h,
(requires storage of n, n-1 time step)
third order (sqg. or rect. cells): h,
(requires storage or n, n-1, n-2 time steps)

* Good for open or closed regions. Open regions require nodes
to be place throughout open region.

* ldeal for heterogeneous objects up to 10A in size. This is
the only method used to date to handle frequency-dispersive
materials over a broad freguency band.

* Problems: (and some solutions)

May be slow to converge for high-Q objects. Signal Processing
methods hased on adaptive filters can be used to predict the
steady-state without having to converge completely.

Error propagates in time. Numerical dispersion can cause
errors, particularly when phase of interfering waves is
important. Cell sizes small enough to reduce this can

cause prohibitively large models.

Models are generally progranmmed with stalr-stepped
approximation. Contour modeling and subgridding can be used,
but sometimes causes problemso with otability.

Low-frequency modeling is difficult, because of large# of time
steps per cycle. Partial cycles can be used, with steady-
state values calculated from last few time steps.

FDTD must be rerun for every different excitation. If the
broad-band response or response to several pulse-shapes are of
interest, a broad-band "impulse" can be used to obtain the
"impulse response", and then convolution can be used to obtain
the response to any other desired excitation.



* Choosce basie function to interpolate unknown:
* Choose weight function to interpolate forcing function:

* Do integrals analytically or numerically to obtain a matrix
equation (not sparse, and generally not symmetric). Numerical
integration should be more accurate than the basis and
weighting functions. Gaussian Quadrature method is commonly
used.

4 Soulve for the unknowns using conventional methods or
"conjugate gradient method", to speed matrix solution.

* Storage: N° matrix elements

* Cputime: conventional methods proportional to N°
conjugate gradient method proportional to NlogN
Huge cputime may be required to calculate integrals to
obtain matrix elements, particularly if g(r,r’) is a
complicated function.
Additional large cputime is required to solve matrix eqn.

* Suitable for small to medium sized problems. Helped
somewhat because nodes are required only where unknowns
are located. Ideal for wire prcblems, medium to large
irregularly-shaped metallic scatterers. (For large
regularly-shaped scatterers, consider GTD or modal
methods. )

* Accuracy: depends on basis and weight functions.
Point matching is often "suspect" because of
discontinuity of derivatives.

* Formulation of equation (particularly g{(r,r‘)) can include
the effects of nearby large physical properties, such as layer
half-spaces, ground planes, or free space. Using this method,
no extra nudes are required in these regions (unlike FDTD).
g(r,r') may be difficult to calculate, and generally requires
numerical integration.

* Self-terms must be calculated with great care, as they are
usually the largest elements in the matrix.

* Large metallic or coated metallic objects can be modeled
using surface patches, so no nodes are required on inside of
obiect.

* Rotationally-symmetric objects are handled with a "body of
revolution" method, where only one line of the object needs to
be considered, and the problem is developed in cylindrical
coordinates. (This BOR could be applied to other methods,
but generally isn’'t.)
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* Choose element and interpolating function

* Pind shape functions, elemental C%, gobal €, minimize
enerqgy, apply BCs to solve.

* Storage: N° matrix elements (sparse matrix, can be
reduced}

* Cputime: proportional to N°

(cputime is minimized because of simple interpolating
functions, where integrals and derivatives can generally be
done analytically for one element, and apply to all elements.)

* Accuracy: depends on element and interpolating function

* Irrcgular cclls reduce model errors, but increasge ctorage
(must store nodal locations), and may make gridding very
difficult. If grid elements vary too much in size or aspect
ratio, the matrix can become ill-conditioned.

* Ideal for closed regions, has same difficulty as FDFD with
open regions, but can be used.

* Tdeal for small to medium (or large with uniform gridding}),
particularly where model shape is curved and critical.

* May be combined with FDTD to use better FDTD efficiency and
better FETD modeling.



SUMMARY :

Least Memory ————=———--———————-—————————————— > Most Memory

FDTD FDFD-SOR  FE-uniform grid FE-nonuniform grid MOM
MOM-wires
MOM-surface patch

Least cputime ---—-——mmmmm o e > Most Cputime
FDTD FE MOM
FDFD-SOR

MOM-wires
MOM-patches

Special Advantages:
FDFD: low frequency
FDTD: time-domain, large heterogeneous objects
MOM: wires, metal patches, half-spaces
FE: modeling

Special Disadvantages:
FDFD: open regions, square modeling
FDTD: sguare modeling, low freguency difficult
MCM: memory, cputime, may be difficult to find g(r,r")
FE: memory,cputime, mesh generation, open regions

To ilncrease accuracy:
ALL methods: increase model resolution (This may not help
if basic physical principles are violated by initial
assumptions, interpolation functions, etc.)

FDFD: higher-order difference eguation (lots more work)

FDTD: higer-order difference equation (lots more work, and
storage)

MOM: higher-order basis and weighting functions (a little
more work)

FE: higher-order elements (a lot more work, and storage)



