ECE 5340/6340 SOR: Successive Over-Relaxation Method

ITERATIVE METHODS OF SOLVING MATRIX
EQUATIONS:

Particularly good for solving sparse matrix equations
(Finite Element method and Finite Difference Method)

Solve Ax=Db
Back Substitution Algorithm:
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In regular back substitution, we know x;. But what if we
didn't? We could guess! These iterative methods are based
on how to choose and improve that guess.

Jacobi's method

Initial guess: xX©=0

Then at each (k™) iteration find the next (k+1)" values of x:
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For a banded matrix, this summation can be limited to the bands

For the Jacobi method, new (k+1) values are not used until the next
iteration.



Gauss-Seidel

This method improves on the Jacobi method by using new values that
have been obtained prior to each step in the iteration. This gives faster
convergence.
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New values are used as soon as they are generated.

SOR: Successive Over-Relaxation

Relaxation moves towards solution faster:
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From Gauss-Seidel:
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This can be written:
Where R; is the "Residual” (error or change)
Now, use relaxation (® ) to speed convergence:
x§k+lj — J;(.tj + aﬂ

How to choose m :



1. For o =1, this reduces to Gauss-Seidel

2. Method converges when O<m <2 for a positive-definite matrix.
(When matrix is reduced to diagonal, all elements are positive.)

3. 0<m <1 Under-relaxation slows convergence

4. 1< <2 Over-relaxation speeds convergence

5. o optimal is based on spectral radius, which is difficult
(expensive) to calculate.

6. For square matrices, ® optimal can be approximated:

w=4/Q2+ (4+C*C))
C=cos(n/p)+cos(n/q)

p.q = # of mesh divisions on x,y sides

EXAMPLE:

See web



