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INTRODUCTION

In Chapter 11 we discussed scattering from conducting objects, such as plates,
circular cylinders, and spheres, using geometrical optics, physical optics, and modal
solutions. For the plates and cylinders we assumed that their dimensions were of
infinite extent. In practice, however, the dimensions of the objects are always finite,
although some of them may be very large. Expressions for the radar cross section of
finite size scatterers were introduced in the previous chapter. These, however,
represent approximate forms, and more accurate expressions are sometimes desired.

The physical optics method of Chapter 7, Section 7.10, was used in the
previous chapter to approximate the current induced on the surface of a finite size
target, such as the strip and rectangular plate. Radiation integrals were then used to
find the field scattered by the target. To derive a more accurate representation of the
current induced on the surface of the finite size target, and thus of the scattered
fields, two methods will be examined here.

One method, referred to here as the integral equation (IE) technique, casts the
solution for the induced current in the form of an integral equation (hence its name)
where the unknown induced current density is part of the integrand. Numerical
techniques such as the moment method (MM) [1-6] can then be used to solve for the
current density. Once this is accomplished, the fields scattered by the target can be
found using the traditional radiation integrals. The total induced current density
will be the sum of the physical optics current density and a fringe wave current
density [7-13] which can be thought of as a perturbation current density introduced
by the edge diffractions of the finite size structure. This method will be introduced
and applied in this chapter.

The other method, referred to here as the geometrical theory of diffraction
(GTD) [14-17}, is an extension of geometrical optics and accounts for the contribu-
tions from the edges of the finite structure using diffraction theory. This method will
be introduced and applied in Chapter 13. More extensive discussions of each can be
found in the open literature.
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The objective of the integral equation (IE) method for scattering is to cast the
solution for the unknown current density, which is induced on the surface of the
scatterer, in the form of an integral equation where the unknown induced current
density is part of the integrand. The integral equation is then solved for the
unknown induced current density using numerical techniques such .as the moment
method (MM). To demonstrate the technique, we will initially consider some specific
problems. We will start with an electrostatics problem and follow it with time-
harmonic problems.

Electrostatic Charge Distribution

In electrostatics, the problem of finding the potential that is due to a given charge
distribution is often considered. In physical situations, however, it is seldom
possible to specify a charge distribution. Whereas we may connect a conducting
body to a voltage source, and thus specify the potential throughout the body, the
distribution of charge is obvious only for a few rotationally symmetric geometries.
In this section we will consider an integral equation approach to solve for the
electric charge distribution once the electric potential is specified. Some of the
material here and in other sections is drawn from [18, 19].

From statics we know that a linear electric charge distribution p(r’ ) will create
an electric potential, ¥(r), according to [20]

1 (1)
V(r) = — — 4 12-1
(r) 47’80 Lource R ( )
(charge) :

where r'(x’, y’, z’) denotes the source coordinates, r(x, y, z) denotes the observa-
tion coordinates, d/’ is the path of integration, and R is the distance from any
point on the source to the observation point, which is generally represented by

RO =k —vl={(x—x)+(y—y)V +(z~2):  (12-1a)

We see that (12-1) may be used to calculate the potentials that are due to any
known line charge density. However, the charge distribution on most configurations
of practical interest, i.e., complex geometries, is not usually known, even when the
potential on the source is given. It is the nontrivial problem of determining the
charge distribution, for a specified potential, that is to be solved here using an
integral equation approach.

A. FINITE STRAIGHT WIRE

Consider a straight wire of length ¢ and radius a, placed along the y axis, as shown
in Figure 12-1a. The wire is given a normalized constant electric potential of 1 V.
Note that (12-1) is valid cverywhere, including on the wire itself Vie =1V).

Thus, choosing the observation along the wire axis (x = z = 0) and representing the
charge density on the surface of the wire, (12-1) can be expressed as

1 . p(y)
1= ! O0<y</? 12-2
4780'() Ry dy y (12-2)
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F4

(b)
FIGURE 12-1 (a) Straight wire of constant potential and (b) its segmenta-

tion.

where

R(y,y) =ROO)sco = (3 = yV + [0+ ()] =y —y) + o
(12-2a)

The observation point is chosen along the wire axis and the charge density is
represented along the surface of the wire to avoid R(y, y’) = 0, which would
introduce a singularity in the integrand of (12-2).

It is necessary to solve (12-2) for the unknown p(y’) (an inversion problem).
Equation 12-2 is an integral equation that can be used to find the charge density
p(y’) based on the 1-V potential. The solution may be reached numerically by
reducing (12-2) to a series of linear algebraic equations that may be solved by
conventional matrix equation techniques. To facilitate this, let us approximate the
unknown charge distribution p(y’) by an expansion of N known terms with
constant, but unknown, coefficients, that is

p(y) = X a,8.(») (12-3)

n=1

Thus (12-2) may be written, using (12-3), as

dmeg = [ {—1—[ )I.l. a,8 (y’)] dy’ (12-4)
o R(y,y’) e

n=1
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Because (12-4) is a nonsingular integral, its integration and summation can be
interchanged and it can be written as

N ’
dmey= Y a, &) (12-4a)

ly
nm1 0 \(y—y) + a?

The wire is now divided into N uniform segments, each of length A = £/N, as
illustrated in Figure 12-15. The g,(y") functions in the expansion (12-3) are chosen
for their ability to accurately model the unknown quantity, while minimizing
computation. They are often referred to as basis (or expansion) functions, and they
will be discussed further in Section 12.2.5. To avoid complexity in this solution,
subdomain piecewise constant (or “pulse”) functions will be used. These functions,
shown in Figure 12-6, are defined to be of a constant value over one segment and
zero elsewhere, or

0 y'<(n-1)A
g.(y) =11 (n—1)A<y <nA (12-5)
0 nA <y’

Many other basis functions are possible, some of which will be introduced later in
Section 12.2.5.

Replacing y in (12-4) by a fixed point on the surface of the wire, such as y,,,
results in an integrand that is solely a function of y’, so the integral may be
evaluated. Obviously (12-4) leads to one equation with N unknowns a, written as

A gl()") 24 gz()"l)
Ame, = T e [T gyl
7o a‘/o R(ym,y’)dy 2fA R(my) ?
s 8.(¥) ¢ gn(y)
a Ay SN2y (12-6)
'/(-n—l)AR(ym»y) N (N—l)AR(ym9 y)

In order to obtain a solution for these N amplitude constants, N linearly indepen-
dent equations are necessary. These equations may be produced by choosing an
observation point y,, on the surface of the wire and at the center of each A length
element as shown in Figure 12-1b. This will result in one equation of the form of

(12-6) corresponding to each observation point. For N such points we can reduce
(12-6) to

' s &(») y gn(»)
dmeg=a,| ————dy'+ -+ +a =N gy
o 1/0 R(y, ') Nf(N—l)AR(yl,Y)
s &(y) ¢ gn(y)
daeo=a,| ——<dv'+--- +a ———dy’ (12-6a
° 1fo R(yn, y) "fw—l)AR(yN, y’) ( )

We may write (12-6a) more concisely using matrix notation as

V] = [2,..11,] (12-7)
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where each Z,, term is equal to

¢ 2.(y) - 1
Zar= [ — - — & (21
0 (=) 1 a? 8 (y, —y) + a

and

[£1.] = [a,] (12-7b)
[V..] = [47¢,] (12-7¢)

The ¥, column matrix has all terms equal to 4we,, and the I, = a, values are the
unknown charge distribution coefficients. Solving (12-7) for [I,] gives

[Z.]=a,] = [Z,..]7'[V,] (12:8)

Either (12-7) or (12-8) may readily be solved on a digital computer by using
any of a number of matrix inversion or equation solving routines. Whereas the
integrals involved here may be evaluated in closed form by making appropriate
approximations, this is not usually possible with morc complicated problems.
Efficient numerical integration computer subroutines are commonly available in
easy-to-use forms.

One closed form evaluation of (12-7a) is to reduce the integral and represent

it by
A 2
— 2 —
) a“ + (2)
2In - m=n (12-9a)
1/2
Zmn= d:m-l-[(d:;")z'i- 02] / ;
In{ - - i/ m#nbut|m—n| <2 (12-9b)
dpp+[(d;,) + a?]
d+
In ( d"‘) m-—n|>2 (12-9¢)
where
A
d:m = {m + -2_ (12'9d)
A
Aon= b~ > (12-9¢)

¢, is the distance between the mth matching point and the center of the nth source
point.

In summary, the solution of (12-2) for the charge distribution on a wire has
been accomplished by approximating the unknown with some basis functions,
dividing the wire into segments, and then sequentially cnforcing (12-2) at the center
of each segment to form a set of linear equations.
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Even for the relatively simple straight wire geometry we have discussed, the
exact form.of the charge distribution is not intuitively apparent. To illustrate the
principles of the numerical solution, an example is now presented.

Example 12-1. A 1-m long straight wire of radius a = 0.001 m is maintained
at a constant potential of 1 V. Determine the linear charge distribution on the
wire by dividing the length into 5 and 20 uniform segments. Assume subdo.
main pulse basis functions.

Solution.

1. N = 5. When the 1-m long wire is divided into five uniform segments each
of length A = 0.2 m, (12-7) reduces to

1060 110 051 034 0257[q 1.11 x 10710
110 10,60 1.10 051 0.34 (] a, 1.11 x 107
051 110 1060 110 051 ||a,|=
034 051 110 1060 1.10{|a,

025 034 051 110 10.60 |fas 1.11 x 10710

Inverting this matrix leads to the amplitude coefficients and subsequent
charge distribution of

a, = 8.81 pC/m
a, =8.09 pC/m
a, =797 pC/m
a, =8.09pC/m
as = 881 pC/m

The charge distribution is shown in Figure 12-2a.

2. N =20. Increasing the number of segments to 20 results in a much
smoother distribution, as shown plotted in Figure 12-25. As more segments
are used, a better approximation of the actual charge distribution is
attained, which has smaller discontinuities over the length of the wire.

B. BENT WIRE

In order to illustrate the solution for a more complex structure, let us analyze a
body composed of two noncollinear straight wires, that is, a bent wire. If a straight
wire is bent, the charge distribution will be altered, although the solution to tind it
will differ only slightly from the straight wire case. We will assume a bend of angle
a, which remains in the yz plane, as shown in Figure 12-3.

For the first segment ¢, of the wire the distance R can be represented by
(12-2a). However, for the second segment ¢, we can express the distance as

R={(y-y)+(z-2) (12-10)
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FIGURE 12-2 Charge distribution on a 1-m straight wire at 1 V.
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FIGURE 12-3 Geometry for bent wire.
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FIGURE 12-4 Charge distribution on a 1-m bent wire (a = 90°,

N - 20).

Also because of the bend, the integral in (12-7a) must be separated into two parts of

_aeld) o aed4)
z,, = jo —dey+ fo —de; (12-11)
where ¢, and ¢, are measured along the corresponding straight sections from their
left ends.

Example 12-2. Repeat Example 12-1 assuming that the wire has been bent 90°
at its midpoint. Subdivide the wire into 20 uniform segments.

Solution. The charge distribution for this case, ‘calculated using (12-10) and
(12-11), is plotted in Figure 12-4 for N = 20 segments. Note that the charge is
relatively more concentrated near the ends of this structure than was the vase
for a straight wire of Figure 12-2b. Further, the overall charge density, and
thus capacitance, on the structure has decreased.

Arbitrary wire configurations, including numerous bends and even curved
sections, may be analyzed by the methods already outlined here. As with the simple
bent wire, the only alterations generally necessary are those required to describe the
geometry analytically.

Integral Equation

Now that we have demonstrated the numerical solution of a well known electrostat-
ics integral equation, we will derive and solve a time-harmonic integral equation for
an infinite line source above a two-dimensional conducting strip, as shown in Figure
12-5a. Once this is accomplished, we will generalize the integral equation formula-
tion for three-dimensional problems in Section 12.3.
Referring to Figure 12-5a, the field radiated by a line source of constant

current [ in the absence of the strip (referred to as E?) is given by (11-10a) or
2 Iz

H{(Bp) (12-12)

WE

B
E(p) = - 2
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FIGURE 12-5 Geometry of a line source above a two-dimensional finite width
strip. (@) Boundary conditions and integration on the same surface. (b)
Boundary conditions and integration not on the same surface.

where H{®(Bp) is the Hankel function of the second kind of order zero. Part of the
field given by (12-12) is directed toward the strip, and it induces on it a linear
current density J, (amperes per meter) such that

J(x") Ax" = AL(x") (12-13)

which as Ax” — 0 can be written as
J(x7) dx’ = dI(x') (12-13a)
The induced current of (12-13a) reradiates and produces an electric field
component that will be referred to as reflected (or scattered) and designated as
E](p) [or Ej(p)). If the strip is subdivided into N segments, each of width Ax/ as

shown in Figurc 12-55, the scattered ficld can be written according to (12-12) as

2 N BZ N
E; = ——— ) HP(BR )AIL(x’) = — — O(BR "y Ax’
Z(p) 4w£ ngl 0 (ﬁ n) Z('x'll) 40)8 n§1Ho (B n)'[z(xn) x"

(12-14)

where x, is the position of the nth segment. In the limit, as each segment becomes
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very small (Ax, — small), (12-14) can be written as

Bl ﬁz w/2
s = — D(BRYAI = — —— YH? — ‘
E0) = = e [ HEBRY dl, = =1 [ 1. (x) B (Blo = 1)
(12-15)
since
R=lp—p|= o + () ~ 200 cos (¢ — ¢') (12-15a)

The total field at any observation point, including the strip itself, will be the
sum of the direct EY of (12-12) and the scattered E; of (12-15) components.
However, to determine the scattered component we need to know the induced
current density J,(x’). The objective here then will be to find an equation, which in
this case will be in terms of an integral and will be referred as an integral equation,
that can be used to determine J,(x"). This can be accomplished by choosing the
observation point on the strip itself. Doing this, we have that for any obscrvation
point p =p, on the strip, the total tangential electric field vanishes and it is
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given by

E{(p = )l = [EX(0 = 00) + E(0 = 0)] i =0 (12-16)

or

E(p = )|y = —EXp = om)

(12-16a)

strip
Using (12-12) and (12-15), we can write (12-16a) as

B,

4ue

B
P (Bon) = + 71— /_:;L(x')Hé”(ﬁlpm - o) de (1217

which for a unit current I, (i.e., I, = 1) reduces to

w/2 , , ,
HE(Bou) = = [ 9.V H(Blon, ~ o) d (12:17a)

Equation 12-17a is the electric field integral equation (EFIE) for the line source
above the strip, and it can bc used to find the current density J,(x") based upon a
unit current I,. If I, is of any other constant value, then all the values of J(x")
must be multiplied by that same constant value. Electric field integral equations
(EFIE) and magnetic field integral equations (MFIE) are discussed in more general
forms in Section 12.3.

Radiation Pattern

Once J, is found, we can then determine the total radiated field of the entire system
for any observation point. The total field is composed of two parts: the field
radiated from the line source itself (EZ) and that which is scattered (reradiated)
from the strip (E;). Thus, using (12-12) and (12-15) we can write the total field as

E/(p) = E{(p) + EX(p)

B B?
_ 2@ -
4weH0 (.BP) 4we

[ LG (Blo — o) v (12:18)

which for a unit amplitude current I, (I, = 1) reduces to

p? W
EA0) = = e | HS60) + [ 1.V 1o — o) ]| (12180

Equation 12-18a can be used to find the total field at any observation point,
near or far field. The current density J,(x’) can be found using (12-17a). However,
for far-ficld observations, (12-18a) can be approximated and written in a more
simplified form. In general, the distance R is given by (12-15a). However, for
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far-field observations (p > p’), (12-15a) reduces using the binomial expansion to

R=[P™ p'cos(¢ — ¢’) for phase terms (12-19a)
) for amplitude terms (12-19b)

For large arguments, the Hankel functions in (12-18a) can be replaced by their

asymptotic form of
2 32;’00 2Jj B
H = —— jhe P 12-
2(Bz) i (12220)

For n = 0, (12-20) reduces to

HP(Bz) = ‘/ :—[;Z e I (12-20a)

Using (12-19a) through (12-20a), we can write the Hankel functions found in

(12-18a) as
57
HP(Bp) ~ ‘/ L oo (12-21a)
7fp

[2) o ,
HP(Blp — o'|) ~ _— o —/Blo—p’cos (¢ ~¢)]

_ ':‘ij o /B +iBp cos ($~¢) (12-2“))

When (12-21a) and (12-21b) are substituted into (12-18a), they reduce it to

B [2j _
E’ ~ ey — PP

which in normalized form can be written as

Lt [ (e o0 x| (1222)
—-w/2

E! (normalized) = 1 + fwﬂ J(x") e e cos($=¢) gyt (12-22a)
-w/2

Equation 12-22a represents the normalized pattern of the line above the strip. It is
based on the linear current density J,(x’) that is induced by the source on the strip.
The current density can be found using approximate methods or more accurately it
can be determined using the integral equation (12-17a).

Point-Matching (Collocation) Method

The next step will be to use a numerical technique to solve the integral equation
12-17a for the unknown current density J_(x"). We first expand J.(x’) into a finite
series of the form

N
Jz(xl) = glangn(x,) (12-23)
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where g,(x) represents basis ( expansion) functions [1, 2]. When (12-23) is substi.
tuted into (12-17a), we can write it as

N
HO(Bp,) = ~ [ % a,,(<) HO(Bloy o1 d’

“w/2p=1
N w/2
HP(Bp,) = - Y a,[ SV HE (Blon — eil) dx - (1224)
n=1 W,
which takes the general form
N
h= Y a,F(g,) (12:25)
n=1
where
h = H§(Bp,,) (12-25a)
— W/Z ’ ) ’ ’
F(g) = = [ g.(x)H(Blo,, - ol dx (12-25b)

In (12-25) F is referred to as a linear integral operator, g, represents the response
function, and % is the known excitation function.

Equation 12-17a is an integral equation derived by enforcing the boundary
conditions of vanishing total tangential electric field on the surface of the conduct-
ing strip. A numerical solution of (12-17a) is (12-24) or (12-25) through (12-25b)
which for a given observation point p = P, leads to one equation with N un-
knowns. This can be repeated N times by choosing N observation points. Such a
procedure leads to a system of N linear equations each with N unknowns of the
form

N
[ (B)] = { > [ — [ g P (Blon - o) ax']}
—w/2

n=1

m=1,2,...,N (12-26)

which can also be written as

N
Vm = Z IuZmn (12'27)
n=1
where
V.. = HP(Be,,) (12-27a)
I,=a, (12-27b)

w/2 , , ,
Zun = = [ 8(5) B (Blo, ~ o) d (12270)
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In matrix form, (12-27) can be expressed as

[V.] = [Z,. )1 1.] (12-28)

where the unknown is {/], and can be found by solving (12-28), or

(2] = [Z,..]7'[%] (12-28a)

Since the system of N linear equations each with N unknowns, as given by (12-26),
(12-27), or (12-28), was derived by applying the boundary conditions at N discrete
points, the technique is referred to as the point-matching (or collocation) method
[1, 2].

Thus by finding the elements of the [V'] and [Z], and then the inverse [ Z] !,
matrices, we can then determine the elements a, of the [I] matrix. This in turn
allows us to approximate J,(x") using (12-23) which can then be used in (12-18a) to
find the total field everywhere. However, for far-field observations, the total field
can be found more easily using (12-22) or in normalized form using (12-22a).

Basis Functions

One very important step in any numerical solution is the choice of basis functions.
In general, one chooses as basis functions the set that has the ability to accurately
represent and resemble the anticipated unknown function, while minimizing the
computational effort required to employ it [21-23]. Do not choose basis functions
with smoother properties than the unknown being represented.

Theoretically, there are many possible basis sets. However, only a limited
number are used in practice. These sets may be divided into two general classes. The
first class comsists of subdomain functions, which are nonzero only over a part of
the domain of the function g(x"); its domain is the surface of the structure. The
second class contains entire domain functions that exist over the entire domain of
the unknown function. The entire domain basis function expansion is analogous to
the well known Fourier series expansion method.

A. SUBDOMAIN FUNCTIONS

Of the two types of basis functions, subdomain functions are the most common.
Unlike entire domain bases, they may be used without prior knowledge of the
nature of the function that they must represent.

The subdomain approach involves subdivision of the structure into N
nonoverlapping segments, as illustrated on the axis in Figure 12-6a. For clarity, the
segments are shown here to be collinear and of equal length, although neither
condition is necessary. The basis functions are defined in conjunction with the limits
of one or more of the segments.

Perhaps the most common of these basis functions is the conceptually simple-
piecewise constant, or “pulse” function, shown in Figure 12-64. It is defined by

Piecewise Constant

1 Xp 1 <x"<x]
) - " " 1229
8x(*) {O elsewhere ( )



INTEGRAL EQUATIONS AND THE MOMENT METHOD

/gZ(x')

| |

x x x x3 | xyx
(a)
, azgg(x’) a3g3(x )
a,g1(x)
%}——J—b
X0 xy X2 X3 XN X
(b)
la,g,(x")
n \
ag @) | gy | 383D FIGURE 12-6 Piecewise con-
{f— I o stant stxb;josxpai;: fu(nbc-
< tions. (a) Single. (b)
x x Xy x XN x .
° ' 3 Multiple. (¢) Func-
{c) tion representation.

Once the associated coefficients are determined, this function will praduce a
staircase representation of the unknown function, similar to that in Figure 12-6b
and c.

Another common basis set is the piecewise linear, or triangle,” functions seen
in Figure 12-7a. These are defined by

Piecewise Linear

x' = x!

n-1
T masxsx
xn - xn-—l
g(x)={ x;p1 — x (12-30)

—_— x<x'<x’

’ ) n n+1l
xn+l xn
0 elsewhere

and are seen to cover two segments, and overlap adjacent functions (Figure 12-7b).
The resulting rcpresentation (Figure 12-7¢) is smoother than that for * pulses,” but
at the cost of increased computational complexity.

Increasing the sophistication of subdomain basis functions beyond the level of
the “trianglc” may not be warranted by the possible improvement in representation
accuracy. However, there are cases where more specialized functions are useful for
other reasons. For example, some integral operators may be evaluated without
numcrical intcgration when their integrands are multiplied by a sin (kx ") or cos (kx")
function, where x’ is the variable of integration. In such examples, considerable
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advantages in computation time and resistance to errors can be gained by using
basis functions like the piecewise sinusoid of Figure 12-8 or truncated cosine of
Figure 12-9. These functions are defined by

Piecewise Sinusoid

sin [B(x'f" x:.—l)]
sin [ B(x; — x;_,)]

8.(x) = { sin [B(x,,1— x")] (12-31)
14 < ’ < 7
sin[B(x),, —x)] ST ST
0 elsewhere

Truncated Cosine

B r_x"‘—x”“l ’ < x' < x!
g.(x) = { O P¥ 2 Tl S XS X (1p39)
0 elsewhere

B. ENTIRE-DOMAIN FUNCTIONS

Entire domain basis functions, as their name implies, are defined and are nonzero
over the entire length of the structure being considered. Thus no segmentation is
involved in their use.
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FIGURE 12-8 Piecewise sinusoids subdomain functions. (a)
Single. (b) Multiple. (c) Function representation.

A common entire domain basis set is that of sinusoidal functions, where

Entire Domain

, (2n - 1)7x’ 24

g.(x") = cos — -y sxsy (12-33)
Note that this basis set would be particularly useful for modeling the current
distribution on a wire dipole, which is known to have primarily sinusoidal distribu-
tion. The main advantage of entire domain basis functions lies in problems where
the unknown function is assumed a priori to follow a known pattern. Such
entire-domain functions may render an acceptable representation of the unknown
while using far fewer terms in the expansion of (12-23) than would be necessary for
subdomain bases. Representation of a function by entire domain cosine and /or sine
functions is similar to the Fourier series expansion of arbitrary functions.

Because we are constrained to use a finite number of functions (or modes, as
they are sometimes called), entire domain basis functions usually have difficulty in
modeling arbitrary or complicated unknown functions.

Fntire domain basis functions, sets like (12-33), can be gencrated using
Tschebyschefl, Maclaurin, Legendre, and Hermite polynomials, or other convenient
functions.
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FIGURE 129 Truncated cosines subdomain functions. (a)
Single. (b) Multiple. (¢) Function representation.

Application of Point Matching

If each of the expansion functions g,(x") in (12-23) is of the subdomain type where
each exists only over one segment of the structure, then Z, , of (12-27c) reduces to

Zpn= = [ g (xVHD(Blo.. - o)) dx’ (12-34)

where x, and x,,, represent, respectively, the lower and upper limits of the
segment over which each of the subdomain expansion functions g,(x’) exists. If, in
addition, the g, are subdomain pulse expansion functions of the form

1 X, < X' < Xp4q
) = n n 12-35
8(x) {O elsewhere ( )
then (12-34) reduces to
Xp 41
Zyw= = [ HO(Blon — o4l) dv’ (12-36)

The preceding integral cannot be evaluated exactly in closed form. However, there
exist various approximations for its evaluation.
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In solving (12-17a) using (12-24) or (12-26), there are few problems that must
be addressed. Before we do that, let us first state in words what (12-24) and (12-26)
represent. Each equation is a solution to (12-17a), which was derived by enforcing
the boundary conditions. These conditions required the total tangential electric field
to vanish on the surface of the conductor. For each observation point, the total field
consists of the sum of the direct (E?) and scattered (E}) components. Thus, to find
the total scattered field at each observation point we must add the contributions of
the scattered field components from all the segments of the strip, which also
includes those coming from the segment where the observations are made (referred
to as self-terms). When the contributions from the segment over which the observa-
tion point lies are considered, then the distance R,.= R, =10, — 0| used for
evaluating the self-term Z,, in (12-27c) will become zero. This introduces a
singularity in the integrand of (12-36) because the Hankel function defined as

Hi(Be) = Jo(Be) — jYo(Be (12-37)

is infinite because Y,(0) = oo. :

For finite thickness strips, the easiest way to get around the problem of
evaluating the Hankel function for the self-terms will be to choose observation
points away from the surface of the strip over which the integration in (12-36) is
performed. For example, the observation points can be selected at the center of each
segment along a line that divides the thickness of the strip, while the integration is
performed along the upper surface of the strip. These points are designated in
Figure 12-5b by the distance p,,.

Even if the aforementioned procedure is implemented for the evaluation of all
the terms of Z,,, including the self-terms, the distance R,.. =10, — 0| for the
self-terms (and some from the neighboring elements) will still sometime be suffi-
ciently small that standard algorithms for computing Bessel functions, and thus
Hankel functions, may not be very accurate. For these instances the Hankel
functions can be evaluated using asymptotic expressions for small arguments. That
is, for cases where the argument of the Hankel functions in (12-36) is small, which
may include the self-terms and some of the neighboring elements, the Hankel
function can be computed using [24]

Be—=0 2 1.781Bp
HE(Bo) = 5(B0) = %(B0) = 1=~ (Z5E) 2y
The integral of (12-36) can be evaluated approximately in closed form, even if
the observation and source points are chosen to be along the same line. This can be
done not only for diagonal (self, m = n) but also for the nondiagonal (m # n)
terms. For the diagonal terms (m = n) the Hankel function of (12-36) has an
integrable singularity, and the integral can be evaluated analytically in closed form
using the small argument approximation of (12-38) for the Hankel function. When
(12-38) is used, it can be shown that (12-36) reduces to {2]

Diagonal Terms Approximation

2 1.7818Ax,
Z,,=— Ax, l—j—ln(——“—) m=n (12-39)
T 4e
where
Ax,=x,,, — x, (12-39a)

e=2718 (12-39b)
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For evaluation of the nondiagonal terms of (12-36) the crudest approximation
would be to consider the Hankel function over each segment to be essentially
constant [2]. To minimize the error using such an approximation, it is recommended
that the argument of the Hankel function in (12-36) be represented by its average
value over each segment. For straight line segments that average value will be
representative of the distance from the center of the segment to the observation
point. Thus for the nondiagonal terms, (12-36) can be approximated by

Nondiagonal Terms Approximation

Zmn = _Aan(;Z)(BlRmnlav) = _Aan(gZ)(Blpm - pr’rlav) m#n (12-40)

The average value approximation for the distance R, in the Hankel function
evaluation of (12-36) can also be used for curved surface scattering whereby each
segment has been basically approximated by a straight line segment. Crude as it
may scem, the average value approximation for the distance yields good results.

Weighting (Testing) Functions

Expansion of (12-24) leads to one equation with N unknowns. It alone is not
sufficient to determine the N unknown a, (n=12,..., N) constants. To resolve
the N constants, it is necessary to have N linearly independent equations. This can
be accomplished by evaluating (12-24) (e.g., applying boundary conditions) at N
different points, as represented by (12-26). To improve the point-matching solution,
however, an inner product (w, g) can be defined which is a scalar operation
satisfying the laws of

(w, 8) = (g, w) (12-41a)
(bf + cg,w) = b(f,w) + (g, w) (12-41b)
(8*,8) >0 ifg=0 (12-41¢)
(g*,g)=0 ifg=0 (12-41d)

where b and c are scalars and the asterisk (*) indicates complex conjugation. A
typical, but not unique, inner product is

(wg) = [ fs w* e gds (12-42)

where the w’s are the weighting (testing) functions and S is the surface of the
structure being analyzed. Note that the functions w and g can bc vectors. This
technique is better known as the moment method or method of moments (MM) [1, 2).

Moment Method

The collocation (point-matching) method is a numerical technique whose solutions
satisfy the electromagnetic houndary conditions (e.g., vanishing tangential clectric
fields on the surface of an electric conductor) only at discrete points. Between these
points the boundary conditions may not be satisfied, and we define the deviation as
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FIGURE 12-10 Tangential electric field on the conducting surface

of the A/2 dipole. (Source: E. K. Miller and F. J.
Deadrick, “Some computational aspects of thin-wire
modeling” in Numerical and Asymptotic Techniques in
Electromagnetics, 1975, Springer-Verlag) (a) Pulse
basis—point matching. (b) Piecewise sinusoids—
Galerkin’s method.
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a residual [e.g., residual = AE|,, = E(scattered)|,,, + E(incident)},, # 0 on the
surface of an electric conductor]. For a half-wavelength dipole, a typical residual is
shown in Figure 12-10a for pulse basis functions and point matching and Figure
12-10b cxhibits the rcsidual for piccewisc sinusoids—Galerkin method [25]. As
expected, the pulse basis point matching exhibits the most ill-behaved residual and
the piecewise sinusoids—Galerkin method indicates an improved residual. To mini-
mize the residual in such a way that its ovcrall average over the cntire structurc
approaches zero, the method of weighted residuals is utilized in conjunction with the
inner product of (12-42). This technique, referred as moment method (MM), does
not lead to a vanishing residual at every point on the surface of a conductor, but it
forces the boundary conditions to be satisfied in an average sense over the entire
surface.

To accomplish this, we define a set of N weighting (or testing) functions
{W,,} = w, w,,..., wy in the domain of the operator F. Forming the inner product
between each of these functions, (12-25) results in

. .
w,. b= Y afw, F(g)) m=12..N (12-43)

n=1

This set of N equations may be written in matrix form as

[h,] = [Epilla,) (12-44)

where

(wi, F(g1)) (w1, F(82))
(End = | (%20 F(22))  (w, Flg2)) (12-442)
4 (wy, k)
[a,] = a:2 K, = <W2:’ k)
; . (12-44b)
v (wy, h)

The matrix of (12-44) may be solved for the a, by inversion, and it can be writ-
ten as

[a,] = [Fp] ' [1,] (12-45)

The choice of weighting functions is important in that the elements of {w,}
must be linearly independent, so that the N equations in (12-43) will be linearly
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indcpendent {1-3, 22, 23]. Further, it will generally be advantageous to choose
weighting functions that minimize the computations required to evaluate the inner
product.

The condition of lincar independence between elements and the advantage of
computational simplicity are also important characteristics of basis functions,
Because of this, similar types of functions are often used for both weighting and
cxpansion. A particular choice of functions may be to let the weighting and
basis function be the same, that is, w, = g,. This technique is known as Galerkin’s
method [26].

It should be noted that there are N2 terms to be evaluated in (12-44a). Each
term usually requires two or more integrations; at least one to evaluate each F(g),
and one to perform the inner product of (12-42). When these integrations are to be
done numerically, as is often the case, vast amounts of computation time may be
necessary.

There is, however, a unique set of weighting functions that reduce the number
of required intcgrations. This is the set of Dirac delta weighting functions

[wal = [8Cp ~ p.)] = [8(p — £1).8(p. ~ py),...] (12-46)

where p specifies a position with respect o some reference (origin), and p »
represents a point at which the boundary condition is enforced. Using (12-42) and
(12-46) reduces (12-43) to

(P~ pu)hy=Ya(d(p-p,) F(g,)) m=1,2,... N

ffs‘s(f’ = Pu)hds = Zanffsa(p - p)F(g)ds m=12__ N

hlpapy = L4, F(g)pmp, m=1,2,...,N (12-47)

Hence, the only remaining integrations are those specified by F(g,). This simplifi-
cation may make possible some solutions that would be impractical if other
weighting functions were used. Physically, the use of Dirac delta weighting functions
is seen as the relaxation of boundary conditions so that they are enforced only at
discrete points on the surface of the structure, hence the name point matching.

An important consideration when using point matching is the positioning of
the N points (p,). While equally spaced points often yield good results, much
depends on the basis functions used. When using subsectional basis functions in
conjunction with point matching, one match point should be placed on each
segment (to maintain linear independence). Placing the points at the center of the
segments usually produces the best results. It is important that a match point does
not coincide with the “peak” of a triangle or a similar discontinuous function,
where the basis function is not differentiably continuous. This may cause errors in
some situations.
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Because it provides acceptable accuracy along with obvious computational
advantages, point matching is easily the most popular testing technique for moment
method solutions to electromagnetics problems. The analysis presented here, along
with most problems considered in the literature, proceed via point matching,

For the strip problem, a convenient inner product of (12-42) would be

(W» 8a) = f_“:jzw,:(x)gn(x) dx (12-48)

Applying the inner product of (12-48) on both sides of (12-26), we can write it as

N
Vo= >X1Z,\, m=12,. N (12-49)
n=1
where
, w/2 2)
V= [ w2 (x)H®(Bo,,) dx (12-49a)
—w/2

, w/2 w/2 ’ ’ ’
Zow= =" wr)| [ gu(x) HO (Blon — 1)) dv] dx (12-49b)
—w/2 —w/2

or in matrix form as
[V’]m = [Z,]mn[I]n (12°50)

If the w, weighting functions are Dirac delta functions [ie., w,(y) =
8(y = y,)), then (12-49) reduces to (12-27) or

Voo = Ve (12-51a)
and

Zr:m = Zmn (12'51b)

The method of weighted residuals (moment method) was introduced to mini-
mize the average deviation, from the actual values, of the boundary conditions over
the entire structure. However, it is evident that it has complicated the formulation
by requiring an integration in the evaluation of the elements of the ¥’ matrix [as
given by (12-49a)] and an additional integration in the evaluation of the elements of
the Z;, matrix [as given by (12-49b)]. Therein lies the penalty that is paid to
improve the solution. '

If both the expansion g, and the weighting w,, functions are of the subdomain
type, each of which exists only over one of the strip segments, then (12-49b) can be
written as

x,
x’l

zZ,, = —fxmlw,,’,"(x)[fl"mg,,(x’)Héz)(Blpm - o)) dx’] dx  (12-52)

- where (x,,, X,,,,) and (x/, x/, ) represent, respectively, the lower and upper limits
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of the strip segments over which the weighting w,, and expansion g, functions exist,
To evaluate the mnth element of Z,, from (12-49b) or (12-52), we first choose the
weighting function w,,, and the region of the segment over which it exists, and weigh
the contributions from the g, expansion function over the region in which it exists,
To find the next element Z , . ), we maintain the same weighting function W,,, and
the region over which it exists, and weigh the contributions from the g, , , expansion
function. We repeat this until the individual contributions from all the N expansio
functions (g,) are weighted by the w,, weighting function. Then we choose the W\

weighting function, and the region over which it exists, and we weigh individually
the contributions from each of the N expansion functions (g, ). We repeat this unj]
all the N weighting functions (w,,), and the regions of the strip over which they
exist, are individually weighted by the N expansion functions (g,). This procedure
allows us to form N linear equations, each with N unknowns, that can be solved
using matrix inversion methods.

Example 12-3. For the electric line source of Figure 12-5 with w = 2A,
t = 0.0IA, and h = 0.5\ perform the following.

1. Compute the equivalent current density induced on the open surface of the
strip. This equivalent current density is representative of the vector sum of
the current densities that flow on the opposite sides of the strip. Use
subdomain pulse expansion functions and point matching. Subdivide the
strip into 150 segments.

2. Compare the current density of part 1 with the physical optics current
density.

3. Compute the normalized far-field amplitude pattern of (12-22a) using the
current densities of parts 1 and 2. Compare these patterns with those
obtained using a combination of geometrical optics (GO) and geometrical
theory of diffraction (GTD) techniques of Chapter 13 and physical optics
(PO) and physical theory of diffraction (PTD) techniques of {13].

Solution.
1. Utilizing (12-27) through (12-27b) and (12-36) the current density of (12-23)

is computed using (12-28a). It is plotted in Figure 12-11. It is observed that
the current density exhibits singularities toward the edges of the strip.

2. The physical optics current density is found using
JPO =27 x HY

which reduces using (11-10b) to

PO A A i A P a i
970 =24d, X 4 Hly, =2d, X (—d,sing + d,cos ¢) Hi

strip

=

=d,2sin¢H,

strip = _j&zlz.z— Sind’mHl(Z)(Bpm)
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FIGURE 12-11 Current density on a finite width strip that is due to the
electric line source above the strip.

The normalized value of this has also been plotted in Figure 12-11 so that 1t
can be compared with the more accurate one obtained in part 1 using the
integral equation.

3. The far-field amplitude patterns, based on the current densities of parts 1
and 2, are plotted in Figure 12-12. In addition to the normalized radiation
patterns obtained using the current densities of parts 1 and 2, the pattern
obtained using geometrical optics (GO) plus first-order diffractions by the
geometrical theory of diffraction (GTD), to be discussed in Chapter 13, is
also displayed in Figure 12-12. An excellent agreement is indicated between
the IE and the GO plus GTD patterns. The pattern obtained using physical
optics supplemented by first-order diffractions of the physical theory of
diffraction (PTD) [13] is also displayed in Figure 12-12 for comparison
purposes. It also compares extremely well with the others. As expected, the
only one that does not compare well with the others is that of PO. Its
largest differences are in the back lobes.

ELECTRIC AND MAGNETIC FIELD INTEGRAL EQUATIONS

The key to the solution of any antenna or scattering problem is a knowledge of the
physical or equivalent current density distributions on the volume or surface of the
antenna or scatterer. Once these are known then the radiated or scattered fields



12.3.1

INTEGRAL EQUATIONS AND THE MOMENT METHOD

90°

120° 60°

RN

¥4/bl

180°

210°

-—10dB

240° 0dB 300°

270°

FIGURE 12-12 Normalized amplitude pattern of the line source above the finite width strip
(w =2\, h=0.5}).

can be found using the standard radiation integrals. A main objective then of any
solution method is to be able to predict accurately the current densities over the
autenna or scauerer. This can be accomplished by the integral equation
(IE) method. One form of IE, for a two-dimensional structure, was discussed in
Section 12.2.2 and represented by the integral equation 12-17a.

In general there are many forms of integral equations. Two of the most
popular for time-harmonic electromagnetics are the electric Sield integral equation
(EFIE) and the magnetic field integral equation (MFIE). The EFIE enforces the
boundary condition on the tangential electric field and the MFIE enforces the
boundary condition on the tangential components of the magnetic field. Both of
these will be discussed here as they applied to perfectly conducting structures.

Electric Field Integral Equation

The electric ficld intcgral equation (EFIE) is based on the boundary condition that
the total tangential electric field on a perfectly electric conducting (PEC) surface of
an antenna or scatterer is zero. This can be expressed as
E(r=r)=E(r=r)+E(r=r)=0 ons (12-53)
or
E(r=r)~= —Ei(r= r,) ons (12-53&)
i
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where § is the conducting surface of the antenna or scatterer and r = r, is the
distance from the origin to any point on the surface of the antenna or scatterer. The
subscript ¢ indicates tangential components.

The incident field that impinges on the surface S of the antenna or scatterer
induces on it an electric current density J, which in turn radiates the scattered field.
If J; is known, the scattered field everywhere that is due to J; can be found using
(6-32b), or

1 1
E(r) = —joA — j—V(V + A) = —j—[w%ueA + V(V - A)] (12-54)
WHE WpE

where according to (6-96a)

—jBR

e B
A(r) = %j]ng(r') -

e —JBR
rd (1254a)

a5 = p[[3.(r)

Equations 12-54 and 12-54a can also be expressed by referring to Figure 6-2b as

E'(r) = —j%[ﬂ‘fLJs(r’)G(r,r') ds’ + vffSV'F J(r)G(r,r) ds’| (12-55)

where
e JBR e Bir—r
G(r,r) = e ppr—— (12-55a)
R=Ffk-r| (12-55b)

In (12-55) V and V' are, respectively, the gradients with respect to the observation
(unprimed) and source (primed) coordinates and G(r,r) is referred to as the Green’s
function for a three-dimensional radiator or scatterer.

If the observations are restricted on the surface of the antenna or scatterer
(r = r,), then (12-55) through (12-55b) can be expressed using (12-53a) as

i%[ﬁszsJ;(r')G(r,,r') &s' + V[V - 1(r)G(x,.r) ds']’ —E(r=r)

(12-56)

Because the right side of (12-56) is expressed in terms of the known incident electric
field, it is referred to as the electric field integral equation (EFIE). It can be used to
find the current density J.(r") at any point r = r’ on the antenna or scatterer. It
should be noted that (12-56) is actually an integrodifferential equation, but usually it
is referred to as an integral equation.

Equation 12-56 can be used for closed or open surfaces. The scattered field is
found, once J, is determined, by using (6-32b) and (6-96a) or (12-54) and (12-54a)
which assume that J; radiates in one medium. Because of this J, in (12-56)
represents the physical equivalent electric current density of (7-53a) in Section 7.10.
For open surfaces J; is also the physical equivalent current density that represents
the vector sum of the equivalent current densities on the opposite sides of the
surface. Whenever this equivalent current density represents open surfaces, then a



698 INTEGRAL EQUATIONS AND THE MOMENT METHOD

{a)

FIGURE 12-13 Uniform plane
wave incident on a
conducting strip of
finite width. (a) T™M?
polarization. (b) TE*

) polarization.

boundary condition supplemental to (12-56) must be enforced to yield a unique
solution for the normal component of the current density to vanish on §.

Equation 12-56 is a general surface EFIE for three-dimensional problems and
its form can be simplified for two-dimensional geometries. To demonstrate this, let
us derive the two-dimensional EFIEs for both TM? and TE? polarizations.

A. TWO-DIMENSIONAL EFIE: TMZ POLARIZATION

The best way to demonstrate the derivation of the two-dimensional EFIE for TM*
polarization is to consider a specific example. Its form can then be generalized to
more complex geometries. The example to be examined here is that of a TM?
uniform plane wave incidence on a finite width strip, as shown in Figure 12-134.
By referring to Figure 12-13a the incident electric field can be expressed as

E=d,Ee™'T = § E e /B(xcosg+ysing,) (12-57)
which at the surface of the strip (y = 0, 0 < x < w) reduces to

| E(y=00<x<w)= d,Egexcos#: (12-57a)
Since the incident electric field has only a z component, the scattered and total
fields each also has only a z component which is independent of z variations (two

dimensional). Therefore the scattered field can be found by expanding (12-54)
assuming A has only a z component which is independent of z variations, Doing
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(x, »)

FIGURE 12-14 Geometry of the finite width
strip for scattering.

this reduces (12-54) to

E'= —d,jod, (12-58)

The vector potential component A, is obtained using (12-54a) which in
conjunction with (11-27d) and (11-28a) reduces to

e . Y ey per
4= = [[r) o = [0 s
dm s R 4o o ylo - o+ (2 - 2)
‘M' s ’ ) ’ ’
= ~J;f0 J(x")H (Bl — ¢'l) dx (12-59)

where J, is a linear current density (amperes per meter). Thus we can write the
scattered electric field at any observation point, using the geometry of Figure 12-14,
as

A . A w“ w 7 I ’
E' = —d,jud, = ~d,~- fo L(x)HP(Blp — ¢']) dx

—&ﬁ} T (x")HP(Blp — x|) dx’ (12-60)
0

For far-field observations we can reduce (12-60) using the Hankel function approxi-
mation of (12-21b) for ¢’ = 0 to

JjB e B, "
S~ —g 1/. /) g lBx <08 g1 }
E aay oo 7 folz(x )e dx (12-60a)

To evaluate the integral in (12-60a) in order to find the scattered field, we must
know the induced current density J,(x’) over the extent of the strip (0 < x’ < w).
This can be accomplished by observing the field on the surface of the strip
(p = x,,). Under those conditions the total field over the strip must vanish. Thus

E0<x,<w,y=0)=E(0<x,<w,y=0)+E0<x,<w,y=0)=0
(12-61)

or

E0<x,<w,y=0)=-E0<x,<w,y=0)
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Since over the strip p = x,., we can write the scattered field over the strip as

ES0<x,<w,y=0)=—E{0<x,<w,y=0)

= B L EO B — ) v (2

or
Bn v ’ 2 ’ ’
| LG HP(BIx,, — x') d
4 Jy
=E(0<x, <w, y=0)=EeBmoss (12-62a)

For a normalized field of unity amplitude ( E, = 1) this reduces to

Bn w .
Tfo J(x)HP(BIx,,, — x']) dx’ = eBrmooss: (12-63)

This is the desired two-dimensional electric field integral equation (EFIE) for
the TM? polarization of the conducting strip and it is equivalent to (12-56) for the
general threc-dimensional case. This EFIE can be solved for J(x’) using techniques
similar to those used to solve the EFIE of (12-17a). It must be used to solve for the
induced current density J,(x’) over the surface of the strip. Since the surface of the
strip is open, the aforementioned J,(x’) represents the equivalent vector current
density that flows on the opposite sides of the surface. For a more general geometry
the EFIE of (12-63) can be written as

B [0 B Blo, - ) de = E5(p,) (12-64

where p,, = any observation point on the scatterer
e’ = any source point on the scatterer
C = perimeter of scatterer

The solution of the preceding integral equations for the equivalent linear
current density can be accomplished by using either the point-matching (colloca-
tion) method of Section 12.2.4 or the moment method of Section 12.2.8. However,
using either method for the solution of the integral equation 12-63 for the strip of
Figure 12-13a, we encounter the same problems as for the evaluation of the integral
equation 12-17a for the finite strip of Figure 12-5, which are outlined in Section
12.2.6. However, these problems are overcome here using the same techniques as
outlined in Section 12.2.6, namely, choosing the observation points along the
bisector of the width of the strip, or using the approximations of (12-39) and
(12-40).

Example 12-4. For the TM? plane wave incidence on the conducting strip of
Figure 12-13a perform the following,

1. Plot the induced equivalent current density for normal (¢, = 90°) incidence
obtained using the EFIE of (12-63). Assume the strip has a width of
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w = 2X and zero thickness. Usc subdomain pulse expansion functions and
point matching. Subdivide the strip into 250 segments.

2. Compare the current density of part 1 with the physical optics current
density.

3. Compute the monostatic scattering width pattern for 0 < ¢, < 180° using
current density obtained using the EFIE of (12-63). Compare this pattern
with those obtained with physical optics (PO), geometrical theory of
diffraction (GTD) of Chapter 13, and physical optics (PO) plus physical
theory of diffraction (PTD) techniques [13].

Solution.

1. Using the EFIE of (12-63) and applying point-matching methods with
subdomain pulse expansion functions, the current density of Figure 12-15
for ¢, = 90° is obtained for a strip of w = 2A. It is observed that the
current density exhibits singularities toward the edges of the strip.

2. The physical optics current density is represented by

I =28 x HY| . =24, % (a,H.+ 4 H)

strip

= —G,2H!

E
| . o= d 2—0 Sin (b'p./ﬂxcos‘#l
X|stap z 1' [

which is shown plotted in Figure 12-15 for ¢, = 90°. It is apparent that the

0.0300 —
| w=2),¢,=90°

0.0226 J,(IE), N=250
- ———— J,(IE), N=250
S J,.d, (PO)

0.0150 }-

Current density (A/m)

0.0075

o) I T T WO WO AN N SN T N I O B MR O B S N O

Width

FIGURE 12-15 Current density induced on a finite width strip by a plane
wave at normal incidence.
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FIGURE 12-16 Monostatic scattering width of a finite width strip (w = 2X).

PO current density does not compare well with that obtained using the IE,
especially toward the edges of the strip. Therefore it does not provide a
good representation of the equivalent current density induced on the strip.
In Figure 12-15 we also display the equivalent current density for TE’
polarization which will be discussed in the next section and Example 12-5.
The monostatic scattering width patterns for 0° < ¢, < 180° obtained
using the methods of IE, PO, GTD, and PO plus PTD are all shown in
Figure 12-16. As expected, the only one that differs from the others is that
due to the PO; the other three are indistinguishable from each other and
are represented by the solid curve. The pattern for the TE? polarization for
the IE method is also displayed in Figure 12-16. This will be discussed in

the next section and Example 12-5.

B. TWO-DIMENSIONAL EFIE: TEZ POLARIZATION

As in the previous section, the derivation of the EFIE for TE? polarization is best
demonstrated by considering a uniform plane wave incidence on the strip, as shown
in Figure 12-13b. Its form can then be generalized to more complex geometries.
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By referring to Figure 12-13b the incident electric field can be expressed as
Ei= EO(dx sin ¢, — a, cos ¢‘_)e—jﬂ,--r = E()(éx sin; — &, cos ¢i)ejﬁ(xcos¢;+ysin¢i)
(12-65)
which at the surface of the strip (y = 0, 0 < x < w) reduces to
E' = Ej(d,sing, — 4, cos §;) e /Breos¢: (12-65a)

At the surface of the strip (0 < x < w, y = 0) the tangential components of
the total field, incident plus scattered, must vanish. This can be written as

AXE| . =axE+E)|

=, % [(4.EL+ 4,E}) + (4,E5 + 6,E)],... =0 (12:66)

strip
which leads to
G (E{+ E})|yp =0=Ei(0<x<w, y=0)=~-E(0<x<w, y=0)
(12-66a)
or

E0<x<w,y=0)=-E{0<x<w,y=0)= —E,sin¢ePros
| (12-66b)

The x and y components of the scattered electric field, which are independent
of z variations, are obtained using (12-54) which when expanded reduce to

1 94, 1 3%,
Ei=—jod, —j— = —j— |, + ——
wpe dx* wle dx
1 a2
= [( B2 + ) Ax} (12-67a)
w,u,c ax’
E: L 94 12-67b
y —pre dx 3y (12-67b)

The vector potential A, is obtained using (12-54a) which in conjunctlon with
(11-27d) and (11-28a) reduces to

4= ~j i "I (<) HP (Blp — o)) dx’ (12-68)
4 Jg

Thus we can write that the x and y components of the scattered field can be
expressed as

E;= —j;:;(- —)[(ﬁz + ——)f LX)V HP (Bl — o)) dX’]
7 [( Yo e N
= —@{(ﬁ + 5)7)[) J(x)HP (Ble — o')) JX} (12-69a)
n 2

—_— v ’ ) N ’ N
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Interchanging integration and differentiation and letting p’ = x’ we can rewrite the
x and y components as

w a?
E=—f Jx(x'){[gg + ﬂz]Héz’(BR)} d' (12-70a)

fr- - 3 (1|

Héz’(BR)} dx’ (12-70b)

where
R =}p — x| (12-70c)

It can be shown using the geometry of Figurc 12-14 that

aZ ‘ 2
[5? + Bz]Héz’(ﬂR) = T[Héz’(ﬁk) + HP(BR) cos (2¢")] (12-71a)

82 BZ
%3 HEP(BR) = —-H{"(BR) sin (2¢") (12-71b)

Thus the x and y components of the electric field can be reduced to

E’= - Bg" L(x)[HP(BR) + HO(BR) cos (2¢")] dx'  (12-72a)
Bn w .

E;= = [(L.(x) HP(BR) sin (24") dx’ (12:720)
8 Jo

The next objective is to solve for the induced current density that can then be
used to find the scattered field. This can be accomplished by applying the boundary
conditions on the x component of the electric field. When the observations are
restricted to the surface of the strip (p = x,,), the x component of the scattered field
over the strip can be written as

E0<x,<w,y=0)

- -E;(o < xp < w, y = 0) =  Eysin gpe et

f J(x)[HP(BR,) + HP(BR,,) cos (2¢72)] dx’ (12-73)

or

Bl [0 P (BR) + HEP(BR,)cos 245)] d’ = Eosinge#5ec0
0
(12-73a)
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For a normalized field of unity amplitude ( E, = 1) this reduces to

in L) HE(BR,) + HS(BR,,) cos (2¢];)] dx’ = sing,emmcest:
(12-74)
where
R, =lp, — X (12-74a)

This is the desired two-dimensional electric field integral equation (EFIE) for
the TE® polarization of the conducting strip, and it is equivalent to (12-56) for the
general three-dimensional case. This EFIE must be used to solve for the induced
current density J,(x") over the surface of the strip using techniques similar to those

used to solve the EFIE of (12-17a). For a more general geometry the EFIE can be
written as

%{Bzfcfc("')[fm « CHS (Blp,, — 0] dc’
d | (12-75)
+—[ fJ(P)[‘”HQ)(BIPm-—pI)] dc]} = —Ei(p,)

where p,, = any observation point on the scatterer
p’ = any source point on the scatterer
C = perimeter of the scatterer
€, € — unit vector tangent (o scatterer perimeter at observation, source points

The linear current density J, is obtained by solving the integral equation 12-74
using cither the point-matching (collocation) method of Section 12.2.4 or the
moment method of Section 12.2.8. Using either method the solution of the preced-
ing integral equation for J, is more difficult than that of the TM? polarization of the
previous example. There exist various approaches (either exact or approximate) that
can be used to accomplish this.

To demonstrate this, we will discuss one method that can be used to solve the
integral equation 12-74. Let us assume that the current density J,(x’) is expanded
into a finite series similar to (12-23). Then the integral equation can be written_as

N w
sin ¢ e 2 os# = %—'1 L a, [ g.(x) [ HP(BR,.) + HP(BR,,) cos (24;;)] dx
n=1
(12-76)

If in addition the basis functions are subdomain pulse functions, as defined by
(12-35), then (12-76) using point matching reduces for each observation point to

sin ¢, e Brncost = L1 Z S P BR,) + HP(AR,,) cos (az)] dx

n=1

(12-77)
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If N observations are selected, then we can write (12-77) as

N Ko+
[sin ¢, xmcoss] = 3 { % L (HE(BR ) + HE(BR,,,) cos (242,)] dx'}
n=1 X
m=12 ... N (12-78)
or
[Vm] = [Zmn][In] (12'788)
where
V., = sin¢,ePrmeoss; (12-78b)
I" = an (12'78C)
N rx,.
Zmn = T l[HéZ)(BRmn) + Héz)(BRmn)cos (2¢;:n)] dx’ (12'78d)

Xn

One of the tasks here will be the evaluation of the integral for Z,..- We will
examine one technique that requires Z, . to be evaluated using three different
expressions depending upon the position of the segment relative to the observation
point. We propose here that Z,, is evaluated using

BnAx, 1 1.7818Ax,, 16
3 {1 —j;[—] + Zln( P ) + (,BAx,,)ZJ} (12-79a)

e=2718 m=np

A 4 !
Bnlx, s - (12-79b)
o = %l = 2=
Im=nl<2 m+#n
H® X = X, + x’
ﬂl Ax,/2 ;l[ﬁ(' m ' ’ )] dx’ (12-79C)
4 -4x,/2 B(lxm - ‘x'll +x )

Im —n|>2

where x,, and x, are measured from the center of their respective segments.

The current density J, obtained from the preceding integral equation also
represents the total current density J; induced on the strip. This is evident from the
induced current density equation

J=AxH'=4 xa,H =4 H = a.(H + H?) (12-80)

Example 12-5. For the TE: planc wave incidence on the conducting strip of
Figure 12-13b, perform the following tasks. »

L. Plot the induced equivalent current density for normal (¢, = 90°) incidence
obtained using the EFIE of (12-74) or (12-78) through (12-78d). Assume a
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width of w=2A and zero thickness. Use subdomain pulse expansion
functions and point matching. Subdivide the strip into 250 segments.

2. Compare the current density of part 1 with the physical optics current
density.

3. Compute the monostatic scattering width pattern for 0° < ¢; < 180° using
the current density obtained using the EFIE of (12-78) through (12-78d).
Compare this pattern with those obtained with physical optics (PQ),
geometrical theory of diffraction (GTD) of Chapter 13, and physical optics
(PO) plus physical theory of diffraction (PTD) techniques [13].

Solution.

1. Using the EFIE of (12-78) through (12-78d), the current density of Figure
12-15 for ¢, = 90° is obtained for a strip of w = 2A. It is observed that the
current density vanishes toward the edges of the strip.

2. The physical optics current density is represented by

= 5}(2&6 Bxcos d;

v n
which for normal incidence (¢; = 90°) is identical to that for the TM?
polarization, and it is shown plotted in Figurc 12-15. As for the TM?
polarization, the PO TE’ polarization current density does not compare
well with that obtained using the IE method. Therefore it does not provide
a good representation of the equivalent current density induced on the
strip. In Figure 12-15 the TE? polarization current density is compared
with that of the TM? polarization using the different methods.

3. The monostatic scattering width pattern for 0° < ¢, < 180° obtained using
the IE method is shown plotted in Figure 12-16 where it is compared to
those obtained by PO, PO plus PTD (first-order diffractions), and GTD
(first-order diffractions) techniques. It is observed that the patterns of PO,
PO plus PTD, and GTD (using first-order diffractions only) are insensitive
to polarization whereby those of the integral equation with moment method
solution vary with polarization. The SW patterns should vary with polariza-
tion. Therefore those obtained using the integral equation method are more
accurate. It can be shown that if higher-order diffractions are included, the
patterns of the PO plus PTD, and GTD will also vary with polarization.
Higher-order diffractions are greater contributors to the overall scattering
pattern for the TE? polarization than for the TM*. This is demonstrated by
including in Figure 12-16 the monostatic SW for TE? polarization obtained
using higher-order GTD (UTD) diffractions [27]. It is apparent that this
pattern agrees quite well with that of the IE method.

PO A { — A A i
JPO ~2a x WY -2a,x a,H

—4 i
strip strip 4,2H; IStﬁP

12.3.2 Magnetic Field Integral Equation

The magnetic field integral equation (MFIE) is expressed in terms of the known
incident magnetic field. It is based on the boundary condition that expresses the
total electric current density induced at any point r = r’ on the surface of a
conducting surface S

() =d(r=r)=axH(r=r)=ax [H(r="r)+H(r=r)] (12:81)
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Once the current density is known or determined, the scattered magnetic field can
be obtained using (6-32a) and (6-96a), or

e —/BR

1
H(r) = LV XA=Y X ffs.ls(r’) AR =V X f];J:(r')G(',f') ds’
(12-82)

where G(r,r) is the Green’s function of (12-55a). Interchanging differentiation with
integration and using the vector identity

VX{JG)=GV xXJ,-J XVG (12-83)
where
VvxJI(r)=0 (12-83a)
VG=-V'G (12-83b)
(12-82) reduces to
H'(r) = [[3,(r) X [VG(r,v)] ds’ (12-84)
§

On the surface S of the conductor the tangential magnetic field is discontinu-
ous by the amount of the current density induced on the surface of the conductor.
Therefore the current density is determined by (12-81) but with H* found using
(12-84). Thus we can write that

Js(r') =X Hi(r = r') + lim [ﬁ X H’(r = r’)]
r—S

=AXH(r=r)+ rh_xg{ﬁ x f/;Js(r’) x [vG(r,7)] ds'} (12-85)

or

3.(r) - ll_{r}g{n X [fSJ,(r') x [v'G(r,r)] ds’} = A X Hi(r=r)| (12-85a)

where r — § indicates that S is approached by r from the outside.

Equation 12-85a is referred to as the magnetic field integral equation (MFIE)
because its right side is in terms of the incident magnetic field, and it is valid only
for closed surfaces. Once the current density distribution can be found using
(12-85a), then the scattered fields can be found using standard radiation integrals. It
should be noted that the integral of (12-85a) must be carefully evaluated. The MFIE
is the most popular for TE? polarizations, although it can be used for both TE? and
TM? cases. Since (12-85a) is only valid for closed surfaces, the current density
obtained using (12-85a) is the actual current density induced on the surface of the
conducting obstacle.

Whereas (12-85a) is a general MFIE for three-dimensional problems, its form
can be simplified for two-dimensional MFIEs for both TM? and TE? polarizations.
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FIGURE 12-17 Geometry for two-dimensional MFIE TM? polarization
scattering,

A. TWO-DIMENSIONAL MFIE: TMZ POLARIZATION

The best way to demonstrate the derivation of the two-dimensional MFIE for TM?
polarization is to consider a TM? uniform plane wave incident upon a two-dimen-
sional smooth curved surface, as shown in Figure 12-17.

Since the incident field has only a z component of the electric field, and x and
y components of the magnetic field, the electric current density induced on the
surface of the scatterer will only have a z component. That is

J.(p) =ad,J,(p)|. (12-86)

On the surface of the scatterer the current density is related to the incident
and scattered magnetic fields by (12-81), which for the geometry of Figure 12-17 can
be written as

J(p)|c=d.J(p)|.=A x (H' + H°)|.=AxH + limc(ﬁ X H*) (12-87)
-

where p — C indicates that the boundary C is approached by p from the outside.
Since the left side of (12-87) has only a z component, then the right side of (12-87)
must also have only z components. Therefore the only component of H’ that
contributes to (12-87) is that which is tangent to C and coincides with the surface of
the scatterer. Thus we can rewrite (12-87) as

L(0)|. = Hi(p)| . + pliinc[ﬁz - (A x H")] (12-88)

The scattered magnetic field H® can be expressed according to (12-82) as

JBR
R

H°® = lV X A=ty X ,i/cfm%(p’)e_

dz’ de’
7 [ 4 c}

1 +ooe”"BR 1
= ’ 4 [ O ’ ) ’
o {LJs(p)[/_w - dz}dc} igV X];Js(p)Ho (BR) de

B = i [V X [L(5) HP(BR)] (12:89)
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Using (12-83) and (12-83a) reduces (12-89) to
s H 1 ’ (e ’
H =jZ/CJ,(p) X VH§?(BR) dc (12-90)

Since J (p’) has only a 2 component, then the second term within the brackets
on the right side of (12-88) can be written using (12-90) as

.- (i x W) = 4, x {2 [ [a20()] x [VE@(pR) @)

1
=Jg fc L(o){a, - [ x a, x VHP(BR)]} de” (12-91)

since d] = 4,. Using the vector identity of
AX(BXC)=(A-C)B~(A- B)C (12-92)
we can write that
i x [a, x VHP(BR)] = a,[ - VH?(BR)] - (7 - 4,)VHP(BR)
= a,[A- VHP(BR)] (12-93)
since 7 - d, = (. Substituting (12-93) into (12-91) reduces it to

1
@ (A x W) = j2 [1(o)[4 - VHR(R)] de
1
=jZfCJz(p’)[—Bcos VHP(BR)] dc’

d (X ) = L [ esinPor e sy
C

where the angle  is defined in Figure 12-17. Thus we can write (12-88) using
(12-94) as

HOle =+ lim |5 [ s ooy ae| 12

or

J() (12-95a)

+ih ot [fcfz(p') cos Y H®(R) dc’] - file)

C

B. TWO-DIMENSIONAL MFIE: TEZ POLARIZATION

To derive the MFIE for the TE? polarization, let us consider a TE? uniform plane
wave incidence upon a two-dimensional curved surface, as shown in Figure 12-18.
Since the incident field has only a z component of the magnetic field, the current
induced on the surface of the scatterer will have only a component that is tangent to
C and it will coincide with the surface of the scatterer. That is

I, =¢éJ.(p) (12-96)
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FIGURE 12-18 Geometry for two-dimensional MFIE TE? polarization
scattering,

On the surface of the scatterer the current density is related to the incident
and scattered magnetic fields by (12-81), which for the geometry of Figure 12-18 can
be written as '

Jle=2el(p)|c=Ax (H' + H*)|.=aAx H + limc(ﬁ x H?)
p—
=AX4,H| + lim (A x H*
4,1+ lim (A X H)

Ic=2eJ(p)|c = ~¢H| . + lim (7 X H*) (12:97)
o

where p — C indicates that the boundary C is approached by p from the outside.
Since the left side and the first term of the right side of (12-97) have only ¢
components, then the second term of the right side of (12-97) must also have only a
¢ component. Thus we can write (12-97) as

I(0)|c = ~Hilp) | + lim [¢- (4 x 1)) (1298)

Using the scattered magnetic field of (12-90) we can write the second term
within the brackets of (12-98) as

1
E-(AxH)-&-hax {jZfC[é”Jc(p') x VHé”(ﬁR)]} dc’

1
-ig CJc(p'){é -Ax [&x vHP(BR)]} (12-99)
Since from Figure 12-18
&= —AXad = —A"Xa, (12-100)
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then with the aid of (12-92)
& x VHP(BR) = (—#' x ,) X VHP(BR) = VHP(BR) X (i’ X d,)
= —a.[a" - VHP(BR)] + #'[a. - VHP(BR)]
—a,[A+ VHP(BR)] (12-100a)

since d,+ VH{P(BR) = 0. Thus the terms within the brackets in (12-99) can be
written as

&-Ax [&x VHP(BR)]
= —&+(Ax a,)|# - VHP(BR)] = (¢- &)[# - VHP(BR))
=i’ + VHP(BR) (12-101)
since —¢ = A X d,. Substituting (12-101) into (12-99) reduces it to

It

£ i X W = %fc (o) [+ CHO(BR] e = i [ 1) B oos ¥ HO(BR)) e

G AXH = —j= f J(p") cos ' H®(BR) de’ (12-102)
C

where the angle  is defined in Figure 12-18. Thus we can write (12-98) using
(12-102) as

o= =)+ im | <75 [ () cos P (8R) w| (09

or

J(p) (12-103a)

+jE lim [ch(p') cos Y’ H{P(BR) dc’] = —H!
C 4 p—ClYC

C

C. SOLUTION OF THE TWO-DIMENSIONAL MFIE TEZ POLARIZATION

The two-dimensional MFIEs of (12-95a) for TM? polarization and (12-103a) for
TE? polarization are of identical form and their solutions are then similar. Since
TM* polarizations are very conveniently solved using the EFIE, usually the- MFIEs
are mostly applied to TE? polarization problems where the magnetic field has only a
z component. Therefore we will demonstrate here the solution to the TE? MFIE of
(12-103a).

In the evaluation of the scattered magnetic field at p = p,, from all points on
C (including the point p = p, where the observation is made), the integral of
(12-103a) can be split into two parts; one part coming from AC and the other part
outside AC(C — AC), as shown in Figure 12-19.Thus we can write the integral of
(12-103a) as

B . '
7 lim fc J.(p") cos y'"HP(BR) dc’

=/ T { [ L) cos v HOBR d + [ 1o con y(pR) '
4 p~c\Jac c-AC
(12-104)
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FIGURE 12-19 Geometry and fields along thc scattering surface for a
two-dimensional MFIE.

In a solution of (12-1032) where C is subdivided into scgments, AC would typically
represent one segment (the self-term) and C ~ AC would represent the other
segments (the non-self-terms). Let us now examine the evaluation of each of the
integrals in (12-104).

At any point the total magnetic field is equal to the sum of the incident and
scattered parts. Within the scattered conducting obstacle the total magnetic field is
zero whereby above the conducting surface the field is nonzero. The discontinuity of
the two along C is used to represent the current density along C. Within the thin
rectangular box with dimensions of & and AC (in the limit & — 0), the total
magnetic field above (H{) and below (H3) the interfacc can be written as

H{ = H' + H{ = H' + (H}, + H;,) (12-105a)
Hy = H'+ H; = H' + (M}, + H3,) = H' + (—H}, + H},)= 0 (12-105b)
or Hj,=H;, - H (12-105¢)

where Hj, (H3,) = scattered field in region 1 (2) within the box that is due to AC
(self-term) which is discontinuous across the boundary along
AC

Hj, (H3,)= scattered field in region 1 (2) within the box that is due to
C — AC (non-self-terms) which is continuous across the
boundary along AC

It is assumed here that AC along C becomes a straight line as the segment becomes
small. The current density along AC can then be represented using (12-105a) and
(12-105b) by
J.(p)|sc = A % (H{ ~ HY) lac = A X (Hi, + H],) = 27 X H, = —28H;,,
(12-106)
or
J(pm)
2

Therefore the integral along AC in (12-104), which can be used to represent the

JAp.) = —2H; (0,) = H. (p,) = —

(12-106a)



714

INTEGRAL EQUATIONS AND THE MOMENT METHOD

scattered magnetic field at p = p_ that is due to the AC, can be replaced by
(12-106a). The non-self terms can be found using the integral along C — AC in
(12-104). Thus using (12-104) and (12-106a) we can reduce (12-103a) for p = o, to

JC m B i y
o) - (;’ ), i . o) cos v, HO(BR,) de' = ~H!(p,) (12-107)
or
J
LB [ ) eos PR e = ()| (20
C-AC

An analogous procedure can be used to reduce (12-95a) to a form similar to that of
(12-107a).

Let us now represent the current density J(p) of (12-107a) by the finite series
of (12-23)

Jp) = L a,8.(p) (12-108)

where g,(p) represents the basis (expansion) functions. Substituting (12-108) into
(12-107a) and interchanging integration and summation, we can write that at any
point p =p_onC (12-107a) can be written as

, 1 X B X
—H(p,) =5 X a,g.(p,) +j= T a,f 8.(0") cos Y, HO(BR,,) de’ (12-109)
2 n=1 4 n=1 C-AC

If the g,’s arc subdomain piecewise constant pulse functions with each basis
function existing only over its own segment, then (12-109) reduces to

. 8n s X s
~Hi(on) = Fra,+j7 La, [ cos g, HO(BR,,) de' (12-110)
2 4'n=1 Pn

n+m

or

. N 8"". B Pn+1
“Hi(pm) = La,[ 2%+ 7 [ cos g, HO(BR,,) de’| (12-110a)
n=1 2 4 fn

n+m

where §,,, is the Kronecker delta function defined by

8y — { (1) me=n (12-110b)

m+n

The Kronecker delta function is used to indicate that for a given obscrvation point
m only the segment itself (n = m) contributes to the first term on the right side of
(12-110a).



ELECTRIC AND MAGNETIC FIELD INTEGRAL EQUATIONS 715

If (12-110a) is applied to m points on C, then it can be written as

. N 8 B Pr+1
- H? =Y a,|—+j= cos ¢, H{?(BR,,,) dc’
nfEmMm
m=1,2,...,N
In general matrix notation (12-111) can be expressed as
[Vm] = [Zmn][In] (12'112)
where
Vo= —H.(p,) (12-112a)
8mn B nEl
zZ,,= [ 5 ~ig " cos ¢, HP(BR,,,) dc’] (12-112b)
8
I.=a, (12-112¢)

To demonstrate the applicability of (12-111), let us consider an example.

Example 12-6. A TE? uniform plane wave is normaily incident upon a circular
conducting cylinder of radius a, as shown in Figure 12-20.

1. Using the MFIE of (12-107a) determine and plot the current density
induced on the surface of the cylinder when a = 2A. Assume the incident
magnetic field is of unity amplitude. Use subdomain piecewise constant
pulse functions. Subdivide the circumference into 540 segments. Compare
the current density obtained using the IE with the exact modal solution of
(11-113).

2. Based on the electric current density, derive and then plot the normalized
(0,.p/\) bistatic scattering width (in decibels) for 0° < ¢ < 360° when

FIGURE 12-20 TE’ uniform plane wave incident on a circular
conducting cylinder.
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Current density (A/m)

0.00/75 "‘

0.0050—
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{Jd, (modal)

- —-—-=J, (PO)

lllllllllllll

!
|
‘
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90 180 270
Angle ¢ (degrees) along surface

FIGURE 12-21 Current density induced on the surface of a circular conducting cylinder by

TE? plane wave incidence (a = 2A ).

a = 2A. Compare these values with those obtained using the exact modal
solution of (11-117).

Solution.

L. Since for subdomain piecewise constant pulse functions (12-103a) or (12-

107a) reduces to (12-111) or (12-112) through (12-112c), then a solution of
(12-112) for I, leads to the current density shown in Figure 12-21. In the
same figure we have plotted the current density of (11-113) based on the
modal solution, and an excellent agreement between the two is indicated.
We also have plotted the current densities based on the EFIE for TE?
polarization of Section 12.3.1B and on the physical optics of (7-54) over the
illuminated portion of the cylinder surface. The results of the EFIE do not
agree with the modal as accurately as those of the MFIE. However, they
still are very good. As expected, the physical optics current density is not
representative of the true solution.

- Based on the current densities obtained in part 1, the far-zone scattered

field was derived and the corresponding bistatic -scattering width was
formulated. The computed SW results are shown in Figure 12-22. Besides
the results hased on the physical optics approximation, the other three
(MFIE, EFIE, and modal solution) give almost indistinguishable data and
are shown in Figure 12-22 almost as one curve,



124

FINITE DIAMETER WIRES 717

30—
EFIE (N =540)
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FIGURE 12-22 TE’ bistatic scattering width of a circular conducting cylinder (a = 2]).

FINITE DIAMETER WIRES

In this section we want to derive and apply two classic three-dimensional integral
equations, referred to as Pocklington’s integrodifferential equation and Hallén’s
integral equation [28-36), that can be used most conveniently to find the current
distribution on conducting wires. Hallén’s equation is usually restricted to the use of
a delta-gap voltage source model at the feed of a wire antenna. Pocklington’s
equation, however, is more general and it is adaptable to many types of feed sources
(through alteration of its excitation function or excitation matrix), including a
magnetic frill [37]. In addition, Hallén’s equation requires the inversion of an N + 1
order matrix (where N is the number of divisions of the wire) while Pocklington’s
equation requires the inversion of an N order matrix.

For very thin wires, the current distribution is usually assumed to be of
sinusoidal form [24]. For finite diameter wires (usually diameters d of d > 0.051),
the sinusoidal current distribution is representative but not accurate. To find a more
accurate current distribution on a cylindrical wire, an integral equation is usually
derived and solved. Previously, solutions to the integral equation were obtained



718 INTEGRAL EQUATIONS AND THE MOMENT METHOD

using iterative methods [30]; presently, it is most convenient to use moment method
techniques [1-3].

If we know the voltage at the feed terminals of a wire antenna and find the
current distribution, the input impedance and radiation pattern can then be ob-
tained. Similarly if a wave impinges upon the surface of a wire Scatterer, it induces a
current density that in turn is used to find the scattered field. Whereas the linear
wire is simple, most of the information preseuted here can be readily extended to
more complicated structures.

12.4.1 Pocklington’s Integral Equation

In deriving Pocklington’s integral equation, the integral equation approach of
Section 12.3.1 will be used. However, each step, as applied to the wire scatterer, will
be repeated here to indicate the simplicity of the method.

Refer to Figure 12-23a. Let us assume that an incident wave impinges on the
surface of a conducting wire. The total tangential electric ficld (E,) at the surface of
the wire is given by (12-53) or (12-53a), that is

Er=r)=E{(r=r)+Er=r)=0 (12-113)
or
EX(r=r)=~E(r=r) (12-113a)

At any observation point, the field scattered by the induced current density on
the surface of the wire is given by (12-54). However, for observations at the wire
surface only the z component of (12-54) is needed and we can write it as

E ! 2 94, 12-114
s - + -
z(r) .] wll.s B z 322 ( )
2 .z zZA
€l 0p
y
(’\\.
.\b@
<«
y
98
‘%%&,
Gb
e-2a >}
(a)

FIGURE 12-23 (a) Uniform plane wave obliquely incident on a conducting
wire and (b) equivalent current.
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According to (12-54a) and neglecting edge eftects

e SR B g 20 e R
A, _——ffJ - (/2f J~——ad¢'dz’  (12-115)

If the wire is very thin, the current density J, is not a function of the azimuthal
angle ¢, and we can write it as

2qal,=I1(z') = J, = I,(z) (12-116)

2ma
where I,(z’) is assumed to be an equivalent filament line-source current located a
radial distance p = @ from the z axis, as shown in Figure 12-23b. Thus (12-115)
reduces to

A= — -——[0 1(z")

49 -2 2wa
R=y(x=x)V+(y-y)+(z-2)

= \[pz +a®~2pacos(¢ — ¢) + (z - z)° (12-117a)

"L 1 a eﬁjﬂR
7 2[ : ade'| dz’ (12-117)

where p is the radial distance to the observation point and a is the radius.

Because of the symmetry of the scatterer, the observations are not a function
of ¢. For simplicity let us then choose ¢ = 0. For observations at the surface p = a
of the scatterer (12-117) and (12-117a) reduce to

A(p—a)—p.f+{/z (21:0

dd)) dz' = pf l/ZI (2)G(z, z) dz’

4aR
(12-118)
1 21re_jBR
G(z,2') — — de’ 12-118
(2, 2) 271'-/0 47R ¢ ( 2)
2 il ¢ n2
R(p =a) = y/4a’sin 3 +(z-2) (12-118b)

Thus for observations at the surface p = a of the scatterer the z component of the
scattered electric field can be expressed as

EXp=a) = —j;l;(ﬁz + g—)f”ﬂl( NVG(z,2') dz’  (12-119)

which by using (12-113a) reduces to

—J‘L(jz + B2 )[”/21( NVG(z, ) dz' = —Ei(p=a) (12-120)

or

(d y )f+l/1.1 (z2')G(z,2') dz’ = —jweE(p=a)  (12-120a)
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Interchanging integration with differentiation, we can rewrite (12-120a) as

/”/21,(2’)[(—:—223 + Bz)G(z, z’)] dz’= —jweE(p = a) (12-121)

—-¢2

where G(z, z') is given by (12-118a).

Equation 12-121 is referred to as Pocklington’s integrodifferential equation (28],
and it can be used to determine the equivalent filamentary line-source current of the
wire, and thus current density on the wire, by knowing the incident field on the
surface of the wire. It is a simplified form of (12-56) as applied to a wire scatterer,
and it could have been derived directly from (12-56).

If we assume that the wire is very thin (@ < A) such that (12-118a) reduces to

~J/BR

G(z,z') =G(R) = iR (12-122)

(12-121) can also be expressed in a more convenient form as [32]

f+{/21 (z) e [(1 +jBR)(2R* — 3a?) + (BaR)2] dz’ = —jweE(p = a)
-2/2 i 41TRS J ! F

(12-123)

where for observations along the center of the wire (p = 0)

R=y\a*+ (z - 2)° (12-123a)

In (12-121) or (12-123) I(z’) represents the equivalent filamentary line-source
current located on the surface of the wire, as shown in Figure 12-235, and it is
obtained by knowing the incident electric field at the surface of the wire. By
point-matching techniques this is solved by matching the boundary conditions at
discrete points on the surface of the wire. Often it is easier to choose the matching
points to bhe at the interior of the wire, especially along the axis as shown in Figure
12-24a, where I,(z’) is located on the surface of the wire. By reciprocity the
configuration of Figure 12-24a is analogous to that of Figure 12-24b where the
equivalent filamentary line-source current is assumed to be located along the center
axis of the wire and the matching points are selected on the surface of the wire.
Either of the two configurations can be used to determine the equivalent filamentary
line-source current 1,(z’); the choice is left to the individual.

Hallén’s Integral Equation

Referring again to Figure 12-23a let us assume that the length of the cylinder is
much larger than its radius (¢> @) and its radius is much smaller than the
wavelength (a < A) so that the effects of the end faces of the cylinder can be
neglected. Therefore the boundary conditions for a wire with infinite conductivity
are those of vanishing total tangential E fields on the surface of the cylinder and
vanishing current at the ends of the cylinder [I,(z' = +¢£/2) = 0].

Since only an electric current density flows on the cylinder and it is directed
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FIGURE 12-24 Dipole segmentation and its equivalent cur-
rent (a) on the surface and (b) along its center.

along the z axis (J = 4,J,), then according to (6-30) and (6-96a) A = d,A4,(z"),
which for small radii is assumed to be only a function of z’. Thus (6-34) reduces for
F=0to

E! A L 34, L LI A 12-124
L _ . N )
L vl i b e aR ( )

Since the total tangential electric field E} vanishes on the surface of the cylinder,
(12-124) reduces to

d2

dz?

z

+8U4,=0 (12-124a)

Because the current density on the cylinder is symmetrical [J,(z") = J(—z")],
the potential 4, is also symmetrical [i.e,, 4,(z") = 4,(—2)]. Thus the solution of
(12-124a) is given by

A,(z) = —jyne [ B, cos(Bz) + Csin(Biz))] (12-125)

where B, and C, are constants. For a current-carrying wire, its potential is also
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given by (6-97a). Equating (12-125) to (6-97a) leads to

j+1/2

If a voltage V; is applied at the input terminals of the wire, it can be shown that the
constant C; = V,/2. The constant B, is determined from the boundary condition
that requires the current to vanish at the end points of the wire.

Equatlon 12-126 is referred to as Hallén’s integral equation for a perfectly
conducting wire. It was derived by solving the differential equation 6-34 or 12-124a
with the enforcement of the appropriate boundary conditions.

—JBR

__,\/‘ [B,cos(Bz) + C;sin(Blz)] | (12-126)

Source Modeling

Let us assume that the wire of Figure 12-23 is symmetrically fed by a voltage source,
as shown in Figure 12-25a, and the element acting as a dipole antenna. To use, for
example, Pocklington’s integrodifferential equation 12-121 or 12-123 we need to
know how to express E/(p = a). Traditionally there have been two methods used to
model the excitation to represent Ej(p = a,0 < ¢ < 2w, —¢/2 <z < +¢/2) atall
points on the surface of the dipole: One is referred to as the delta-gap excitation
and the other as the equivalent magnetic ring current (better known as magnetic frill
generator) [37].

A. DELTA GAP

The delta-gap source modeling is the simplest and most widely used of the two, but
it is also the least accurate, especially for impedances. Usually it is most accurate for
smaller width gaps. Using the delta gap, it is assumed that the excitation voltage at
the feed terminals is of a constant V; value, and zero elsewhere. Therefore the
incident elecuic ficld Ej(p = 4,0 < ¢ < 2w, —¢/2 < z < +¢/2) is also a constant
(V./A where A is the gap width) over the feed gap and zero elsewhere, hence the
name delta gap. For the delta-gap model, the feed gap A of Figure 12-25qa is
replaced by a narrow band of strips of equivalent magnetic current density of

V; V; A

4 i A
=d,— -—<z'< 3 (12-127)

M,.=—ﬁxE"=—dpx“,A o~ 5

The magnetic current density M; is sketched in Figure 12-254.

B. MAGNETIC FRILL GENERATOR

The magnectic frill gencrator was inuroduced to calculate the near- as well as the
far-zone fields from coaxial apertures [37]. To use this model the feed gap is
replaced with a circumferentially directed magnetic current density that exists over
an annular aperture with inner radius g, which is usually chosen (o be the radius of
the wire, and an outer radius b, as shown in Figure 12-25b. Since the dipole is
usually fed by transmission lines, the outer radius b of the equivalent annular
aperturc of the magnctic frill generator is found using the expression for the
characteristic impedance of the transmission line.
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FIGURE 12-25 Cylindrical dipole, its segmentation, and gap modeling. (Source: C. A. Ralanis, Antenna
Theory: Analysis and Design, copyright © 1982, John Wiley & Sons, Inc. Reprinted by
permission of John Wiley & Sons, Inc.) (a) Cylindrical dipole. (b) Segmented dipole.

Over the annular aperture of the magnetic frill generator the electric field is
represented by the TEM mode field distribution of a coaxial transmission line given

by
124

E =G — '
! a”Zp’ln(b/a)

(12-128)

Therefore the corresponding equivalent magnetic current density M s for the mag-
netic frill generator used to represent the aperture is equal to

M,= —2i X E,= ~24, X ,E, = —a (12-129)

*o'In(b/a)
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The fields generated by the magnetic frill generator of (12-129) on the surface
of the wire are found using [37]

I/&

E;! 2 ‘ < ‘
z(p-a,OSnps 'II,_2§Z 5)
B(b* — a?)e R 1 b* — a?
= -V — (2 +jl1 - ——
81n(b/a)R0 BR, 2Rj

1 ] (b2 + a?) ) 2 1 b + g2
Ez—o +j(1 —W))(—jﬁ - E;) + (—- BR2 +j I3 )]}) (12-130)

Ry = Vz* + a? (12-130a)

The fields generated on the surface of the wire computed using (12-130) can be
approximated by those found along the axis (p = 0). Doing this leads to a simpler
expression of the form [37]

I/i e~JBRl e—jﬂRZ
) T T im(b/a)| R, g, | 21

where
R, = vz + 42 (12—131a)
R,=Vz*+ b (12-131b)

To compare the results using the two source modelings (delta gap and
magnetic frill generator), an example will be performed.

Example 12-7. Assume a center-fed linear dipole of £/= 0.47\ and a = 0.005\.

1. Determine the voltage and normalized current distribution over the length
of the dipole using N = 21 segments to subdivide the length. Plot the
current distribution.

2. Determine the input impedance using segments of N = 7, 11, 21, 29, 41, 51,
61, 71, and 79.

Use Pocklington’s integrodifferential equation 12-123 with piecewise constant
subdomain basis functions and point matching to solve the problems, model
the gap with one segment, and use both the dclta gap and magnetic frill
generator to model the excitation. Use (12-131) for the magnetic frill genera-
tor. Because the current at the ends of the wire vanishes, the piecewise
constant subdomain basis functions are not the most judicious choice. How-
ever, because of their simplicity, they are chosen here to illustrate the princi-
ples even though the results are not the most accurate. Assume that the
characteristic impedance of the annular aperture is 50 ohms and the excitation
voltage V, is 1 V.
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Solution.

L

Since the characteristic impedance of the annular aperture is 50 ohms, then

In{b/a b
Z, = [!L_‘l__(_/)_=50=,_=2_3
£ 27 a

Subdividing the total length (£ = 0.47A) of the dipole to 21 segments makes
the gap and each segment equal to

0.47A

A= —— =0.0224\
21

Using (12-131) to compute E;, the corresponding induced voltages
obtained by multiplying the value of — E/ at each segment by the length of
the segment are found listed in Table 12-1, where they are compared with
those of the delta gap. N =1 represents the outermost segment and
N =11 represents the center segment. Because of the symmetry, only
values for the center segment and half of the other segments are shown.
Although the two distributions are not identical, the magnetic frill distribu-
tion voltages decay quite rapidly away from the center segment and they
very quickly reach almost vanishing values.

The corresponding unnormalized and normalized currents are obtained
using (12-123) with piecewise constant pulse functions and the point-match-
ing technique for both the delta gap and magnetic frill generator.

TABLE 12-1
Unnonnalized and normalized dipole induced voltage® differences for
delta gap and magnetic frill generator (/= 047\, a = 0.005\, N = 21)

Segment

number Delta gap voltage Magnetic frill generator voltage

n Unnormalized Normalized Unnormalized Normalized

1 0 0 1.11 x 10"“{ —2603° 730 x10°° { —26.03°
2 0 0 142 x 1074 { ~20.87° 934 x 1073 / —20.87°
3 0 0 189 %107/ —1613° 124 x 10 */ —16.13°
4 0 0 262 x 1074 { -11.90° 172 x 10“‘{ -11.90°
) 0 0 3.88 x 107 f —823° 255x107¢ f —8.23°
6 0 0 6.23 x 1074 { —522° 410x107* { -5.22°
7 0 0 114 %1073 / —291° 75x 1074/ —2.01°
8 0 0 252x107°/ ~133° 166 x 107 / —133°
9 0 0 789 x107°/ ~043°  519x10°°/ -043°

10 0 0 525 x 10‘2{ —-0.06° 346 x107? { —-0.06°

11 1 1 182 /o° 1.0 /o°

*Voltage differences as defined here represent the product of the incident electric field at the center of each
segment and the corresponding segment length.
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TABLE 12-2
Dipole input impedance for delta gap and magnetic frill generator
using Pocklington’s integral equation (¢= 047\, a = 0.005\)

N Delta gap Magnetic frill
7 122.8 + j113.9 26.8 + j24.9
11 94.2 + j49.0 320 + 516.7
21 77.7 — j0.8 471 — ;0.2
29 754 — j6.6 574 - j4.5
41 75.9 — j2.4 68.0 — ;1.0
51 772 + 524 73.1 + j4.0
61 78.6 + j6.1 76.2 + ;8.5
71 79.9 + 7.9 779 +j11.2
79 804 + ;8.8 78.8 + 129

‘[ Pocklington (magnetic frill)

Pocklington (delta gap)

Hallen (delta gap) a =0.005\
Stnusoid

\\
0.251— \

AY
Ll I.I.I.I.I.hl.l.l.l\l
678910111098 76543 2 |

, ¢r2 f< ¢r2 >

FIGURE 12-26 Current distribution along a dipole antenna.

The normalized magnitudes of the se currents are shown plotted in
Figure 12-26. It is apparent that the two distributions are almost identical
in shape, and they resemble that of the ideal sinusoidal current dis-
tribution which is more valid for very thin wires and very small gaps.
The distributions obtained using Pocklington’s integral equation do not
vanish at the ends because of the use of piecewise constant subdomain basis
functions.

The input impedances computed using both the delta gap and the magnetic
frill generator are shown listed in Table 12-2. It is evident that the values
begin to stabilize and compare favorably to each other once 61 or more
segments are used.

COMPUTER CODES

With the advent of the computer there has been a proliferation of computer
program dcvelopment. Many of these programs are based on algorithms that are

suitable

for efficient computer programming for the analysis and synthesis of
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electromagnetic boundary-value problems. Some of these COMPULET Programs are
very sophisticated and can be used to solve complex radiation and scattering
problems. Others are much simpler and have limited applications. Many programs
are public domain; others are restricted.

Five computer programs based on integral equation formulations and moment
method solutions will be described here. The first computes the radiation or
scattering by a two-dimensional perfectly electric conducting (PEC) body. It is
referred to here as TDRS (two-dimensional radiation and scattering), and it is based
on the two-dimensional formulations of the electric field integral equation (EFIE) of
Section 12.3.1. It can be used for both electric and magnetic line-source excitation
or TM? and TE? plane wave incidence. The listing of this program is included in the
solutions manual available to the instructors. It can also be obtained from the
author. The second program, referred to here as PWRS (Pocklington’s wire radia-
tion and scattering) is based on Pocklington’s integral equation of Section 12.4.1,
and it is used for both radiation and scattering by a perfect electric conducting
(PEC) wire. The listing of this program is found at the end of this chapter.

The remaining three programs are more general, public domain moment
method programs. A very brief description of these programs is given here. Informa-
tion as to where these programs can be obtained is also included. It should be
stated, however, that there are numerous other codes, public domain and restricted,
that utilize moment method and other techniques, such as geometrical optics,
geometrical theory of diffraction, physical optics, and physical theory of diffraction,
which are too numerous to mention here.

Two-Dimensional Radiation and Scattering

The two-dimensional radiation and scattering (TDRS) program is used to analyze
four different two-dimensional perfectly electric conducting problems: the strip, and
the circular, elliptical, and rectangular cylinders. The algorithm is based on the
electric field integral equation of Section 12.3.1, and it is used for both electric and
magnetic line-sourcc cxcitation, or plane wave incidence of arbitrary polarization.
For simplicity, piecewise constant pulse expansion functions and point-matching
techniques have been adopted. The listing of this program is included in the
solutions manual available to the instructors. It can also be obtained from the
author.

A. STRIP

For the strip problem, the program can analyze either of the following:

L. A line source (electric or magnetic). It computes the electric current density over
the width of the strip and the normalized radiation amplitude pattern (in
decibels) for 0° < ¢ < 360°. The user must specify the width of the strip (in
wavelengths), the type of line source (either electric or magnetic), and the
location x,, y, of the source (in wavelengths).

2. Planc wave incidence of arbitrary polarization. The program can analyze either
monostatic or bistatic scattering.

For monostatic scattering the program computes the two-dimensional normal-
ized (with respect to A) monostatic SW 0,.p/A (in decibels) for all angles of
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incidence (0° < ¢ < 360°). The program starts at ¢ = 0° and then completes the
entire 360° monostatic scattering pattern. The user must specify the width w of the
strip (in wavelengths) and the polarization angle 6, (in degrees) of the incident
plane wave. The polarization of the incident wave is spec1ﬁed by the direction 6, of
the incident electric field relative to the z axis (6, = 0° implies TM*; 6, = 90°
implies TE?; otherwise arbitrary polarlzatlon) The polarlzatlon angle 6, necds to be
specified only when the polarization is neither TM? nor TE>.

For bistatic scattering, the program computes for the specified incidence angle
the current density over the width of the strip and the two-dimensional normalized
(with respect to A) bistatic SW o, ,/A (in decibels) for all angles of observation
(0° < ¢, < 360°). The user must specify the width w of the strip (in wavelengths),
the angle of incidence ¢, (in degrees), and the polarization angle 0, (in degrees) of
the incident plane wave. The polarization angle of the incident wave is specified in
the same manner as for the monostatic case.

B. CIRCULAR, ELLIPTICAL, OR RECTANGULAR CYLINDER

For the cylinder program, the program can analyze either a line source (electric or
magnetic) or plane wave scattcring of arbitrary polarization by a (wo-dimensional
circular, or elliptical or rectangular cylinder.

1. For the line source excitation, the program computes the current distribution
over the entire surface of the cylinder and the normalized radiation amplitude
pattern (in decibels). The user must specify for each cylinder the type of line
source (electric or magnetic), the location x,, y, of the line source, and the size of
the cylinder. For the circular cylinder the size is specified by its radius a (in
wavelengths) and for the elliptical and rectangular cylinders by the principal
semiaxes lengths a and b (in wavelengths), with a measured along the x axis and
b along the y axis.

2. For the plane wave incidence the program computes monostatic or bistatic
scattering of arbitrary polarization by a circular, elliptical, or rectangular cylin-
der.

For monostatic scattering the program computes the two-dimensional normal-
ized (with respect to A) monostatic SW o, /A (in decibels) for all angles of
incidence (0° < ¢ < 360°). The program starts at ¢ = 0° and then oomputes the
entire 360° monostatic scattering pattern. The user must specify the size of the
cylinder, as was done for the line-source excitation, and the polarization angle 6, (in
degrees) of the incident plane wave. The polarization of the incident wave is
specified by the direction 6, of the incident electric field relative to the z axis
(6, = 0° implies TM?; 0, = 90° implies TE?; otherwise arbitrary polarization). The
polanzatlon angle 6, needs to be specified only when the polarization is neither
TM? nor TE-

For bistatic scattering, the program computes for the specified incidence angle
the current density over the entire surface of the cylinder and the two-dimensional
normalized (with respect to A) bistatic SW o, ,/A (in decibels) for all angles of
observation (0° < ¢, < 360°). The user must specify the size of the cylinder, as was
done for the line-source excitation, the incidence angle ¢, (in degrees), and the
polarization angle 0, (in degrees) of the incident plane wave. The polarization angle
of the incident wave is specified in the same manner as for the monostatic case.
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Pocklington’s wire radiation and scattering (PWRS) program computes the radia-
tion characteristics of a center-fed wire antenna and the scattering characteristics of
a perfectly electric conducting (PEC) wire, each of radius a and length ¢. Both are
based on Pocklington’s integral equation 12-123.

A. RADIATION

For the wire antenna of Figure 12-25 the excitation is modeled by either a delta gap
or a magnetic frill feed modeling, and it computes the current distribution, normal-
ized amplitude radiation pattern, and the input impedance. The user must specify
the length of the wire, its radius (both in wavelengths), and the type of feed
modeling (delta gap or magnetic frill). A computer program based on Hallén’s
integral equation can be found at the end of Chapter 7 of [24].

B. SCATTERING

The geometry for the plane wave scattering by the wire is shown in Figure 12-23(a).
The program computes the monostatic or bistatic scattering of arbitrary polariza
tion.

For monostatic scattering the program computes the normalized (with respect
to m?) RCS o, ,/m? (in dBsm) for all angles of incidence (0° < 0, < 180°). The
program starts at 6, = 0° and then computes the entire 180° monostatic scattering
pattern. The user must specify the length and radius of the wire (both in wave-
lengths) and the polarization angle 0, (in degrees) of the incident plane wave. The
polarization of the incident wave is specified by the direction 6, of the incident
electric field relative to the plane of incidence, where the plane of incidence is
defined as the plane that contains the vector of the incident wave and the wire
scatterer (§ = 0° implies that the electric field is on the plane of incidence; § = 90°
implies that the electric field is perpendicular to the plane of incidence and to the
wire; thus no scattering occurs for this case).

For bistatic scattering, the program computes for the specified incidence angle
the current distribution over the length of the wire and the normalized (with respect
to m?) bistatic RCS 0,1, /m? (in dRsm) for all angles of observation (0° < 6, < 180°).
The user must specify the length and radius of the wire (both in wavelengths), the
angle of incidence 6, (in degrees), and the polarization angle 6, of the incident plane
wave. The polarization angle is specified in the same manner as for the monostatic
case.

Numerical Electromagnetics Code

The numerical electromagnetics code (NEC) [38] is a user-oriented program devel-
oped at Lawrence Livermore Laboratory. It is a moment method code for analyzing
the interaction of electromagnetic waves with arbitrary structures consisting of
conducting wires and surfaces. It combines an integral equation for smooth surfaces
with one for wires to provide convenient and accurate modeling for a wide range of
applications. The code can model nonradiating networks and transmission lines,
perfect and imperfect conductors, lumped element loading, and perfect and imper-
fect conducting ground planes. It uses the electric field integral equation (EFIE) for
thin wires and the magnetic field integral equation (MF IE) for surfaces. The
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excitation can be either an applied voltage source or an incident planc wave. The
program computes induced currents and charges, near- or far-zone electric and
magnetic fields, radar cross section, impedances or admittances, gain and directivity,
power budget, and antenna to antenna coupling.

Information concerning the code and its availability can be directed to:

Professor Richard W. Adler
Naval Postgraduate School

Code 62 AB

Monterey, California 93943

Mini-Numerical Electromagnetics Code

The mini-numerical electromagnetics code (MININEC) [39, 40] is a user-oriented
compact version of NEC developed at the Naval Ocean Systems Center. It is also a
moments method code, but coded in BASIC, and has retained the most frequently
used options of NEC. It is intended to be used in mini, micro, and personal
computers, and it is most convenient to analyze wire antennas. It computes currents,
and near- and far-field patterns. It also optimizes the feed excitation voltages that
yield a desired radiation patterns.

Information concerning the MININEC and its availability can be directed to:

Professor Richard W. Adler
Naval Postgraduate School
Code 62 AB

Monterey, California 93943

or

Artech House, Inc.
685 Canton Street
Norwood, Massachusetts 02062

Electromagnetic Surface Patch Code

The electromagnetic surface patch (ESP) [41] code is a user-oriented program
developed at the ElectroScience Laboratory at Ohio State University. It is a moment
method, surface patch code based on the piecewise sinusoidal reaction formulation,
which is basically equivalent to the electric field integral equation (EFIE). It can
treat (perfectly conducting or thin dielectric) geometries that consist of thin wires,
rectangular or polygonal plates, wire-plate or plate-plate attachments, and open or
closed surfaces. The excitation can be either by a delta gap voltage generator or an
incident plane wave. The program computes current distribution, input impedance,
radiation efficiency, mutual coupling, near- or far-field gain patterns, and near- or
far-field radar cross section patterns. ESP also incorporates an efficient impedance
matrix interpolation scheme for obtaining data over a wide frequency bandwidth
[42].
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Information concerning the codc and its availability can be directed 10

Dr. Edward H. Newman
The Ohio State University
ElectroScience Laboratory
1320 Kinnear Road
Columbus, Ohio 43212
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PROBLEMS

12.1.

12.2.

12.3.
12.4.

12.5.
12.6.

A circular loop of radius a = 0.2 m is constructed out of a wire of radius p = 103
m, as shown in Figure P12-1. The entire loop is maintained at a constant potential
of 1 V. Using integral equation techniques, determine and plot for 0° < ¢ < 360°
the surface charge density on the wire. Assume that at any given angle the charge is
uniformly distributed along the circumference of the wire.

z }K
0 r
//-“\\ =
a
26 ff N
T >
N/ y
N\ 74
s— _ |
x N FIGURE PiZ-1
Repeat Problem 12.1 when the loop is split into two parts; onc part (from 0 to 180°)

is maintained at a constant potential of 1 V and the other part (from 180 to 360°) is
maintained at a constant potential of 2 V.

Repeat Example 12.3 for a strip with w = 2, A = 0.25A, and ¢ = 0.01A.

An infinite electric line source of constant current 1, is placed next to a circular
conducting cylinder of radius a, as shown in Figure P12-4. The line source is
positioned a distance b (b > a) from the center of the cylinder. Use the EFIE,
piecewise constant subdomain basis functions, and point-matching techniques.

(a) Formulate the problem current density induced on the surface of the cylinder.

(b) Compute the induced current density when a = 5\ and b = 5.25\. Assume a
unity line-source current. Compare with the modal solution current density of
(11-168a).

(c) Compute for part b the normalized far-zone amplitude pattern (in decibels).
Normalize so that the maximum is 0 dB.

FIGURE P12-4

Repeat Problem 12.4 for a = 5A and b = 5.5A.

An infinite electric line source of constant current I, is placed next to a rectangular
cylinder of dimensions a and b, as shown in the Figure P12-6. The line source is
positioned a distance ¢ (¢ > a) from the center of the cylinder along the x axis. Use
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12.7.

12.8.

"__2“‘—" FIGURE P12-6

the EFIE and piecewise subdomain basis functions and point-matching techniques,
and do the following.

(a) Compute the induced current on the surface of the cylinder when a = 5),
b =125, and ¢ = 5.25\. Assume a unity line-source current.

(b) Compute for part a the normalized far-zone amplitude pattern (in decibels).
Normalize so that the maximum is 0 dB.

Repeat Problem 12.6 for an electric line source near an elliptic cylinder with
a =5\, b=25\, and ¢ = 5.25\.

}‘—— c"‘ FIGURE P12-7

A TM? uniform plane wave traveling in the +x direction is normally incident upon
a conducting circular cylinder of radius a, as shown in Figure P12-8. Use the EFIE,
piecewise constant subdomain basis functions, and point-matching techniques, write
your own program, and do the following.

(a) Plot the current density induced on the surface of the cylinder when a = 2.
Assume the incident field is of unity amplitude. Compare with the modal
solution current density of (11-97).

(b) Plot the normalized o, /A bistatic scattering width (in decibels) for 0° < ¢ <
360° when a = 2A. Compare with the modal solution of (11-102).

FIGURE P12-8
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12.9. A TM? uniform plane wave traveling in the + x direction is normally incident upon
a conducting rectangular cylinder of dimensions a and b, as shown in Figure P12-9.
Use the EFIE, piecewise constant subdomain basis functions and point-matching
techniques, write your own program, and do the following.

(a) Compute the induced current density on the surface of the cylinder when
= 5A and b = 2.5A. Assume a unity line-source current.
(b) Compute and plot for part a the (wo-dimensional normalized o, /A bistatic
scattering width (in decibels) for 0° < ¢ < 360°.

FIGURE P12-9

12.10. Repeat Problem 12.9 for a TM? uniform plane wave impinging upon an elliptic
conducting cylinder with @ = 5A and b = 2.5\,

FIGURE P12-10

12.11. Using the geometry of Figure 12-14 verify (12-71a) and (12-71b), and that (12-70a)
reduces to (12-72a) and (12-70b) to (12-72b).

12.12. Show that the integral of (12-78d) can be evaluated using (12-79a) through (12-79¢).

12.13. Repeat Problem 12.4 for a magnetic line source of constant current I, = 1 when
a = b = 5. This problem is representative of a very thin axial slot on the surface of
the cylinder. Compare the current density on the surface of the cylinder from part b
with that of the modal solution of (11-177a).

12.14. Repeat Problem 12.6 for a magnetic line source of constant current I,, = 1 when

a = 5\, b =25\, and ¢ = 5A. This problem is representative of a very thin axial
slot on the surface of the cylinder.

12.15. Repeat Problem 12.7 for a magnetic line source of constant current I,, = 1 when
a =5\, b= 25X, and ¢ = 5A. This problem is representative of a very thin axial
slot on the surface of the cylinder.

12.16. Repeat Problem 12.8 for a TE® uniform plane wave of unity amplitude. Compare
the current density with the modal solution of (11-113) and the normalized o, ,/A
bistatic scattering width with the modal solution of (11-117).



736 INTEGRAL EQUATIONS AND THE MOMENT METHOD

12.17.
12.18.
12.19.

12.20.
12.21.

12.22.

12.23.
12.24.

12.25.

12.26.

12.27.
12.28.

12.29.

12.30.

12.31.

Repeat Problem 12.9 for a TE? uniform plane wave at unity amplitude.
Repeat Problem 12.10 for a TE? uniform plane wave of unity amplitude.
Using the geometry of Figure 12-17 show that

i+ VHS(BR) = B cos yHP(BR)
Repeat Problem 12.4 using the MFIE.

Repeat Problem 12.8 using the MFIE. You must write your own computer program
to solve this problem.

Using the geometry of Figure 12-18 show that
A« VH{P(BR) = — B cos y'HP(BR)
Repeat Problem 12.13 using the MFIE. 7
Derive Pocklington’s integral equation 12-123 using (12-121) and (12-122).

Derive the solution of (12-125) to the differential equation of (12-124a). Show that
Hallén’s integral equation can be written as (12-126).

Show that the incident tangential electric field (E]) generated on the surface of a
wire of radius a by a magnetic field generator of (12-129) is given by (12-130).

Reduce (12-130) to (12-131) valid only along the z axis (p = 0).

For the center-fed dipole of Example 12-7, write the [Z] matrix for N = 21 using
for the gap the delta-gap generator and the magnetic frill generator.

For an infinitesimal center fed dipole of Z= A /50 of radius a = 0.005\ derive the
input impedance using Pocklington’s integral equation with piecewise constant
subdomain basis functions and point matching. Use N = 21 and model the gap asa
delta-gap generator and as a magnetic-frill generator. Use the PWRS computer
program at the end of the chapter.

A conducting wire of length ¢= 0.47\ and radius a = 0.005\ is placed symmetri-
cally along the z axis. Assuming a TM* uniform plane wave is incident on the wire
at an angle 6, = 30° from the z axis, do the following.

(a) Compute and plot the current induced on the surface of the wire.
(b) Compute and plot the bistatic RCS for 0° < 6, < 180°.
(c) Compute and plot the monostatic RCS for 0° < 0.=6, <180°.

The amplitude of the incident electric field is 103 V/m. Use Pocklington’s
integral equation and the PWRS computer program. Determine the number of
segments that lead to a stable solution.

Repeat Problem 12.30 for a TE? uniform planc wave incidence.
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COMPUTER PROGRAM PWRS
Ctttttt““.t“t‘.‘tt“‘.tt‘t..tt‘t‘t‘tOtoltttttttttt‘ttttttt‘ttl.ttt“‘
THIS PROGRAM USES POCKLINGTON'S INTEGRAL EQUATIONS OF ( 12 — 123 )«
ON A SYMMETRICAL DIPOLE, AND IT COMPUTES THE CURRENT DISTRIBTUION,
INPUT IMPEDANCE, NORMALIZED AMPLITUDE RADIATION PATTERN, AND
SCATTERING PATTERNS

-

GEOMETRY

HL — HALF OF THE DIPOLE LENGTH (IN WAVELENGTHS)

RA  — RADIUS OF THE WIRE (IN WAVELENGTHS)

NM — TOTAL NUMBER OF SUBSECTIONS (MUST BE AN ODD INTEGER)

I0PT— OPTIONS TO USE POCKLINGTON'S FORMULATION OF ( 12 — 123 )
TO SOLVE THE WIRE ANTENNA PROBLEM OR THE WIRE SCATTERER PROBLEM.

I0PT=1 : ANTENNA PROBLEM
IOPT=2 : WIRE SCATTERING PROBLEM
ss» IGNORE OPTION ISCAT WHEN IOPT=1 sss
‘ ISCAT=1, MONOSTATIC RADAR CROSS SECTON
1SCAT=2, BISTATIC RADAR CROSS SECTION
NEEDS TO SPECIFY INCIDENT ANGLE
IEX — OPTION TO USE EITHER MAGNETIC-FRILL GENERATOR OR DELTA GAP
eex IGNORE OPTION IEX WHEN I0PT=2 ssx
IEX =1 : MACNETIC-FRILL GENERATOR
IEX =2 : DELTA GAP

s+s IGNORE POLRD, AND THETD WHEN IOPT=1 s«

POLRD— ELECTRIC FIELD POLARIZATION RELATIVE TO THE PLANE OF
INCIDENCE, WHICH IS DEFINED AS THE PLANE CONTAINING THE
INCIDENT WAVE VECTOR AND THE WIRE SCATTERER. REFER TO
FIGURE 12 — 23(A) FOR THE SCATTERER’S GEOMETRY(IN DEGREES).

THETD— THE INCIDENT ANGLE RELATIVE TO THE Z-AXIS (IN DEGREES).

s++ THETD IS NEEDED FOR BISTATIC CASE ONLY s¢»

THIS PROGRAM USES PULSE EXPANSION FOR THE ELECTRIC CURRENT MODE
AND POINT-MATCHING THE ELECTRIC FIELD AT THE CENTER OF EACH
WIRE SEGMENT.

(s Xsir o NeNe Ko N oo o Xo N ool oo e N o e s o N e Yo N e Yo X ot o N o X o N e H o N o N o R o Ko N ol o]

L R SR I NEE R JEE JEE JEE NEE NEE JEE BN JEE IR K R Y BN B BEE JEE SRR IR R N R EE B EE R NN R R N 2

c‘...‘.“‘.‘.‘l“‘.‘.“"."“.“.“"...““..‘..‘l‘.““‘...“'t."“
C EXAMPLE A: HOW TO SPECIFY THE NUMBER OF SUBSECTIONS OF THE ANTENNA
c OR SCATTERER. NM=21 FOR THIS EXAMPLE.

PARAMETER  ( NM=21, NMT=2+NM-1 )

COMMON/STZE/HL,RA,DZ,ZM,ZN, NMH

COMMON/CONST/BETA ,ETA ,RAD ., J

COMPLEX ZMN(NMT) ,WA(NMT) ,CGA(NM) . ZIN,J,CRT

DIMENSION INDEX(NM),ETMM(181)

EXTERNAL CGP

DATA POLRD, THETD, ISCAT/0.0,0.0,0/

EXAMPLE E: HOW TO SPECIFY THE BISTATIC SCATTERING PROBLEM
’ AT A POLARIZATION ANGLE OF 45 DEGREES,
AND AN INCIDENT ANGLE OF 60 DEGREES
10PT=2
ISCAT=2

C EXAMPLE B: HOW TO SPECIFY THE ANTENNA PROBLEM USING MAGNETIC FRILL
c I0PT=1

C TEX=1

C EXAMPLE C: HOW TO SPECIFY THE ANTENNA PROBLEM USING DELTA GAP
C I0PT=1

C TEX=2

C EXAMPLE D: HOW TO SPECIFY THE MONOSTATIC SCATTERING PROBLEM
(4 AT A POLARIZATION ANGLE OF 45 DEGREES

C I0PT=2

C ISCAT=1

C POLRD=45. @

c

c

C

C

Cc
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POLRD=45. 9
THETD=60.0
THE PRESET EXAMPLE HERE IS THE WIRE ANTENNA PROBLEM OF MAGNETIC
FRILL GENERATOR MODEL
10PT=i
1EX=1
. GEOMETRY DATA
. EXAMPLE: DIPOLE HALF LENGTH OF ©.235 WAVELENGTHS
. AND WIRE RADIUS OF ©.005 WAVELENGTHS.
HL=.235
RA=.005
. SOME CONSTANTS
PI=3.14159265
RAD =P1/180.
BETA=2.0+PI
ETA =120. «P]
NMH=0 . 5+ (NM+1)
J=CMPLX(0.,1.)
DZ=2 . eHL/NMt
IF(IOPT.EQ.1) THEN
WRITE(6,50) HL,RA
lF(IEX.EQ.1g WRITE§6,100)
1IF(TEX.FQ.2) WRITE(6.102)
ELSE
WRITE(6,52) HL,RA
ENDIF
WRITE(6.54) NM
. THE IMPEDANCE MATRIX HAS A TOEPLITZ PROPERTY, THEREFORE ONLY
. NM ELEMENTS NEED TO BE COMPUTED, AND THE MATRIX IS FILLED IN

0000 0000

o

000

ZM=HL-0 .5+DZ

B=0.5+D2

A=—0 .5¢DZ

DO 4 I=1,\M
IN=HL—-(1-0.5)+DZ
CALL CSINT(CGP,A,B,79,CRT)
ZMN( I)=CRT
IF(1.£Q.1) GOTO 4
ZMN (NM+1-1)=CRT

4  CONTINUE

IF(IOPT.EQ.2.AND.ISCAT.EQ.1) GOTO 6@

IF(IOPT.EQ.1) THEN
RB=2.3sRA
TLAB=2.¢ALOG(2.3)
DO 10 I=1,NM
ZI=HL-(1-0.5)+«DZ
R1=BETA«SQRT(ZI+ZI+RA¢RA)
R2=BETA+SQRT(ZI1+Z1+RBsRB)
IF(IEX.EQ.1) THEN

. A FORM THAT CAN BE SOLVED BY A TOEPLITZ MATRIX SOLVING SUBROUTINE

CGA(1)=—J+BETAs+2/(ETAsTLAB) * (CEXP(-J*R1)/R1—CEXP(—J#R2)/R2)

ELSE
IF(1EX.NE.2) WRITE(6,999)

IF(1.NE.NMH) THEN

CGA(1)=0.

ELSE
CGA(1)=-J+BETA/(ETADZ)
ENDIF

ENDIF
10 CONTINUE
CALL TSLZ(ZMN,CGA,WA,NM)

C.. OUTPUT THE CURRENT DISTRIBUTION ALONG OF THE DIPOLE
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WRITE(6,104)
DO 12 I=1,NWH
XT=HL—(1-.5)eDZ
YI=CABS(CGA(1))
WRITE(6,106)1, XI,CGA(I),YI
12 CONTINUE
C.. COMPUTATION OF THE INPUT IMPEDANCE
ZIN=1./CGA(NMH)
WRITE(6,108) ZIN
C.. COMPUTATION OF AMPLITUDE RADIATION PATTERN OF THE ANTENNA
CALL PATN(CGA,NM,ETMM, IOPT)
WRITE(6,110)
DO 14 I=1,181
XI=I1-1.
14 WRITE(6,112) XI,ETMM(I)
ELSE
C.. WIRE SCATTERER PROBLEM, BISTATIC CASE
IF(I0PT.NE.2) WRITE(S,999)
IF(ISCAT.NE.2) WRITE(6,999)
CTH=COS§THETD¢RAD)
STH=SIN( THETD*RAD)
CSPL=COS (POLRD+RAD)
DO 15 I=1,NM
ZI=HL~ (1-0.5)¢DZ
15  CGA(I1)=—J+BETA/ETAsCSPL#STH¢CEXP(J+BETA*ZI+CTH)
C.. NOW SOLVE FOR THE CURRENT DISTRIBUTION
CALL TSLZ(ZMN,CGA,WA,NM)
C.. COMPUTE THE PATTERN
WRITE(6.126;
WRITE(6,122) THETD,POLRD
DO 20 I=1,NM
XI=HL-(I-0.5)«DZ
Y1=CABS(CGA(1))
WRITE(6,124) XI,CGA(I),YI
2@  CONTINUE
C.. COMPUTATION OF BISTATIC RCS PATTERNS
CALL PATN(CGA,NM,ETMM, IOPT)
WRITE(S, 126)
DO 4@ I=1,181
XI=I-1.
WRITE(6,128) XI,ETMM(I)
40  CONTINUE
ENDIF
GOTO 200
C.. THE MONOSTATIC CASE
60 WRITE(6,140Q)
DO 7@ M=1,91
THETA=(M-1.) *RAD
CTH-COS(THETA;
STH=SIN(THETA
CSPL=COS (POLRD*RAD )
DO 62 I=1,NM
ZI=HL-(1-0.5)DZ
62 CGA(I)=—J+BETA/ETA*CSPLeSTH+CEXP(J+BETA+ZI+CTH)
CALL TSLZ(ZMN,CGA,WA ,NM)
IF(ABS(CTH).LE.1.E-3) THEN
FT=1.
ELSE
FT=SIN(BETA+DZ*CTH=.5)/(BETA+DZ+CTHs+.5)
ENDIF ,
CRT=0.
DO 64 I=1,NM
ZI=HL—(I-.5)+DZ
CRT=CRT4CEXP (J+BETA+ZI+CTH) «FT+CGA(1)+DZ
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CONTINVE

PTT=CABS(CRT)+STHeSTH+ETA+0@.5

PTT=PTT+PTT+BETA2.

IF(PTT.LE.1.E-10) PTT=1.E-10

PTT=10.+ALOG10(PTT)

ETMM(M)=PTT

ETMM(182-M)=PTT

WRITE(6,142) POLRD

WRITE(6, 144)

00 72 I=1,181

XI=I-1

WRITE(6,146) XI,ETMM(I)

FORMAT (15X, "WIRE ANTENNA PROBLEM'//SX, LENGTH = 2 X *,F6.4,
+' (WLS)®, 4X,’RADIUS OF THE WIRE=',F6.4,* (WLS) */)

FORMAT (15X, "WIRE SCATTERER PROBLEM'//SX,'LENGTH = 2 X ',F6.4,
+' (WLS)', 4X,'RADIUS OF THE WIRE=",F6.4,' (WLS) */)

FORMAT (15X, *'NUMBER OF SUBSECTIONS = *, 13/)

FORMAT (5X, 'POCKLINGTON’*S EQUATION AND MAGNETIC FRILL MODEL'/)

FORMAT (5X, *POCKLINGTON" *S EQUATION AND DELTA GAP MODEL'/)

FORMAT (10X, *CURRENT DISTRIBUTION ALONG ONE HALF OF THE DIPOLE’/
48X, "POSITION Z°,3X, "REAL PART’,3X, ' IMAGINARY °,3X, "MAGNITUDE'/)

FORMAT (3X, 13,4X,F6.4,5X,F9.6,3X,F9.6,3X,F9.6)

FORMAT (/3X, * INPUT IMPEDANCE = °,F7.1,°+ J°,F7.1,° (OHMS)")

FORMAT (/3X, "RADIATION POWER PATTERN VS OBSERVATION ANGLE THETA®//
43X, 'THETA (IN DEGREES)’,2X,’POWER (IN DB)')

FORMAT (8X,F6.1,8X,F8.2)

FORMAT (4X, 'BISTATIC WIRE SCATTERER PROBLEM WITH POCKLINGTON®°'S*,
+' EQUATION'//)

FORMAT (8X, ' INCIDENT ANGLE=',F5.1,°' DEGREES, POLARIZATION=',F5.1,
+' DEGREEES’//1@X, CURRENT DISTRIBUTION ALONG THE DIPOLE'//
+8X,"POSITION Z*,3X, 'REAL PART’,3X, ' IMAGINARY ’,3X, ‘MAGNITUDE'/)

FORMAT (10X ,F6.4,5X,F9.6,3X,F9.6,3X,F9.6)

FORMAT (/4X, *BISTATIC RADAR CROSS SECTION PATTERN VS OBSERVATION®,
+' ANGLE THETA *//8X, *THETA(IN DEGREES) *,2X,’RCS (IN DBSM)’)

FORMAT (12X, F6.1,8X,F10.2)

FORMAT (4X, "MONOSTATIC WIRE SCATTERER PROBLEM WITH POCKLINGTON''S’,
+' EQUATION'/)

FORMAT (4X, ' THE POLARIZATION TO THE PLANE OF INCIDENCE = °,F5.1,
+* DEGREES */)

FORMAT (14X, * THE MONOSTATIC RADAR CROSS SECTION PATTERN®
+//10X,’ INCIDENT ANGLE (THETA)',5X,’ RCS IN (DBSM)')

FORMAT (20X ,F7.2,15X,F10.2)

FORMAT (5X, ' ++++++WARNING: NO SUCH OPTION. CHOOSE A VALID OPTION’/
+20X, 'AND TRY AGAIN.')

sToP

END

COMPLEX FUNCTION CGP(Z)

. POCKLINGTON’S KERNEL

COMMON/SIZE/HL ,RA,DZ,ZM, ZN,NMH

COMMON/CONST/BETA ,ETA,RAD, J

COMPLEX J

Z1=2N~-IM +Z

R=SQRT(RAsRA+Z1+Z1)

COP=CEXP(—J+BETA+R) + ((1.4J+BETA«R) « (2. +R+R-3.+RA«RA)+
+(BETAsRA*R)++2)/(2.+BETA*R#+%5)

RETURN

END

SUBROUTINE PATN(CGA,NM,ETMM, IOPT)

. THE SUBROUTINE TO COMPUTE THE RADIATION PATTERN

COMMON/SIZE/HL,RA,DZ ,ZM, ZN, NMH
COMMON/CONST /BETA, ETA,RAD, J
COMPLEX CGA(NM),J,CRT
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DIMENSION ETMM(181)
DO 4 I=1,181
THETA=(I-1.)*RAD
CTH=COS (THETA)
STH=SIN(THETA)
IF(ABS(CTH) .LE.1.E~3) THEN
FT=1.
ELSE
FT=SIN(BETA*DZsCTH+.5)/(BETAsDZsCTHs. 5)
ENDIF
CRT=0.
DO 2 M=1,NM
ZM=HL—(M~.5) «DZ
CRT=CRT4CEXP(J+BETA*ZM+CTH) «FT«CGA(M)+DZ
2 CONTINUE
PTT=CABS(CRT) +STHe¢STH+ETA#0.5
4 ETMM(I)=PTT
IF(IOPT.EQ.1§ THEN
AMAX=ETMM( 1
D0 6 I=2,181 .
1F(ETMM(T) .GT.AMAX) AMAX=ETMM(I)
6 CONTINUE
DO 8 I=1,181
PTT=ETMM( 1) /AMAX
IF(PTT.LE. 1. €-5) PTT=1.E-5
8  ETMM(1)=20.+ALOG10(PTT)
ELSE
DO 10 I=1,181
PTT=ETMM(I)*+2«BETAs2.
IF(PTT.LT.1 .E-10) PTT=1.E-10
10 ETMM(I)=10.+ALOG1@(PTT)

ENDIF
RETURN
END :
c“““.“.t"t‘t.tttlt#‘c‘totttoto0‘00000‘0400#!v#v..l'l.'.‘.‘.“"“‘.
c SUBROUTINE TSLZ NETLIB
c INPUT:
Cc (C)A(2+eM - 1) THE FIRST ROW OF THE T-MATRIX FOLLOWED BY
Cc ITS FIRST COLUMN BEGINNING WITH THE SECOUND
c ELEMENT. ON RETURN A IS UNALTERED.
C C)B(M) THE RIGHT HAND SIDE VECTOR B.
C)WA(2eM-2) A WORK AREA VECTOR
IMm ORDER OF MATRIX A.

c
c
c OUTPUT:
c (C)B(M) THE SOLUTION VECTOR.
C PURPOSE :
c SOLVE A SYSTEM OF EQUATIONS DESCRIBED BY A TOEPLITZ MATRIX.
Cc As X=8
c SUBROUTINES AND FUNCTIONS:
c TOEPLITZ PACKAGE ... TSLZ1
C“tt.“.“..tt.tt“t‘t.tt‘t‘t‘t.t‘tt‘ttt.‘tttt‘tttttt“‘t‘t‘.'ll.t.!‘t#
SUBROUTINE TSLZ(A,B,WA,M)
INTEGER M
COMPLEX A(2+M-1),B(M),WA(2eM-2)
CALL TSLZ1(A.A(M+1).8,B, WA WA(M-1),M)
RETURN
END

SUBROUTINE TSLZ1(A1,A2,B,X,C1,C2,M)

INTEGER M

COMPLEX A1(M),A2(M-1),B(M),X(M),C1(M=1),C2(M-1)
INTEGER 11,12,N,N1,N2

COMPLEX R1.R2.R3.RS,R6

R1 = A1(1)
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X(1) = B(1)/R1
IF (M .EQ. 1) GO TO 80
DO79N=2, M
N1 N -1
N2 N -2
RS A2(N1)
R6 = A1(N)
IF (N .EQ. 2) GO TO 20
C1(N1) = R2
DO 190 11 = 1, N2
12 =N - I1
R5 = R5 + A2(11)+C1(12)
R6 = R6 + A1(114+1)«C2(11)
10 CONTINUE
20 CONT INUE
R2 = —-RS/R1
R3 = -R6/R1
R1 = R1 4+ RS5+R3
IF (N .EQ. 2) GO TO 40
R6 = C2(1
C2(N1) = (0.000,0.000)
DO 30 11 = 2, N1
RS = C2(I1)
02511) = 01§I1§0R3 + R6
C1(I1) = C1(I1) + R6+R2
R6 = R5
30 CONTINUE
40 CONT INUE
C2(1) = R3
RS = (0.900.6.000)
DO S@ I1 = 1, N1t
I2=N-I1
R5 = RS + A2(11)+X(12)
50 CONT INUE
R6 = (B(N) - R5)/R1
DO 60 I1 = 1, N1
X(I1) = X(I1) + C2(I1)*R6
60 CONT INUE
X(N) = R6
70 CONTINUE
80 CONTINUE
RETURN
END

Nz

C..
SUBROUT INE CSINT(CF,XL,XU,N,CRT)
C.. FAST ALGORITHM FORM OF THE SIMPSON’'S INTEGRAL ROUTINE
IMPLICIT COMPLEX (C)
CRT=CF(XL§+CF(XU)
HO=(XU=-XL)/(N+1)
DO 20 I=1,N
XI=XL+]*HD
IF(MOD(1,2).NE.@) THEN
CRT=CRT+4.sCF(X1)
ELSE
CRT=CRT+2.«CF(X1])
ENDIF
20 CONTINUE
CRT=CRT+HD»*@. 33333333
RETURN
END



