.

Co mp/z.'mmzt:z;fy

Harcourt Brace

Coliege Publishers




166

CHAPTER 6

NUMERICAL INTEGRATION

C.5. The Bessel function of order zero is defined by
L7 ,
S = = [ cos (x sin 0) d0
1Y )

Use Exercise C.2 to find Jy(0.1), Jo(0.5), and J,(1.0).
C.6. The Frensel integral is defined by

Cx) = fcos (127- tz) dr

0

Use Exercise C.2 to find C(3), C(1), and C(2).

0.6 GAUSSIAN INTEGRATION

Al! integration formulas developed are of the form
b
[ £ dx = aofx) + anfox) + . + anfow) (€

The nodes x,, X, ..., Xy have been specified to be equally spaced so there is no ¢l
in the selection of the base points. To integrate a function that is in an equally-sg
tabulated form, these methods are clearly preferable. However, if a function fis ki
analytically, there is no need to require equally-spaced nodes for the integrating fc
las. If xp, X, ..., xy are not fixed in advance and if there are no other restrictioi
them, then there are 2N + 2 unknowns or parameters in Equation (6.6.1) that sl
satisfy 2N + 2 equations. Thus it seems reasonable to expect that we can obt
formula that is exact whenever fis a polynomial of degree £ = 2N + 1. Gauss sh
that by selecting x,, x,, ..., xy properly it is possible to construct formulas far
accurate than the corresponding Newton—Cotes formulas. The formulas based o
principle are called Gaussian integration formulas.

Let us determine the parameters in the case of two points. It is convenie
determine the parameters if the integral involved is of the form [, f(x) dx. L
determine four parameters ay, a,, xo, and x, such that

[ 0 dx = ao o) + @ i) (

This formula gives the exact value whenever f is a polynomial of degree three o1
In order to get four equations, let f(x) = 1, x, x%, and x’ in Equation (6.6.2).

consider f(x) = 1. Then [\, f(x)dx = fL 1dx = X'y = 2and a, f(x) + a f(
ay- 1 + @, - 1. Thus we have a, + a, = 2. Let f(x) = x. Then ' f(x)dx = [, x
X2, = 0,and a,f(xo) + & f(x)) = apxo + a, x,. Hence @y x, + @, x, = 0. Sim
considering f(x) = x?and x%, we getag 5§ |+ @ xj = %and apx) + a, x3 — 0. Wel
ay + a = 2
ay Xy + ayx; = 0

a()x(Z; + a, x% - 2/3
apxy +arxi =90 (1
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Solving these four nonlinear equations,
a=a =1 xoz—x.zu\/g/?;

Therefore the integration formula is given by
1
jf(x) dx == f(— V3/3) + f(V33) (6.6.4)
-1

This is called the two-point Guaussian integiation formula. It is remarkable that by
adding two values, we get the exact value of an integral of any polynomial of degree
three or less.

In order to use Equation (6.6.4), write f% f(x) dx in the form fL, F (1) dr. Let x =
at + B where a and B are to be determined so that when ¢ = |, x = b and when
t = —1,x = a. Thus we have « + B = band —a + B = a. Solving these
two equations

h - a) b+ a
= 2 and $ = —
Thus if
_ b —ap+ b ta 6.65)
2
then
b
b—aop (fb—a+@+b
jf(x)dx=( 3 J_lf(( ) 5 ( ))dt
Integrate [} e™ dx using the two-point Gaussian integration formula.
J’l e dx = ljl e\ dr = lle(—\ﬁmnl + eI < 318405
0 2 2 '
The exact value to five places is
| ell i |
[[erax =S| =S = 1) = 31945
0 2|, 2
The error is 0.1048 X 107" EEE

Formulas containing more terms can be derived using the same technique that was
used to derive Equation (6.6.4). The solutions to the corresponding nonlinear systems
are difficult to obtain, so we present an alternative derivation of these formulas. Since
x; are unknowns, use the Lagrange interpolating polynomial, which allows arbitrarily-
spaced base points. Using the Lagrange Polynomial Approximation Theorem 4.3.1,

SIED) 1—[(

N
flxy = %f(rj) Lo + =00 N+ 1)

(6.6.6)
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where

N

Lix) = Hg—% and  — 1 <g<]
1#f

For Equation (6.6.1), Ay, iy ooy Any X, Xy, oao, Xy are 2N + 2 unknowns, and therefore

Equation (6.6.1) gives the exact value whenever Jx) 1s a polynomial of degree 2N +

I or less. Now if we assume that f(x) is a polynomial of degree 2N + 1, then the

term fMNEOVIN + )l is a polynomial of degree N at most. Let

S E)

(N + 1) = gnlx) (6-6~7)

where gy(x) is a polynomial of degree N.
Substituting Equation (6.6.7) in Equation (6.6.6) and integrating between — | ang
I result in

i N i 1 N
f fodx = 3 f(x) [ Lo ax + [ 4wt MM - x)ax (6.63)

We want to select x; 1n such a way that the error term in Equation (6.6.8) vanishes
since f(x)} is a polynomial of depree < 2N + 1. We want

' N
e ]a - gar=o (669
4 i=

g (x — x)isa polynomial of degree N + 1 and qx(x) 1s a polynomial of degree N
or less: therefore, Equation (6.6.9) is satisficd if we choose polynomial [T}, (x — x)
of degree N + 1 orthogonal to all polynomials of degree N or less on the interval

(=1, 11
The Legendre polynomials defined by

PO(X) =1
P,{x) = X

Pi(x) = %[(21' —DxPx) — (@ — P, 0] fori = 2.3.... (6.6.10)

are orthogonal polynomials over [ =1, 1} with respect to the weight function w(x) =
1. Orthogonal polynomials are also linearly independent (Appendix E) and, therefore,
gn(x) in Equation (6.6.9) can be written as a linear combination of Legendre polynomials
P, i=0,1,.. N Iif we pick x,j = 0, [,...,Nof [f2 (x — x) as the zeros of
the (N + D)ith degree Legendre polynomial Py.i(x), then Equation {6.6.9) will be
satisfied. Also, it is known that the zeros of the Legendre polynomial of any degree
= 1 are all real and distinct (Appendix E). By selecting the zeros of Legendre polynomial
Pu. as the nodes for Equation (6.6.1), Equarion (6.6.8) reduces to

I N !
f fO)dx = f(x) f Lixydx (6.6.11)
2 i=0 i
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whenever f(x) is a polynomial of degree 2N + | or less. Therefore

N

L N 1 (N+2) 1
ﬁmu=2mﬂgmﬂ+L*@[ & — x)Y'dx (6.6.12)

CN + )V, &
Thus
! N
_“mwzgww (6.6.13)
s i=
where g, = [' | L{x)dxand x;, j = 0, 1, ..., N are the zeros of a Legendre polyno-

mial PN+ |(x).

Find a,, a,, and @, for N = 2.
The zeros of Py(x) = 5(x* — (3/5)/2 are —V/3/5, 0, and V3/5. Since x, =
—-WV3/5 x, = 0,and x, = V3/5,

(x — O)x — V3/5) 5 Vi
=Zx(x - V35
(=V3/5 — O(—V3/5 — V3/5) 6" P

Lix) = g(x + V35)(x — V3/5)

Lo(x) =

Ly(x) = gx(x + V3/5)

Hence

| |
a = _fl Lo(xy dx = zj. - (V3/5)x]dx = g

Similarly, it can be verified thata, = [\ | Li(x)dx = 80 anda, = [, L,dx = 5/9.
| B B |

A short table of Legendre polynomials, zeros of Legendre polynomials, and the
values of the coefficients a; are given in Table 6.6.1.

Use Gaussian guadrature with N = 3 and 4 to evaluate [j e® dx.
Using Equation (6.6.5), we get [l e dx = § ', ¢'*' dh.
From Table 6.6.1 for N = 3,

l 141 ,,l é 1-V35 § é 1+v38 |
2[8 d[~2 5¢ +9€+9¢ =~ 3,19444

-1
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Table 6.6.1
Legendre Polynomials Zeros Weights q
Pix) = x 0 2
Pax) = 3(x? — —& = —057735 1.0
L = 057735 1.0
V3
Pyx) = 31(x* — 1x) - 2= - 077460 3 = 055556
0.00000 = 0.88889
2 = 0.77460 2 = 055556
Pax) = 2 - 2x + 3 —0.86114 0.34785
—0.33998 0.65214
0.33998 0.65214
0.86114 0.34785
Ps) = 20 — 0 + 3y —0.90618 0.23692
—0.53847 0.47863
0.00000 0.56889
0.53847 0.47863
0.90618 0.23692

From Table 6.6.1 for N = 4,

% j et dt = % [(0.34785) ¢! 51 4 (0.65214) ! 03"
-1

+ {0.65214) ¢ VF - (0.34785) ¢! T0%114] == 319450

while the exact value of the integral is (¢? — [)/2 = 3.19453 to five places. mm®

EXERCISES L T

1.

Use the two-point and three-point Gaussian integration formulas to approximate:
(a) J' e dx (b) [3sinxdx (c) f}dx/x

Compare each approximated value with the exact value.

Find the truncation error formulas for the two-point and three-point Gaussian
integration formulas and compare them with the truncation error term for the
Simpson rule.

Oue can derive the composite rule tor the Gaussian integration formulas by
dividing the interval {a, b] into M equal subintervals, Then use the Gaussian
integration formula on each subinterval. Approximate [3 dx/x by dividing {2, 3



