ECE 5340                          Homework 1: NUMERICAL INTEGRATION                                         

                                                                                                                                                           

 

 

Assignment Objective

 

            --   Program and test Trapezoidal and Simpson's integration methods

 

            --   See effect of

 

                       order of function

 

                       resolution of integration (h)

 

            --   Programming skills

 

                       general review

 

                 

1.         Write a program that computes 1-dimensional numerical integration using both Trapezoidal and Simpson's methods.

 

            Programming style: Use LOTS of comments in your code, and label every variable.  Be sure every program is labeled with your name, the homework number, and the directory and filename where it can be found.  Remember that you will probably need to use these subroutines later in the quarter, so write them clearly enough and general enough that you can read and use them later on!

 

2.         Use your program to compute the definite integral

 

                                                                                                                              (1)

 

            where         f(x)       =    x

                              f(x)       =    x2

                              f(x)       =    x3

                              f(x)       =    x4

 


            and the limits of integration are

 

                              a          =    1.0

                              b          =    2.0

 

            Use  n = 10 points in your integration,  so that the size of each division, h = (b – a)/n = (2.0 – 1.0)/10. 

 

 

3.         Calculate the expected values of the integrals, and the expected value of error for each method.  Compare the results by filling in the tables on pages 3-4.

 

 

                               

 

 

                               

 

 

Observed Error  =  Calculated Value – Analytical Value

 

 

4.         Now let n = 20, and recalculate errors for the case of f(x) = x4.

 

5.         Add another subroutine to your program to compute

 

 

                                                                                                           (2)

 

 

            You may use either Trapezoidal or Simpson's integration.  Use your program to calculate the integral in (2) for

 

            a.         f(x, y)      =    xy

            b.         f(x, y)      =    x4y4

            c.         f(x, y)      =    exy                      Analytical (Maple) = 8.258

                  with x1 = y1 = 0                   x2 = 1               y2 = 3

 

6.      Summarize your results and comment on any unexpected result.  Your summary should state the effect of the order of the function, the resolution of the integration, and the use of double precision.

 

7.      Optional 5% extra credit

 

Experiment with the Numerical Integration function in Matlab, or another software package that you routinely use.  Examine how it handles high order functions, and determine if and when it could make mistakes.


Name ____________________________________                             ECE 5340 Homework No. 1

                                                                                                          NUMERICAL INTEGRATION

 

 

Your grade:               Calculations are correct               __________/15

 

                                 Program works correctly             __________/60

 

                                 Program style                              __________/25

 

                                 Total                                           __________/100

 

 

 

 

 

 

Table 1.  Values of the integral given in (1).     (n = 10)

 

 

f(x)

Analytical Value

Trapezoidal Value

Simpson's Value

 

x

 

 

 

 

x2

 

 

 

 

x3

 

 

 

 

x4

 

 

 

 

 

 

Table 2.  Error of the numerical calculation of the integral in (1).  (n = 10)

 

 

 

 

f(x)

Expected

Value of

Trapezoidal

Observed

Value of

Trapezoidal

Expected

Value of

Simpson's

Observed

Value of

Simpson's

 

x

 

 

 

 

 

x2

 

 

 

 

 

x3

 

 

 

 

 

x4

 

 

 

 

 

 

 


Table 3.  Error of the numerical calculation of the integral in (1).  (n = 20)

 

 

 

 

f(x)

Expected

Value of

Trapezoidal

Observed

Value of

Trapezoidal

Expected

Value of

Simpson's

Observed

Value of

Simpson's

 

x4

 

 

 

 

 

Table 4.  Values of the integral given in (2).

 

 

f(x)

Analytical Value

Calculated Value

 

xy

 

 

 

x4y4

 

 

 

exy

 

               8.258

 

 

 

 

[   ]       Source code listing attached (hard copy)

 

[   ]       Calculations of expected values of integrals attached

 

[   ]       Calculations of expected values of error attached

 

[   ]       SUMMARIZE your results and COMMENT on any unexpected results.

 

 

 

Grade = ________ / 100

 

Any Comments from the Grader:

 

 

 

 

Your Random Student # that will be used for posting grades on the website is ___________.

 


 

 

 

HOMEWORK NO. 1

 

 

How many hours did this take?                                     ___________

 

 

 

How much did it help you learn about numerical integration?

 

            little               some                   a lot

 

 

 

How difficult was it to program?

 

            hard              medium               easy

 

 

COMMENTS: