PIVOTING ALGORITHM

At each step of gaussian elimination, put the largest element in the column on the diagonal.

DO L = 1, M-1! which step of the elimination you are on c --- Find pivot element and location -pivot = 0! initialize pivot element ipivot = 0! initialize pivot row location DOI = L, M! find pivot element IF (|a(I,L)| > pivot) THEN pivot = a(I,L)! store new pivot element ipivot = I ! store location of new pivot element ENDIF **ENDDO** c --- Exchange Lth row and pivot row to put pivot element on top ---DOJ = L, N! for each non-zero element in the row

bolder = a(L,J)! hold the value currently in the top rowa(L,J) = a(ipivot,J)! move the element in ipivot row to top rowa(ipivot,J) = holder! put top row element into ipivot row

ENDDO

SCALING ALGORITHM (One of many methods)

Before your start elimination, find the magnitude of each vector (row in the array), and make it a unit vector. This makes all the vectors the same size.

DO I = 1, M ! for Each row

C – Find length of each vector (matrix row) DO J = 1, N vector_length = vector_length + $a(I, J)^2$ ENDDO vector_length = sqrt(vector_length) --Scale each vector to a unit length (=1.0) – DO J = 1, N $a(I, J) = a(I, J) / vector_length$ ENDDO

ENDDO