
Chapter 4

Solution of Integral Equations
for Wire Radiators and
Scatterers

4.1 Formulation

Let us consider a wire of length 2` and radius a (` À a), as shown in Fig. 4.14.1.
The wire is excited by an incident field Ei and we are interested in computing
the current generated on the wire due to this excitation. Upon determination
of the current we can then compute the radiated field in the usual manner.

To solve for the wire surface currents, we must enforce the boundary condi-
tion demanding that the total tangential electric field vanishes on the surface
of the perfectly conducting wire. That is,

Etot
z = Ei

z + Er
z = 0 (4.1)

where Er
z is the field radiated by the wire surface current density J(φ, z) =

ẑJz(φ, z) + φ̂Jφ(φ, z). However, on the assumption of a very thin wire, i.e.
koa ¿ 1, where ko = 2π/λo is the free space wavenumber, Jφ(φ, z) will either
be negligible or not effect the radiated field. Thus, from (2.52a2.52a), (2.109c
2.109c) or (2.102a 2.102a) in conjunction with (2.101 2.101) we may express
the wire radiated field as

Er(ρ, φ, z) = −jkoZoẑ

∫ `

−`

∫ 2π

0

Jz(φ
′, z′)

(
1 +

1

k2
o

∂2

∂z2

)
e−jkoR

4πR
adφ′dz′ (4.2)
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Figure 4.1: Cylindrical wire geometry.
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in which Zo = 1/Yo denotes the free space intrinsic impedance and

R = |r− r′| =
√

ρ2 + a2 − 2ρa cos(φ− φ′) + (z − z′)2 (4.3)

since r = ρρ̂+zẑ and r′ = aρ̂′+z′ẑ. This expression can be further simplified by
assuming that Jz(φ, z) is symmetric with respect to φ, a reasonable assumption
since the wire is very thin and is typically part of a transmission line fed
by a voltage source at its center. The surface current Jz(φ, z) can then be
equivalently replaced by a filamentary line current I(z) placed at the center of
the tubular conductor. For the two currents to generate the same field when
ρ À a, it is necessary that they satisfy the relation

I(z) =

∫ 2π

0

Jz(φ, z)adφ = 2πaJz(z). (4.4)

Introducing this into (4.2 4.2) yields

Er
z(ρ, φ = 0, z) = Er

z(ρ, z) = −jkoZo

∫ `

−`

I(z′)
(

1 +
1

k2
o

d2

dz2

)
Gw(z − z′)dz′

(4.5)

where

Gw(z − z′) =
1

2π

∫ 2π

0

e−jko

√
ρ2+a2−2ρa cos φ′+(z−z′)2

4π
√

ρ2 + a2 − 2ρa cos φ′ + (z − z′)2
dφ′ (4.6)

and we have arbitrarily set φ = 0 since by symmetry the radiated field is
expected to be independent of φ.

To construct the integral equation for the solution of the current I(z) we
set ρ = a in (4.6 4.6) and substitute (4.5 4.5) into (4.1 4.1). This gives

Ei
z(ρ = a, z) = +jkoZo

∫ `

−`

I(z′)
(

1 +
1

k2
o

d2

dz2

)
Gwu(z − z′)dz′ (4.7)

The kernel Gwu(z − z′) is now given by

Gwu(z − z′) =
1

2π

∫ 2π

0

e−jkoRu

4πRu

dφ′ (4.8)

with

Ru =
√

(z − z′)2 + 4a2 sin2(φ′/2) (4.9)
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Figure 4.2: Geometry for testing on the wire surface.

Gwu is often referred to as the unreduced thin wire kernel. In practice, though,
to avoid the integration over φ′, Gwu(z − z′) is replaced by the reduced kernel

Gwr(z − z′) =
e−jko

√
(z−z′)2+a2

4π
√

(z − z′)2 + a2
=

e−jkoRo

4πRo

(4.10)

which is obtained by letting r′ = z′ẑ. That is, the reduced kernel refers to
the problem where the filamentary current is introduced from the start of the
analysis. Substituting (4.10 4.10) into the integral equation (4.74.7) gives

Ei
z(ρ = a, z) = jkoZo

∫ `

−`

I(z′)
(

1 +
1

k2
o

d2

dz2

)
e−jkoRo

4πRo

dz′ (4.11)

with Ro as defined in (4.104.10). One readily observes that the right hand side
of this equations is simply the negative of the field radiated by the filamentary
current I(z) and evaluated at ρ = a, (i.e. on the surface of the perfectly
conducting wire as shown in Fig. 4.24.2. Obviously, (4.114.11) could have been
derived in a more direct manner by first invoking the approximation (4.44.4)
and then referring to the integral representation (2.109c2.109c). Nevertheless,
the above steps should serve to clarify the implied approximations. As will
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be shown later, (4.74.7) and (4.114.11) can be solved with nearly equal efforts
when an iterative solution scheme is employed.

The thin wire integral equation (4.114.11) is commonly referred to as Pock-
lington’s integral equation [?][Pocklington, 1897]. More generally, it belongs
to the general class of Fredholm integral equations of the first kind. These
are characterized by the presence of the unknown function only under the in-
tegral whose limits are constant. Integral equations which have the unknown
quantity both under and outside the integral are of the second kind and we
shall consider them at the end of this chapter. Also, if the integral limits
are not constant, then the corresponding integral equations are of the Voltera
type which are the typical equations for non-harmonic (time-dependent) field
quantities.

An analytical solution of (4.114.11) is not possible unless the wire is semi-
infinite in which case function theoretic techniques such as the Weiner-Hopf
method [?][Noble, 1958] can be employed for its solution in the transform
domain. However, Pocklington’s integral equation can be numerically solved
without difficulty, particularly because the integral’s kernel is never singular
since Ro > a for all values of z and z′. Nevertheless, to reduce the kernel’s
singularity, it is still instructive to transfer one of the derivatives from the
Green’s function to the current as was done in section 3.1.2 in conjunction with
the Stratton-Chu integral equation. In particular, from the one-dimensional
form of (3.123.12) via integration by parts we have (note d

dz
Gwr = − d

dz′Gwr)

∫ `

−`

I(z′)
d2

dz2
Gwr(z − z′)dz′ =

∫ `

−`

dI(z′)
dz′

d

dz
Gwr(z − z′)dz′

− d

dz
[Gwr(z − z′)I(z′)]z

′=`
z′=−` (4.12)

Since the current at the wire ends must vanish, we observe that the last term
of (4.124.12) is zero and thus Pocklington’s integral equation can be rewritten
as

Ei
z(ρ = a, z) = jkoZo

∫ `

−`

[
I(z′)Gwr(z − z′) +

1

k2
o

d

dz′
I(z′)

d

dz
Gwr(z − z′)

]
dz′

(4.13)

An alternative way to derive Pocklington’s equation is through the use
of the vector and scalar potentials. Accordingly, from (2.42.4) Er

z can be
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expressed as

Er
z(ρ, z) = −jkoZoAz − ∂Φe

∂z
(4.14)

where

Az(ρ = a, z) =

∫ `

−`

I(z′)
e−jkoRo

4πRo

dz′ (4.15)

and

Φe(ρ = a, z) =

∫ `

−`

ρ(z′)
εo

e−jkoRo

4πRo

dz′ (4.16)

From the continuity equation (1.331.33) we have

ρ(z)

εo

= − Zo

jko

dI(z)

dz
(4.17)

and, thus, when (4.144.14) along with (4.154.15) – (4.174.17) is substituted
into (4.14.1) we obtain (4.134.13).

The standard procedure for solving the above integral equation amounts to
first expanding the currents in terms of a class of basis functions. That is, I(z)
is approximately expressed as a linear sum of N known expansion functions.
Upon substitution of this expansion into (4.134.13) we obtain an equation for
the coefficients of the expansion which is a function of the surface observation
point z. The second step in the numerical solution process is the enforcement
of the integral equation at specific values of z. In this manner we obtain a
single linear equation for each enforcement point. If we have N expansion
coefficients, a total of N linear equations must then be generated by changing
the location of the testing point. These comprise a system which can be solved
for the unknown expansion coefficients. Depending on the type of expansion
functions or enforcement scheme, different linear systems will be obtained. The
procedure of expanding the current in terms of a finite set of functions and
then enforcing the boundary condition is referred to as the discretization of
the integral equation. Discretization is therefore the procedure which generates
the linear system. In turn, the resulting system can be solved through various
direct or iterative methods to obtain the coefficients of the expansion. A
knowledge of these provides an approximation for the current distribution and
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once the current is known we can proceed with the computation of the radiated
field, input impedance, radiated power and gain of the antenna using standard
formulae.

Before proceeding with the discretization of the integral equation (4.114.11)
as discussed above, we first present some of the most commonly used expansion
basis for the current distributions.

4.2 Basis Functions

A first step in discretizing (4.94.9) is to expand the current distribution as

I(z) =
N−1∑
n=0

Infn(z) =
N−1∑
n=0

Inf(z − zn) (4.18)

where fn(z) are the basis functions of the expansion and In are unknown
expansion coefficients. Referring to Fig. 4.34.3, some of the most popular
choices for fn(z) are

(1) Pulse basis functions/Piecewise constant (PWC):

fn(x) = P∆x(x− xn) =





1 xn − ∆x
2

< x < xn + ∆x
2

0 elsewhere
(4.19)

(2) Triangular function/Piecewise linear:

fn(x) = Tn(x) =

(
1− |x− xn|

∆x

)
P2∆x(x− xn) (4.20)

(3) Piecewise sinusoidal (PWS):

fn(x) = Sn(x) =
sin ko(∆x− |x− xn|)

sin ko∆x
P2∆x(x− xn) (4.21)

where ∆x is usually small (of the order λo/10) and N = 2`/∆x. Because
their domain is confined to a small section of the wire, they are commonly
referred to as subsectional or subdomain basis functions. A major reason for
their popularity is owed to their capability to model any arbitrary function
provided ∆x is sufficiently small.
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∆x

S  (x)n
T  (x)n

P    (x - x  )∆x n

xnxn+1 xn-1

Figure 4.3: Three subsectional expansion functions.

As illustrated though in Fig. 4.44.4, they cause artificial discontinuities in
the current or its derivatives at the transition between two consecutive ex-
pansion functions. Specifically, the current expansion with the PWC basis is
inherently discontinuous at the junction of two adjacent segments and from
(4.174.17) this implies the existence of a fictitious charge at that point. Nev-
ertheless, in spite of this deficiency when the segments are sufficiently small,
they provide a reasonable approximation to the current distribution. In that
case, the constant value over the segment should be interpreted to represent
the average of the true current over that segment. Because of their simplicity,
and this will soon be apparent in the next section, they have been used exten-
sively in electromagnetics but more so for scattering than antenna parameter
computations. In the last case, excessive sampling may be required for the
correct evaluation of the antenna’s input impedance.

The piecewise linear basis are seen to generate continuous current distribu-
tions. This is because the adjacent basis are overlaid as shown in Fig. 4.4(b)4.4(b).
Thus, the current at any point on the wire is obtained by summing the over-
laid basis. From their definition, though, when one of the overlaying expansion
functions is at a maximum, the left and right adjacent expansion functions are
zero. Further, because each expansion is normalized, the coefficients corre-
spond to the current’s value at the middle of the nth segment. The PWS
expansion functions are very similar to the linear basis in nearly all respects.
One difference between the two is that the PWS basis can be differentiated
any arbitrary number of times within its range without vanishing. Neverthe-
less, similarly to the piecewise linear basis they also yield a current expansion
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Figure 4.4: Illustration of wire segmentation and current approximation with
subdomain basis (a) pulse basis expansion (b) triangular basis expansion.

that has a discontinuous first derivative at the middle of each wire segment.
The only advantage of the PWS basis is drawn from their property to yield
potential integrals which can be evaluated analytically once Sn(x) is expressed
as a sum of two exponentials.

Instead of using the above subsectional or subdomain basis to represent
the wire current one could alternatively employ the usual full basis expansions
such as cos nx and sin nx. For example, noting that I(±`) = 0, an appropriate
expansion for the wire current would be

I(z) =
N∑

n=1

Cn cos

[
(2n− 1)πz

2`

]
(4.22)

or

I(z) =
N∑

n=1

Cn sin

[
(2n− 1)πz

`

]
(4.23)

In contrast to the expansions (4.194.19) – (4.214.21), the coefficients of these
expansions do not coincide with specific values of the current I(z). More
importantly, N may have to be quite large in case I(z) is rapidly varying or
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not sinusoidal in form. However, for wire antennas I(z) is generally sinusoidal,
particularly when the wire is excited by an external incident field. In this case
only a few terms of the full basis expansions (4.224.22) or (4.234.23) may be
required, making them attractive. Generally, though, (4.224.22) – (4.234.23)
cannot be effectively used for curved wires or other complex wire structures on
which the current’s distribution is much more irregular. In the following, we
shall therefore concentrate on the discretization and solution of Pocklington’s
integral equation using subdomain/basis functions since such a solution is less
specific to the straight wire.

4.3 Pulse Basis–Point Matching Solution

For simplicity, let us first consider the pulse basis expansion to represent the
wire current distribution. This results in a summation of shifted pulses over
the total length of the wire, i.e.

I(z) =
N−1∑
n=0

InP∆z(z − zn) (4.24)

where

N =
2`

∆z
(4.25)

are the number of pulses used to approximate the current distribution on the
wire and

zn = −` +

(
n− 1

2

)
∆z; n = 0, 1, 2, . . . (4.26)

Substituting (4.244.24) into (4.134.13) yields

Ei
z =

jkoZo

4π

{
N−1∑
n=0

In

∫ zn+∆z
2

zn−∆z
2

e−jkoRo

Ro

dz′ +
1

k2
o

N−1∑
n=0

In
d

dz

(4.27)

·
[
e−jkoR1n

R1n

− e−jkoR2n

R2n

]}
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where

R1n =

√(
z − zn +

∆z

2

)2

+ a2 , R2n =

√(
z − zn − ∆z

2

)2

+ a2 (4.28)

and we have invoked the expression

dI(z)

dz
=

N/2∑

n=−N/2

In

[
δ

(
z − zn +

∆z

2

)
− δ

(
z − zn − ∆z

z

)]
(4.29)

in deriving (4.274.27). After differentiating the last term of (4.274.27) with
respect to z, we obtain

Ei
z(ρ = a, z) =

jZo

2λo

N−1∑
n=0

In [Ψn(z) + Φn(z)] (4.30)

where

Ψn(z) =

∫ zn+∆z
2

zn−∆z
2

e−jkoRo

Ro

dz′ (4.31)

and

Φn(z) = −ko

[(
z − zn +

∆z

2

)
(jkR1n + 1)

(koR1n)3
e−jkoR1n

(4.32)

−
(

z − zn − ∆z

2

)
(jkoR2n + 1)

e−jkoR2n

(koR2n)3

]

Equation (4.304.30) can now be solved for In by demanding that it be
satisfied (matched) at N points on the surface of the wire. A convenient set
of such points is

z = zm = −` +

(
m− 1

2

)
∆z, m = 0, 1, 2, 3, . . .

with φ = 0, i.e. along the line formed by the wire surface and the xz plane.
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This results in a set of matrix equations




Z00 Z01 Z02 · · · Z0n · · · Z0,N−1

Z10 Z11 Z12 · · · Z1n · · · Z1,N−1
...

...
...

...
Zm0 Zm1 Zm2 · · · Zmn · · · Zm,N−1

...
...

...
...

Z(N−1),0 Z(N−1),1 Z(N−1),2 · · · Z(N−1),n · · · Z(N−1),(N−1)







Io

I1

I2
...

Im
...

IN−1




=




V1

V2

V3
...

Vm
...

VN−1




which are commonly written as

[Zmn] {In} = {Vm} (4.33)

Obviously,

{In} =
{
I0, I1, I2, . . . , IN/2, . . . , IN−1

}T
(4.34)

is a column matrix, [Zmn] is a square matrix referred to as the impedance
matrix since in this case the excitation column {Vm}, where

Vm = −Ei
z(ρ = a, zm) (4.35)

has units of volts. The corresponding elements of the impedance matrix can
be obtained directly from (4.304.30) – (4.324.32). We find that

Zmn = −jZo

2λo

[Ψn(zm) + Φn(zm)] (4.36)

where Ψn(zm) can be rewritten as

Ψn(zm) =

∫ (zm−zn)+∆z
2

(zm−zn)−∆z
2

e−jko

√
t2+a2

√
t2 + a2

dt.
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It is seen that Znm = Zmn, indicating that the impedance matrix is symmetric.
It is also observed that [Zmn] is completely independent of the excitation.

The integral Ψn(zm) cannot be evaluated analytically but can be approxi-
mated in closed form with sufficient accuracy. For m 6= n,

√
t2 + a2 is not very

small and we may therefore employ midpoint integration to approximately
express it as

Ψn(zm) ≈ ∆z
e−jko

√
(zm−zn)2+a2

√
(zm − zn)2 + a2

; m 6= 0

When m = n,
√

t2 + a2 is nearly zero over the midrange of integration. In this
case we can employ the two term expansion

e−jkoR ∼= 1− jkoR

allowing us to approximate Ψn(zn) as

Ψn(zn) ≈
∫ ∆z

2

−∆z
2

[
1√

t2 + a2
− jko

]
dt = ln




√(
∆z
2

)2
+ a2 + ∆z

2√(
∆z
2

)2
+ a2 − ∆z

2


− jko∆z

and for ∆z À a this can be further simplified to give

Ψn(zn) ≈ 2 ln

(
∆z

a

)
− jko∆z; ∆z À a.

An alternative way for computing the integral Ψn(zm) is to regularize its
near singular integrand with the addition and subtraction of the term 1√

t2+a2

which can be integrated analytically. This gives

Ψn(zm) =

∫ (zm−zn)+∆z
2

(zm−zn)−∆z
2

[
e−jko

√
t2+a2

√
t2 + a2

− 1√
t2 + a2

]
dt

+ ln




√(
zm − zn + ∆z

2

)2
+ a2 + zm − zn + ∆z

2√(
zm − zn − ∆z

2

)2
+ a2 + zm − zn − ∆z

2




The new integrand is now slowly varying and can thus be evaluated numerically
without difficulty.
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To compute the current coefficients we must solve the system (4.334.33)
and there are a number of commercially available routines which can perform
this operation in a manner transparent to the user. Commonly used software
libraries such as IMSL, LINPACK, and NAG include a variety of subroutines
for a solution of (4.334.33). These are based on solution methods such as
Gauss-Jordan elimination, Gaussian elimination, Crout or LU decomposition,
most of which are discussed in numerical analysis textbooks.

If we choose to solve {Im} by inverting the matrix [Zmn], the required CPU
time will be approximately

t ≈ AN2 + BN3 + CN2Ni (4.37)

where N , of course, denotes the number of unknowns or the length of the
column {In} and Ni is the number of different excitations for which {In} must
be computed. In addition,

A = time required to compute each value of Zmn

BN3 = time required to invert [Zmn]
and

CN2 = time required to perform the matrix
multiplication [Zmn]−1 {Vm}.

The actual values of the constants A, B and C are machine dependent. Ex-
pression (4.374.37) holds regardless of the procedure used to obtain the inverse,
but clearly, for large N the second term of (4.374.37) dominates. However, a
solution for {In} can be obtained without a need to complete the inverse. In
this case the Gauss-Jordan elimination requires N3 (N2

2
if the inverse is not re-

turned) operations to complete the solution whereas the Gaussian elimination
needs 5N3/6 operations. In contrast, the LU (Lower-Upper) decomposition
approach requires N3/3 operations and is thus much faster. The LU decom-
position scheme is also preferred because it results in better accuracy and
stability as compared to other methods, particularly when N is large. Nev-
ertheless, when N becomes very large, a direct solution of the linear system
(4.334.33) may yield an inaccurate result due to machine round-off errors. An
alternative in this case is to use an iterative solution scheme allowing some
control on the solution error, and such a scheme is discussed at the end of this
chapter.

Often, as is the case with the linear wire discussed here, the impedance
matrix will posses certain symmetries which can be exploited in the solution
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Zc Vi δ = ∆z

Mi

Delta gap excitation

Mi

Magnetic frill generator

Figure 4.5: Source modeling for the center fed cylindrical dipole.

of (4.334.33). It is easy to observe from (4.284.28), (4.314.31), (4.324.32) and
(4.364.36) that Znm = Zmn = Zm−n = Z|m−n|. Matrices of this type are
referred to as symmetric Toeplitz and require order N2 operations to complete
the solution. Also, since the elements of [Zmn] can be generated from those in
one row or a column, the fill time of the matrix can be reduced to only order
N operations. Note, that if we were to consider a solution of the currents
on a curved wire, then Zmn 6= Z|m−n| but Znm = Zmn as a consequence of
reciprocity (i.e. the matrix is still symmetric).

4.4 Source Modeling

4.4.1 Delta gap excitation

The wire antenna is usually center fed by a transmission line whose voltage
can be measured at the terminals of the antenna. Assuming, the transmis-
sion line voltage at the wire terminals is Vi (see Fig. 4.54.5), we may then
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write [?][Collin, 1985]

Vi = −
∫ δ/2

−δ/2

Er · ẑdz = +

∫ δ/2

−δ/2

Ei
zdz = +Ei

zδ (4.38)

from small δ. Consequently

Ei
z =

{
+Vi

δ
z = 0

0 elsewhere
(4.39)

and this is referred to as the delta gap excitation model for the source field
Ei

z. Note that (4.394.39) is equivalent to having a magnetic current loop

Mi = −ρ̂× Ei = φ̂
Vi

δ
(4.40)

of radius a as the excitation. In fact, the derivation of (4.384.38) requires that
the delta gap is first closed making the conductor continuous. The excitation
field Ei

z which is confined over the original gap length can then be replaced by
the equivalent magnetic current loop Mi. This, in turn generates a scattered
field Er

z at the conductor’s surface so that the total field Ei
z + Er

z vanishes as
required, a condition which was imposed in deriving (4.384.38). Inherently, the
presence of the magnetic current generates discontinuous electric fields across
its surface and for this particular case the electric field is zero in the interior
side of Mi and equal to ẑEi

z at its exterior side.
Wire current distributions obtained by solving the system (4.334.33) in con-

junction with a delta gap modeling of the source are illustrated in Figs. 4.64.6
and 4.7 4.7. The curves in each figure correspond to λo/2 and λo long dipoles,
respectively, of radius a = 0.005λo. It is seen that a rather large number of
pulse basis are required for the current to converge to its final value. Generally,
(i.e. provided the system has acceptable condition number), the correct distri-
bution is obtained if the computed values of I(z) do not change appreciably
as N is increased. Having the correct value of I(z) is extremely important
for input impedance computations but the radiation pattern can be predicted
with sufficient accuracy once I(z) is known approximately. As expected, the
computed current is sinusoidal in form except near the feed point and, thus,
it is not surprising that the often assumed sinusoidal behavior of the wire cur-
rent is sufficient for pattern prediction but much less so for input impedance
computations. This is more apparent for the λo long dipole in which case the
sinusoidal distribution will predict zero current at the feed.
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Perhaps one of the reasons for the large number of expansion pulses re-
quired to reach convergence is the difficulty of the point matching procedure
in satisfying the boundary condition at all z. As seen from Fig. 4.84.8, the
wire surface fields obtained by integrating the numerically computed current
given in Fig. 4.64.6 do not vanish except at the match points zm. Nevertheless,
on the average, the surface field is zero as can be attested from the oscilla-
tory behavior of the computed surface field given in Fig. 4.84.8. Later, it will
be discussed that higher order expansion functions and more robust testing
procedures yield more satisfactory results with less unknowns.

In implementing (4.334.33) we were careful to maintain ∆z
a

layer in accor-
dance with the thin wire approximation. Studies [?][Burke and Poggio, 1981]
have shown that the thin wire approximation is less than 1% in error if ∆z

a
< 8.

Since typically ∆z ≤ λo

10
, this implies that koa ≤ 0.08 to limit the error to 1%.

4.4.2 Magnetic frill generator

As can be expected, (4.394.39) is not as accurate (particularly as the wire
radius becomes greater than 0.007λ [?][Imbriale and Ingerson, AP-T, 1973])
since the field is unlikely to be concentrated only within the gap. An alterna-
tive source model giving a smoothly varying excitation field around the gap is
the magnetic frill generator. In this case the gap is equivalently replaced by
a circumferentially directed surface magnetic current density existing in the
region between ρ = a and ρ = b, as shown. The value of the outer radius b is
computed from a knowledge of the transmission lines characteristic impedance
Zc. When the wire antenna is fed by a coaxial cable it is shown below that
the equivalent magnetic frill current can be computed in terms of the aperture
fields in the usual manner.

Using the equivalence principle, the aperture is closed and replaced by the
surface magnetic current

Mi = Ea × ẑ (4.41)

where

Ea(ρ) = ρ̂
Vi

2ρ ln b/a
(Vi is a constant) (4.42)

as dictated by the lowest order mode supported in the coaxial transmission
line. The radiated field by Mi may now be evaluated after invoking image
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Figure 4.6: Computed current on a center-fed λo/2 dipole of radius a = .005λo

via the pulse basis-point matching solution method as a function of the sam-
pling density. The source/excitation is a delta gap as given in (4.394.39).
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Figure 4.7: Computed current on a center-fed λo dipole of radius a = .005λo via
the pulse basis-point matching solution method as a function of the sampling
density. The source/excitation is a delta gap as given in (4.394.39).
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Figure 4.8: Value of the total field on the surface of the dipole computed by
integrating the current obtained from a pulse basis-point matching solution
(2` = 0.5λ, a = 0.005λ and N = 81). A value of 5V/m corresponds to a 3.1%
error.
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2Mi

Mi

ẑ

a

E a
b

ground
plane

⇒by
equivalence

by image
theory

⇒

Figure 4.9: Magnetic frill model for a coaxially fed monopole/dipole.

theory to double its strength and the length of the monopole to that of a
dipole. From (2.632.63)

Ei(ρ, z) = −
∫ b

a

∫ 2π

0

[
Mi(ρ′)× R̂

] (
jko +

1

R

)
e−jkR

4πR
ρ′dφ′dρ′ (4.43)

where

R = |r− r′|

r = ρρ̂ + zẑ, r = ρ′ρ̂ = ρ′(x̂ cos φ′ + ŷ sin φ′)

For ρ = 0 (observation at the center of the wire)

R =
√

(ρ′)2 + z2

R̂ =
r− r′

R
= [−ρ̂′ρ′ + zẑ] /R

Mi(ρ′) = −φ̂′
Vi

ρ′ ln b/a
= (x̂ sin φ′ − ŷ cos φ′)

Vi

ρ′ ln b/a
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Mi(ρ′)× R̂ = [−ẑρ′ − ρ̂′z]
Vi

Rρ′ ln b/a

Substituting the above expressions into (4.434.43) yields

Ei
z(ρ = 0, z) =

Vi

ln b/a

∫ b

a

∫ 2π

o

(
jko +

1

R

)
e−jkoR

4πR2
ρ′dφ′dρ′

(4.44)

=
Vi

2 ln b/a

∫ b

a

(
jko +

1

R

)
e−jkoR

R2
ρ′dρ′

Noting that

− d

dρ′

{
e−jkoR

R

}
=

(
jko +

1

R

)
e−jkoR

R

ρ′

R

(4.444.44) may be written as

Ei
z(ρ = 0, z) = − Vi

2 ln b/a

∫ b

a

d

dρ′

{
e−jkoR

R

}
dρ′

to yield

Ei
z(ρ = 0, z) = +

Vi

2 ln b/a

[
e−jko

√
z2+b2

√
z2 + b2

− e−jko

√
z2+a2

√
z2 + a2

]
(4.45)

For simplicity, we may assume

Ei
z(ρ = a, z) ≈ Ei

z(ρ = 0, z)

to be substituted into (4.304.30) and (4.334.33) for the solution of the wire
currents. Alternatively, we may pursue a direct evaluation of (4.434.43) to
find [?, ?][Tsai, 1972; Thiele, 1973]

Ei
z(ρ = a, z) = +Vi

ko(b
2 − a2)

8 ln b/a

e−jkoRo

R2
o

{
2

[
1

koRo

+ j

(
1− b2 + a2

2R2
o

)]

(4.46)

+
a2

Ro

[(
1

koRo

+ j − j
b2 + a2

2R2
o

)(
−jko − 2

Ro

)
+

(
− 1

koR2
o

+ j
b2 + a2

R3
o

)]}
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where now

Ro =
√

z2 + a2

with

−` < z < ` .

Figure 4.104.10 illustrates the current on a 1λo dipole computed with a
magnetic frill model excitation. The current near the feed is now smoother
than that obtained with the delta gap model. However, more samples are
required to reach convergence and this is owed to the near singular behavior
of the excitation field in (4.454.45).

4.4.3 Plane Wave Incidence

If the cylindrical wire is considered as a scatterer, then Ei represents the
incident field. The simplest form of this is a plane wave given by

Ei = ejkors·r̂i (4.47)

where

rs = aρ̂ + zẑ = ax̂ + zẑ|φ=0

if measured on the surface of the wire and

r̂i = x̂ cos φi sin θi + ŷ sin φi sin θi + ẑ cos θi (4.48)

with (θi, φi) being the usual spherical angles denoting the direction of inci-
dence.

Figs. 4.114.11 and 4.124.12 show the current on the λo/2 and 1λo wire
dipoles due to a plane wave incidence excitation. In contrast to the current on
a center-fed dipole, this current has no discontinuous derivatives throughout
the length of the dipole. Its form on the λo/2 dipole is clearly sinusoidal with
its amplitude depending on the incidence angle. The same holds for longer
wires with the exception of having a more complex lobing structure which can
be explained by invoking the traveling wave theory.
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Figure 4.10: Computed current on a center-fed λo dipole of radius a = .005λo

via the pulse basis-point matching technique as a function of the sampling
density. The source/excitation is the magnetic frill equivalent current as given
in (4.454.45).
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Figure 4.11: Current on a λo/2 wire of radius a = .005λ generated by an
incident plane wave at θi = 90◦ and θi = 150◦ as computed by the pulse
basis-point matching technique (a = 0.005λo, N = 101).
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Figure 4.12: Current on a λo wire of radius a = .005λ generated by an incident
plane wave at θi = 90◦ and θi = 150◦ as computed by the pulse basis-point
matching technique (a = 0.005λo, N = 151).

J.L. Volakis and K. Sertel, The Ohio State University 222

cfurse
Sticky Note
missing fig



Integral Equation Methods for Electromagnetics

ŷ
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r'

ẑ

θ

r

r - r'

x

I(z)

|r - r'| ≈ r - r' • r̂

/2

Figure 4.13: Geometry for computing the linear antenna’s radiated field.

4.5 Calculation of the Far Zone Field and An-

tenna Characteristics

Upon solution of the system (4.334.33), one can proceed with the evaluation
of the radiation or the scattering patterns if E is given by (4.484.48). From
(2.772.77) we have

Er
θ ≈ jkoZo sin θ

∫ `

−`

I(z′)
e−jko|r−r′|

4π|r− r′|dz′

(4.49)

≈ jkoZo sin θ
e−jkor

4πr

∫ `

−`

I(z′)ejkoz′ cos θdz′

Using (14), we get

Er
θ(r, θ) ≈ jkoZo sin θ

e−jkor

4πr

N−1∑
n=0

In

∫ zn+∆z
2

zn−∆z
2

ejkoz′ cos θdz′ (4.50)
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and upon performing the trivial integration we have

Er(r, θ) = jkoZo
e−jkor

4πr
∆z sin θ

sin
(

ko∆z cos θ
2

)
(

ko∆z cos θ
2

)
N−1∑
n=0

Inejkozn cos θ

(4.51)

= jkoZo
e−jkor

4πr
∆z sin θ sinc

(
ko

∆z

2
cos θ

) N−1∑
n=0

Inejkozn cos θ

The radiation intensity of the antenna is given by

U(θ, φ) = U(θ) =
r2

2Zo

|Er
θ(θ)|2

(4.52)

=
Zo

2

(
ko∆z sin θ

4π

)2

sinc2

(
ko

∆z

2
cos θ

) (
N∑

n=1

Ine
jkozn cos θ

)2

and the radiated power can be computed from

Prad =

∫ 2π

0

∫ π

0

U(θ, φ) sin θ dθ dφ = 2π

∫ π

0

U(θ) sin θ dθ (4.53)

with the integral to be evaluated numerically.
Given the radiated power, the directivity is found from

D =
4πUmax

Prad

=
4πU(θ = π/2)

Prad

(4.54)

Finally, the gain of the antenna can be easily computed from

G(θ, φ) =
4πU(θ, φ)

Pin

∣∣∣∣
θ=π/2

=
Zo

2Pin

(ko∆z)2

4π

(
N∑

n=1

In

)2

(4.55)

where Pin denotes the input power from the generator.
A parameter of crucial importance in controlling the efficiency of the an-

tenna is its input impedance. This is given by

Zin =
Vi

Iin

=
Ei

z∆z

Iin

(4.56)
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where Iin = IN−1
2

+1 is the value of the current element at the terminal under

the obvious assumption that N is odd. However, the accuracy of (4.564.56)
depends on the accuracy of Iin as computed from the solution of the system
(4.334.33). Since we discretized the actual current distribution, Iin is only an
approximation to the input current and is often not of acceptable accuracy
unless N is very large. To avoid this difficulty when employing (4.564.56) we
may instead use a stationary expression for the input impedance based on
power relations. From Poynting’s theorem we have

1

2
IinI

∗
inZin =

1

2

∫∫
©Er ×Hr∗ · ds = −

∫ `

−`

∫ 2π

0

Er
zH

r∗
φ a dφ dz′

(4.57)

= −1

2

∫ `

−`

Er
z(a, z′)I∗(z′)dz′

Since J = ρ̂× φ̂Hφ giving Hφ = Jz = I(z)
2πa

. Thus,

Zin = +
1

|Iin|2
∫ `

−`

Ei
z(a, z′)I∗(z′)dz (4.58)

where we have set Er
z(a, z) = −Ei

z(a, z) as required by the boundary condition
on the surface of the wire. Substituting (4.244.24) into (4.584.58) we obtain

Zin =
∆z

|Iin|2
N−1∑
n=0

Ei
z(a, zn)I∗n (4.59)

It is observed, that for a delta gap excitation (see (4.394.39)) (4.594.59)
again reduces to (4.564.56). Note also that

Re(Zin) = Rin =
2Prad

|Iin|2
. (4.60)

The input impedance as computed from (4.564.56) is shown in Fig. 4.144.14 as
a function of the wire’s length and for various wire radii. As can be concluded
from the presented current computations using the pulse basis-point matching
solutions, up to 120 segments per wavelength may be required to accurately
sample the current near the feed. When Im(Zin) = 0, the dipole is said to
be at resonance and its first resonance occurs when 2` is just less than 0.5λo,
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depending on the value of its radius. The bandwidth of an antenna is related
to the slope of Zin as a function of frequency and it is seen from Fig. 4.144.14
that thicker dipoles have a larger bandwidth (the thin-wire solution should not
be used for a > λo

50
[?][Lin and Richmond, 1975]). Radiation patterns for the

λo/2, λo and 3λo/2 dipoles are given in Fig. 4.154.15. We note, however, that
these are identical to those predicted with the assumed sinusoidal distribution
which follows from the transmission line model.

When the excitation is a plane wave, we are generally interested in the echo
area or radar cross section (RCS) of the wire structure. The RCS is measured
in units of length squared and is given by

σ = lim
r→∞

4πr2 |Er|
|Ei|2 (4.61)

If the wire length is measured in wavelengths then the units of σ are square
wavelengths (λ2

o) and if the wire length is measured in meters then σ will
be given in m2. The RCS of the λ/2, λ and 3λ long wires are shown in
Figs. 4.164.16 and 4.174.17. The effect of wire thickness on the wire’s RCS
is predicted in Fig. 4.184.18 where the value of broadside (θi = 90◦) σ is
plotted as a function of the wire’s length for three different radii. This is a
characteristic curve for the wire scatterer and displays its resonant behavior
when 2` ≈ (n + 1)λo/2 for odd n. Basically, the RCS of the wire at those
lengths reaches a local peak with each successive peak becoming larger as 2`
is increased. This property of the wire has been explored in many practical
situations and we remark that the location of the RCS peaks should correspond
to the wire length at which Im(Zin) ≈ 0.

We observe that the echo area pattern of the longer wire as given in
Fig. 4.174.17 has a very strong lobe near θ = π (near grazing). This is a
lobe characteristic to all thin wire scattering patterns and is always the one
closest to θ = 0◦ or θ = π. It is often referred to as the traveling wave lobe
and to explain its presence let us assume that the wire is infinite in length.
The incident plane wave (4.474.47) will then generate a current of the form
I1e

jkoz cos θi where I1 is a complex constant proportional to the incident wave’s
strength and can be computed analytically. This is, of course, a traveling cur-
rent (whose propagation constant matches that of the incident wave) and if
the wire is of finite extent, when it reaches the wire ends, it generates addi-
tional reflected currents of the form I2e

jkoz and I3e
−jkoz, where I2 and I3 are

again complex constants. Thus the current on the wire due to a plane wave
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Figure 4.14: Input impedance of a dipole as a function of its length 2` for
three different wire radii. (a) resistive (b) reactance; The dipole is resonant
when the reactance is zero.
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Figure 4.15: Radiation power patterns for the λo/2, 1λo and 1.5λo dipoles
computed from the numerical solution of the dipole currents (a = 0.005λo).
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Figure 4.16: Bistatic radar cross section of three straight wires of length 2` =
λo/2, λo and 3λo. The wires have a radius of a = 0.005λo and the incident plane
wave is illuminating the wire at an angle of θi = 150◦ (PWS-basis solution).
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Figure 4.17: Backscatter radar cross section (θ = θi) for the three straight
wires whose bistatic patterns are given in Fig. 4.16.
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excitation can be approximately represented as

I(z) =
3∑

n=1

Ine
jknz (4.62)

with k1 = ko cos θo, k2 = +ko and k3 = −ko. From this representation it is not
difficult to observe from the radiation integral (4.494.49) that the scattered
field would peak at θ = π − θi and at θ = 0 or π if the coefficients In were
comparably weighted. However, this is not the case and it turns out that the
traveling wave lobe peak occurs when I2,3 are at maximum.

The expansion (4.624.62) is, of course, a linear sum of three full wave basis
functions, similar to those given by (4.224.22) – (4.234.23). It was constructed
on the basis of the physical phenomena that take place on the straight wire
and is thus most efficient for computational purposes. However, as noted
earlier, this expansion (which may be referred to as a solution wave expansion
is specific to the straight wire scatterer and cannot be employed for other wire
shapes or arbitrary multiple wire structures.

4.6 Piecewise Sinusoidal Basis-Point Match-

ing Solution

The piecewise sinusoidal (PWS) basis expansion renders a continuous current
distribution and is thus more representative of the actual solution. This usually
translates in less subsections/zones to reach convergence.

Substituting (4.214.21) into (4.184.18) yields

I(z) =
N∑

n=0

In
sin ko(∆z − |z − zn|)

sin ko∆z
(4.63)

where zn = −` + (n + 1)∆z. When this is substituted into (4.134.13), we
obtain (see Appendix)

Ei
z(ρ = a, z) =

+j30

sin ko∆z

N−1∑
n=0

In

[
e−jkoR1n

R1n

(4.64)

−2 cos(ko∆z)
e−jkoR2n

R2n

+
e−jkoR3n

R3n

]
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in which

R1n =
√

(z − zn−1)2 + a2

R2n =
√

(z − zn)2 + a2

and

R3n =
√

(z − zn+1)2 + a2 .

The fact that the radiated field by a sinusoidal source can be evaluated in a
closed form is the principal advantage of Sn(z) over Tn(z).

A point matching solution of (4.644.64) follows the same procedure as
discussed previously in connection with the pulse basis expansion. Upon eval-
uation of the coefficients In, the radiation pattern is again given by (4.494.49).
From (4.634.63) we obtain

Eθ(r, θ) ≈ jkoZo

sin θ

e−jkor

4πr

N−1∑
n=0

In

∫ zn+∆z

zn−∆z

sin ko(∆z − |z′ − zn|)
sin(ko∆z)

ejkoz′ cos θdz′

(4.65)

and on carrying out the integration we find

Eθ(r, θ) ≈ j60
e−jkr

r

cos(ko∆z cos θ)− cos(ko∆z)

sin θ sin(ko∆z)︸ ︷︷ ︸
element pattern

N−1∑
n=0

Ine
jkozn cos θ (4.66)

The evaluation of other parameters such as radiated power, gain, directivity
and input impedance can be performed in a straightforward manner. Not
surprisingly, the PWS representation can be shown to yield more accurate
results for input impedance computations. This can be attested by examining
the wire surface fields generated by the PWS-point matching solution. In
contrast to the results in Fig. 4.84.8, it is found that the surface field of this
solution is now practically zero without even resorting to the more robust
weighted residual method discussed next.
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4.7 Method of Weighted Residuals/Moment

Method

The point matching technique described above for solving integral equations
ensures that the boundary condition is satisfied only at the match points zm. In
general, however, the boundary condition is not necessarily satisfied elsewhere,
unless the sampling or testing interval ∆z is extremely small and this fact was
illustrated in Fig. 4.84.8. This is, of course, not cost effective since the CPU
time is proportional to N3 as given by (4.374.37).

An alternative testing procedure is to satisfy the boundary condition on
an average sense over the length of the segment from zn to zn+1. To express
this mathematically, let us first define the interproduct (see for example Har-
rington [R. F. Harrington(1968)][1968])

〈R(z),Wm(z)〉 =

∫ `

−`

R(z)W ∗
m(z)dz (4.67)

and we will hereon refer to R(z) as the residual and Wm(z) as the weight-
ing/test basis functions. Setting

R(z) = Ei
z(ρ = a, z) + Er

z(ρ = a, z) , (4.68)

choosing

Wm(z) =





1 zm − ∆z
2

< z < zm + ∆z
2

0 elsewhere
(4.69)

and demanding that

〈R(z),Wm(z)〉 = 0 (4.70)

leads to the integral equation

−
∫ zm+∆z

2

zm−∆z
2

Ei
z(ρ = a, z)dz =

∫ zm+∆z
2

zm−∆z
2

Er
z(ρ = a, z)dz (4.71)

Upon substitution of the expression for Er
z as extracted from (4.304.30)

yields,

−
∫ zm+∆z

2

zm−∆z
2

Ei
z(ρ = a, z) = −jZo

2λo

N−1∑
n=0

In

∫ zm+∆z
2

zm−∆z
2

[Ψn(z) + Φn(z)] dz (4.72)
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from which we obtain the system

[Zmn] [In] = [Vm] (4.73)

where now

Vm = −
∫ zm+∆z

2

zm−∆z
2

Ei
z(ρ = a, z)dx (4.74)

Zmn =
−jZo

2λo

∫ zm+∆z
2

zm−∆z
2

[Ψn(z) + Φn(z)] dz (4.75)

These can be evaluated numerically using, for example, Simpson’s, midpoint
or Gaussian rules of integration [?][Ambramowitz and Stegan, 1964]. Clearly,
(4.704.70) along with (4.684.68) and (4.694.69) demand that the boundary
conditions be satisfied on an average sense over the wire subintervals. When
the weighting functions are piecewise constant (PWC), each current value over
the subinterval is given equal weighting in this averaging process. A variety of
other choices for Wm(z) have, though, been employed successfully in the past.
When Wm(z) are chosen to be the same as the current expansion basis function,
the procedure for deriving the resulting system of equations is referred to as
Galerkin’s method [?, ?][Kantorovich and Krylov, 1959; Jones, 1956]. We also
note that when

Wm(z) = δ(z − zm) (4.76)

(4.704.70) reduces to the system (4.304.30) derived by the point-matching
technique. The above procedure for discretizing the integral equation is for-
mally referred to as the weighted residual method but is most often called the
method of moments (MoM)1. Also, the pulse basis-point matching procedure
is more formally referred to as the collocation method.

The application of Galerkin’s technique has been studied extensively and
has been found quite robust for many applications. It is indeed pleasing to
know that the method minimizes the residual in the least squares sense. It
can be expected that the Galerkin’s implementation leads to more robust and
efficient computer codes. For example, in the case of a pulse basis expansion,

1According to R.F. Harrington, the term “moment methods” was first used by Kan-
torovitz and Akilov [?][1964].
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the Galerkin’s solution converges to the correct current using 30% to 50% less
segments as shown in Fig. 4.214.21. The solution convergence improves even
further if higher order basis functions and used and below we describe the
Galerkin’s formulation and derive the resulting system of equations for the
subsectional sinusoidal basis.

From (4.704.70), with

Wm(z) =





sin(ko(∆z−|z−zm|))
sin ko∆z

zm−1 < z < zm+1

0 elsewhere

(4.77)

and (see (4.644.64))

R(z) = Ei
z(ρ = a, z)− j30

sin(ko∆z)

N−1∑
n=0

In

[
e−jkoR1n

R1n

(4.78)

−2 cos(ko∆z)
e−jkoR2n

R2n

+
e−jkoR3n

R3n

]

we obtain the usual system (4.624.62) with

Vm = −
∫ zm+∆z

zm−∆z

Ei(ρ = a, z)
sin [ko(∆z − |z − zm|)]

sin(ko∆z)
dz (4.79)

Zmn = − j30

sin ko∆z

∫ zm+∆z

zm−∆z

sin [ko(∆z − |z − zm|]
sin(ko∆z)

[
e−jkoR1n

R1n

(4.80)

−2 cos(ko∆z)
e−jkoR2n

R2n

+
e−jkoR3n

R3n

]
dz

The impedance matrix elements may be easily evaluated numerically as given
in (4.804.80) since the integrand is non singular. However, after some ma-
nipulation, the integral expression can be simplified and written in terms of
the exponential integral which is tabulated [?][Ambramowitz and Stegan, 1964
(p. 228)]. A compact expression for Zmn is [?][?][King, 1957; Richmond and
Geary, 1970]

Zmn =
+15

sin2(ko∆z)

2∑
p=−2

∑
q=−1,2

A(p + 3)e−jkoq[|zm−zn|+p∆z]E(koβpq) (4.81)

J.L. Volakis and K. Sertel, The Ohio State University 235

cfurse
Highlight

cfurse
Highlight



Integral Equation Methods for Electromagnetics

where

A(1) = A(5) = 1

A(2) = A(4) = −4 cos(ko∆z)

A(3) = 2 + 4 cos2(ko∆z)

βpq =

√
a2 + [|zm − zn|+ p∆z]2 − q [|zm − zn|+ p∆z]

and E(α) is the exponential integral. It can be defined in terms of the cosine
and sine integrals as

E(α) = Ci(α)− jSi(α) (4.82)

where

Ci(α) = −
∫ ∞

α

cos x

x
dx (4.83)

and

Si(x) =

∫ α

0

sin x

x
dx . (4.84)

A FORTRAN subroutine (one page long) for the numerical evaluation of E(α)
is given in Press, etc. [?][1992]. As can be expected, a smaller number of PWS
is required to converge to the correct value of the wire current when compared
to the pulse basis implementation.

4.8 Moment Method for Non-Linear Wires

Typically, the antenna or scatterer will be composed of curved wire elements.
Also, it is possible to model continuous metallic surfaces with a wire grid of
sufficient density as shown in the figure. Acceptable grid densities are often
10 or more wires per linear wavelength on the surface.

To develop a Moment Method formulation applicable to curved wires let us
consider the curved wire geometry shown below and we may assume for sim-
plicity a constant wire thickness equal to 2a À λ. As usual, we are interested
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Figure 4.18: Backscatter RCS of three thin wires as a function of length (2`)
illuminated by a plane wave at normal incidence (θi = 90◦). (PWS-point
matching solution with ∆Z = 0.01λo).
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Figure 4.19: Convergence of the current distribution on a center-fed dipole of
radius a = 0.005λo with a magnetic frill source. (a) Pulse basis-point matching
solution using N = 81, 101, 181, 221 and 261 points, (b) Galerkin’s pulse basis
solution using N = 101, 141, 181 and 221 point.

J.L. Volakis and K. Sertel, The Ohio State University 238



Integral Equation Methods for Electromagnetics
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ŷ

ẑ

x̂

Figure 4.20: Segmentation of a curved wire for numerical modeling.

in determining the wire surface currents or more specifically the equivalent
line current through the center of the wire.

In proceeding with a numerical solution, it is first necessary to discretize
the wire as shown in Fig. 4.204.20. This amounts to generating a model of the
curved wire that is composed of a set of linear segments. Denoting the unit
vector along the direction of the mth element as ˆ̀

m, the boundary condition
to be satisfied on its surface is

(
Ei + Er

) · ˆ̀m = 0 (4.85)

If the curved wire is divided into N straight segments, then Er can be expressed
as

Er =
N∑

n=1

Er
n =

N∑
n=1

ˆ̀
nE

r
`n (4.86)

where Er
n is the field radiated by each linear segment. When employing PWC

basis to expand the current on each element, Er
n can be found from (2.522.52)

or (3.133.13) upon performing the necessary coordinate transformations. To
see this, we begin with the derivation of the fields radiated by a straight
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ρ̂
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z

Figure 4.21: Geometry of a monopole situated on the z-axis.

segment (nth segment) carrying a constant current In as shown in Fig. 4.214.21.
This element is often referred to as a monopulse and we find from (3.133.13)
that it radiates the field

Er
n = ẑEr

nz(ρ, z) + ρ̂Er
np(ρ, z) (4.87)

where

Er
nz = − jZo

2λo

In [Ψn(ρ, z) + Φn(ρ, z)] (4.88)

and

Er
np = j

Zoko

2λo

Inρ

[
(1 + jkoR1n)

(koR1n)3
e−jkoRm − (1 + jkoR2n)

(koR2n)3
e−jkoR2n

]
(4.89)
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In these expressions,

R1n =

√(
z − zn +

∆z

2

)2

+ ρ2, R2n =

√(
z − zn − ∆z

2

)2

+ ρ2 (4.90)

are simply generalizations of those given in (4.284.28), whereas Ψn(ρ, z) and
Φn(ρ, z) are the same functions as those defined in (4.314.31) and (4.324.32),
respectively, except that

Ro =
√

(z − z′)2 + ρ2. (4.91)

Also, R1n and R2n in (4.314.31) and (4.324.32) must be replaced by the more
general expressions (4.904.90).

Given the fields due to the z-directed monopole it is now a straightforward
task to derive the corresponding field due to an arbitrarily-oriented monopole.
Specifically, for the monopole shown in Fig. 4.224.22 we have that

Er
n(x, y, z) = ˆ̀

nEr
n`(x, y, z) + ρ̂nEr

nρ(x, y, z) (4.92)

where En` and Enρ are given by (4.884.88) and (4.894.89) with Ro, R1n and
R2n redefined as

Ro =
√

(x− xn)2 + (y − yn)2 + (z − zn)2

(4.93)

R1n
2n

=
√

(x− x∓n )2 + (y − y∓n )2 + (z − z∓n )2

Also, in (4.894.89) ρ must be replaced by R2n cos ψ2 = R2n · ˆ̀n.
Having an expression for the field radiated by an arbitrarily oriented wire

segment carrying a constant current, we may now proceed with the construc-
tion of the system of equations for a pulse basis-point matching solution. On
enforcing (4.854.85) at Pm as illustrated in Fig. 4.204.20, for m = 0, 1, 2, . . . , N ,
we get the usual system (4.334.33). The impedance matrix elements are now
given by

Zmn = +
[(

ˆ̀
n · ˆ̀m

)
En`(x̃m, ỹm, z̃m) +

(
ρ̂n · ˆ̀m

)
Er

nρ(x̃m, ỹm, z̃m)
]

(4.94)

where r = x̂x̃m + ŷỹm + ẑz̃m = (x̂xm + ŷym + ẑzm) + aρ̂m with (xm, ym, zm)
being the center point of the mth segment and a is its radius. Also,

Vm = −ˆ̀
m · Er

n(x̃m, ỹm, z̃m) (4.95)
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Figure 4.22: Geometry of an arbitrary skewed monopulse.
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Figure 4.23: Calculated backscatter echo area of square wire loops at the
broadside aspect.

are the elements of the excitation vector. Note that Zmn in (4.944.94) reduces
to (4.364.36) for m = n.

One of the first implementations of the pulse-basis point matching solution
for wire structures was carried out by Richmond [J. H. Richmond(May 1965),
?] [1965, 1966]. In Figs. 4.234.23 and 4.244.24 we present some RCS cal-
culations from Richmond’s paper [?][1966] which should serve for validating
implementations based on the given pulse basis-point matching solution. Fig-
ure 4.234.23 shows the broadside RCS (incident plane wave is impinging along
a direction normal to the plane containing the wire loop) of a square loop
as a function of L/λ, where L2 denotes the area enclosed by the loop. Of
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importance is the observation that solid structures can be modeled by a grid
of wires. For example, the square metallic plate shown in figure 4.24 was
modeled by a grid of 8 vertical and 8 horizontal wires with the wire radii
set equal to L/100, where L is the side length of the plate. For an ac-
curate simulation of solid surfaces, Lin and Richmond [?][1975] recommend
that the wire separation be no greater than λo/4 and the wire radius be cho-
sen to be about 1/25 of this separation distance. Others have used wire grid
modeling (see fig. 4.26) to evaluate the radiation performance of reflector an-
tennas [?][Poggio and Miller,1973] wire antennas on aircraft [?][Diaz, 1970], or
on some solid metallic structure [?, ?][Thiele, 1973; Trueman et al, 1991].

To construct the moment method equations for a non-linear wire using
the Galerkin’s procedure with PWS basis, we must first obtain the radiated
fields due to an arbitrarily oriented dipole. Referring to Fig. 4.274.27 and
generalizing the results stated in a problem of this chapter, we obtain that

Er
n(x, y, z) = ˆ̀

nEr
n`(x, y, z) + ρ̂nEr

nρ(x, y, z) (4.96)

where

Er
n`(x, y, z) = − j30

sin ko∆`
In

[
e−jkoR1n

R1n

− 2 cos(ko∆`)
e−jkoR2n

R2n

+
e−jkoR3n

R3n

]

(4.97)

and

Er
nρ(x, y, z) =

j30

R2n sin ψ2n sin(ko∆`)
In

[
cos ψ1ne−jkoR1n

(4.98)

− 2 cos(ko∆`) cos ψ2ne−jkoR2n + cos ψ3ne−jkoR3n
]

In these, In denotes the value of the current at (xn, yn, zn),

R1n =
√

(x− xn−1)2 + (y − yn−1)2 + (z − zn−1)2

R2n =
√

(x− xn)2 + (y − yn)2 + (z − zn)2 (4.99)

R3n =
√

(x− xn+1)2 + (y − yn+1)2 + (z − zn+1)2

have the same geometrical definitions as those given earlier in section 4.6,
and cos ψin = (ˆ̀n · Rin)/Rin, for i = 1, 2, 3, as illustrated in Fig. 4.274.27.
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Figure 4.24: Echo area of perfectly conducting square plates at the broadside
aspect (wire diameter d = L/50). After Richmond [?][IEEE AP-T, 1966].
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Figure 4.25: Backscatter echo area of perfectly conducting spheres. (The wire
grid was generated by rotating a 20 sides regular polygon. The number of
polygons was 70R

λ
, where R is the sphere radius. The wire radius was set to

a = 0.005λ.) After Richmond [?][IEEE AP-T, 1966].
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Figure 4.26: Illustration of wire grid models of solid surfaces.
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Figure 4.27: Geometry of an arbitrarily oriented dipole.
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We are now ready to proceed with the application of Galerkin’s method to
construct the system of N equations. The equations are constructed from
(m = 0, 1, 2, . . . , N − 1)

N−1∑
n=0

In

∫

Cm

Er
n(x, y, z) · ˆ̀mW (`)d` = −

∫

Cm

Ei · ˆ̀mW (`)d` (4.100)

where the weighting function is now given by

W (`) =
sin[ko(∆`− |`|)]

sin(ko∆`)
|`| < ∆` (4.101)

and the contour Cm specifies integration over the mth straight segment of the
curved wire(s). When (4.1004.100) is put in the usual matrix form (4.334.33),
the associated impedance matrix elements are therefore given by

Zmn =

∫

Cm

Er
n(x, y, z) · ˆ̀mW (`)d` (4.102)

and to perform the implied integration, it is necessary to replace (x, y, z) with
their appropriate parametric representations. Since (4.1004.100) is enforced
on the wire surface, it follows that the appropriate parametric representations
are

x = xm + a(ρ̂m · x̂) + `(ˆ̀m · x̂)

y = ym + a(ρ̂m · ŷ) + `(ˆ̀m · ŷ) (4.103)

ẑ = zm + a(ρ̂m · ẑ) + `(ˆ̀m · ẑ)

and the integration is then carried out from −∆` to ∆`. As expected, when
m = n, Zmn in (4.1024.102) reduces to (4.804.80).

A general purpose computer program based on the PWS Galerkin’s method
has been written by Richmond [?][1974]. This program was used [?][Lin and
Richmond, 1975] to construct wire grid models and aircraft for RCS analysis
(see Fig. 4.264.26). As can be realized, because of the importance of wire
antennas and their earlier utility for modeling solid structures, the interested
reader will find that the literature is very rich on different formulations for
wire analyses (see for example Miller and Deadrick [?][1975] for a survey).
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Also, general purpose computer programs are readily available. Perhaps the
most widely used program is the Numerical Electromagnetics Code (NEC)
developed by Poggio and Burke [?][1981] at Lawrence Livermore Laboratories.
The basis functions employed in this program are [?][Yeh and Mei (1967)]

fn(z) = An + Bn sin[ko(z − zn)] + Cn cos[ko(z − zn)] (4.104)

for |z−zn| < ∆z
2

, where zn denotes the center of the wire segment and An, Bn,
Cn are constants to be determined. Two of these constants are eliminated by
simply enforcing current continuity at the two ends of the nth segment or via
application of Kirchhoff’s current law (charge conservation) at wire junctions
(the other constant is determined by solving the system resulting from point
matching). This is necessary, since the above basis functions do not guarantee
continuity across the wire junctions as is the case with the overlapping PWS
and Piecewise linear expansions. If a wire segment has one of its ends “free”
(i.e. not connected to any other segment), the NEC code enforces the condition

|I(z)|at
end

= ∓ 1

ko

J1(koa)

Jo(koa)

dI(z)

dz

∣∣∣∣
at
end

(4.105)

where J0,1(koa) denote the Bessel functions of order 0 and 1, and the + sign
is selected if the current is flowing toward the segment’s termination. This
condition accounts for current leakage onto the end of the finite thickness
wire.

4.9 Wires of Finite Conductivity

When the wire (or a portion of it) is of finite conductivity, the boundary
condition to be satisfied is

Jv = σEtot (4.106)

where Etot is the total field within the wire, Jv is the volume current in A/m2

and σ denotes the wire conductivity. For a ¿ ` we can again replace Jv by an
equivalent filamentary current at the center of the wire given by

I = πa2Jv (4.107)

Incorporating this into (4.1064.106) yields the condition

Etot = ˆ̀RwI(`) or Ei
` + Er

` = RwI(`) (4.108)
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where

Rw =
1

πa2σ
(4.109)

can be referred to as the resistivity of the wire.
The boundary condition (4.1084.108) must now replace the one given in

(4.14.1). This amounts to a modification of the impedance elements from Zmn

to Z ′
mn, where

Z ′
mn =





Zmn n 6= m

−Rw(`m)
∫
∆`m

fm(`)Wm(`)d` + Zmm n = m
(4.110)

in which Rw(`m) denotes the resistivity of the wire at the mth element and
Er

n is the field radiated by the nth element. The wire current is expanded in
the usual manner to yield the system

[Z ′
mn] {In} = {Vm} (4.111)

for a solution of the element amplitude coefficients In.
Often the wire antenna or scatterer with distributed loads is characterized

with a surface impedance Zs. The boundary condition satisfied on the surface
of the wire then is

Etot = ZsJs (4.112)

where Js denotes the surface current. Since

Js = ˆ̀I(`)

2πa
(4.113)

(4.1124.112) may be rewritten as

Etot = ˆ̀ Zs

2πa
I(`) (4.114)

This is similar to (4.1084.108) and thus a solution for the wire currents is found
by setting the impedance elements equal to

Z ′
mn = − Zs

2πa

∫

∆`m

fn(`)Wm(`)d` + Zmn (4.115)

where Zmn are the corresponding elements for the perfectly conducting wire.
The integral in (4.1154.115) is only over the common domain of the weight-
ing and expansion functions. Thus, if Wm(`) and fn(`) are among those in
(4.194.19) – (4.214.21) Z ′

mn will be equal to Zmn except for the matrix ele-
ments Zm(m±1) and Z(m±1)m.
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4.10 Construction of Integral Equations via

the Reaction/Reciprocity Theorem

The integral equations derived earlier via the application of the Moment
Method procedure can also be derived by invoking the reaction or reciprocity
theorem discussed in chapter 1. The reaction theorem is a mathematical re-
lationship between two sets of sources and their generated fields. Assuming
(J,M) generate the fields (E,H) and that (Jt,Mt) generate the fields (Et,Ht),
the reaction theorem states

∫ ∫ ∫
(E · Jt −H ·Mt) dv =

∫ ∫ ∫
(Et · J−Ht ·M) dv . (4.116)

Let us now set

(E,H) =
(
Er + Ei,Hr + Hi

)

where (Er,Hr) are the fields radiated by the wire current Js in the pres-
ence of the incident field (Ei,Hi) having their source at infinity. Expression
(4.1164.116) then becomes

∫ ∫ ∫
(Er · Jt −Hr ·Mt) dv +

∫ ∫ ∫ (
Ei · Jt −Hi ·Mt

)
dv

(4.117)

=

∫∫
© (Et · Js −Ht ·Ms) ds

We now choose Mt = 0 and set

Jt = ˆ̀
mWm(`) = Jm(`) (4.118)

concentrated at the center of the nth element of the perfectly conductive wire,
where Wm(`) is usually chosen to be equal (Galerkin’s method) to the equiv-
alent line current of the wire’s mth element. The field generated by this
source is now zero (essentially Jt radiates inside a closed hollow conductor)
and (4.1174.117) further reduces to

∫∫
©

wire
surface

Er · Jmds = −
∫∫
©

wire
surface

Ei · Jmds (4.119)
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when Jm is replaced by its equivalent line current at the center of the wire we
have

∫ ∫
Er · ˆ̀mWm(`)d` = −

∫ ∫
Ei · ˆ̀mWm(`)d` (4.120)

which is the same as (4.774.77) derived by the method of weighted residuals.

4.11 Iterative Solution Methods: The Conju-

gate Gradient Method

Instead of inverting the impedance matrix [Zmn] for a solution of the sys-
tem (4.334.33) or (4.734.73), one could employ an iterative solution scheme.
Among the numerous iterative solution schemes for such a system, the conju-
gate gradient (CG) method is most attractive because it guarantees conver-
gence in a maximum of N iterations for an N -dimensional system (ignoring
round-off errors). The CG method is a non-linear, semi-direct iterative scheme
and was introduced by Hesteness and Steifel [?][1952] independently more than
40 years ago. Beginning with a random initial guess of the solution (includ-
ing the zero vector) vector {In}, convergence is accomplished via a systematic
orthogonalization of the solution vector with respect to the residual vector
defined as the difference between the left and right hand sides of the system.
The residual vector is computed at the end of each iteration and is used to find
the next correction to the solution vector. The correction vectors are chosen to
be orthogonal to the residual vectors which are linearly independent. This is
an essential condition for guaranteeing the convergence of the algorithm since
at the Nth iteration the solution vector would have been constructed by N
independent vectors (conjugate directions) which form a basis set of the N -
dimensional space. Moreover, the algorithm will first proceed with corrections
which will most greatly impact the minimization of the next residual vector.
Consequently, convergence to within a reasonable degree of accuracy can be
achieved after only a few (normally less than N/3) iterations.

The CG algorithm is derived in the Appendix and for the pertinent system
it proceeds as follows:
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Initialize the residual vector and conjugate direction:

{r1} = {V } − [Z]{I1}

βo =
1

|[Z]a{r1}|2

p1 = βo[Z]a{r1}

For k = 1, . . . , n DO

αk =
1

|[Z]{pk}|2

{Ik+1} = {Ik}+ αk{pk}

{rk+1} = {rk} − αk[Z]{pk}

βk =
1

|[Z]a{rk+1}|2

{pk+1} = {pk}+ βk[Z]a{rk+1}

terminate loop when normalized residual error

|rk+1|
|[Z]a{V }| < tolerance

or when k = N .

In the above algorithm, the columns or vectors {Ik} represent the current
expansion coefficients after the (k−1)th iteration, {rk} are the residual vectors
and {pk} are the conjugate directions discussed above. Also, [Z]a denotes the
adjoint of the impedance matrix which is equal to the complex conjugate
transpose of [Zmn] and

|Ik|2 =
N∑

n−1

Ik
n(Ik

n)∗ (4.121)
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is the square norm of the vector {Ik}. Typical values for the tolerance range
from .01 to 10−4.

Excluding initialization, the above CG algorithm requires 2N2 + 5N + 2
multiplications and divisions (i.e. operations) per iteration. Thus, the CPU
time required to reach convergence is of order N2NI , if NI is the number of
iterations required to satisfy the tolerance condition. Thus, if NI is not a
small faction of N , the required CPU time to solve the system will again be of
order N3. However, the major advantage of the CG method is realized when
the [Z] matrix is Toeplitz as is the case for the straight wire. In this case,
the fast Fourier transform (FFT) can be combined with the CG method to
reduce the storage requirements and speed-up the solution. To see how this
is accomplished let us first return to the original integral equation (4.114.11).
By invoking the one-dimensional Fourier transform pair defined in (2.1712.171)
and the convolution theorem we can rewrite (4.114.11) as

{
Ei

z(ρ = a, z)
}

=
jZo

ko

F−1
{

Ĩ(kz)(k
2
o − k2

z)G̃wr(kz)
}

(4.122)

where

Ĩ(kz) = F{I(z)} =

∫ ∞

−∞
I(z)P2`(z)e−jkzzdz =

∫ `

−`

I(z)e−jkzzdz (4.123)

and G̃wr(kz) is correspondingly the Fourier transform of Gwr(z) defined in
(4.104.10). It is given by

G̃wr(kz) =

∫ ∞

−∞

e−jko

√
z2+a2

4π
√

z2 + a2
dz =

1

2π
Ko(a

√
k2

z − k2
o) (4.124)

where Ko is the modified Bessel function of the second kind and from (2.1702.170)√
k2

o − k2
z = −j

√
k2

z − k2
o . If we were to use the integral equation (4.74.7)

which involves the unreduced wire kernel then G̃wr(kz) need be replaced by
the transform of Gwu(z) given by

G̃wu(kz) =
1

2π
Io(a

√
k2

z − k2
o)Ko(a

√
k2

z − k2
o) (4.125)

in which Io is the modified Bessel function of the first kind. Note that although
Ko in (4.1244.124) and (4.1254.125) becomes infinite when ko = kz, the argu-
ment of the inverse transform operator in (4.1224.122) vanishes at that point
because of the multiplying factor (k2

o − k2
z).
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The importance of the algebraic expression (4.1224.122) is apparent when
it is realized that its right hand side gives the value of the entire column
(i.e. for all zm) resulting from the operation [Z]{I} without having to actually
generate and store the square matrix [Z] or perform the matrix multiplication.
However, before we can make practical use of this advantage, it is necessary
to rewrite (4.1224.122) in terms of the discrete Fourier transform (DFT) to
permit its implementation on a computer. As a first step toward this, we
define the discrete transform pair

Îp = Î(p∆kz) =
N−1∑
n=0

I(n∆z)W np (4.126a)

In = I(n∆z) =
1

N

N−1∑
p=0

Î∗(p∆kz)(W
np)∗ (4.126b)

where W = e−2π/N , ∆kz is the subinterval in the spectral domain given by
∆kz = 1/N∆z and Îp = Î(p∆f) is the discrete transform of the sequence In.

Upon rewriting the expansion (4.184.18) as

I(z) =
N−1∑
n=0

Infn(z − zn) = f(z) ∗
N−1∑
n=0

Inδ(z − zn) (4.127)

where the * indicates convolution and taking its Fourier transform it is seen
that the discrete form of Ĩ(kz) is given by

Ĩ(kz) = f̃(kz)În (4.128)

provided we set kz = n∆kz for calculating f̃(kz). If pulse (PWC) basis are
employed as expansion functions then

f̃(kz) = P̃∆z(kz) = ∆z
sin(kz∆z/2)

kz∆z/2
= ∆z sinc (kz∆z/2) (4.129)

and for PWS basis,

f̃(kz) = S̃(kz) =
2ko[cos(kz∆z)− cos(ko∆z)]

(k2
o − k2

z) sin(ko∆z)
(4.130)
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We note that as ∆z → 0 then (4.1294.129) and (4.1304.130) reduce to a value
equal to ∆z and thus

Ĩ(kz) ≈ ∆zÎn

which is an expected result implying the basis f(z) = ∆zδ(z).
The result (4.1284.128) can now be substituted into (4.1224.122) and per-

form the required DFT by setting kz = n∆kz = n/N∆z. However before
doing so, it is instructive to also replace the transform of the derivative ∂

∂z
by

its discrete counterpart. To obtain it, we observe that

F
{

∆G(z)

∆z

}
= F

{
G

(
z + ∆z

2

)−G
(
z − ∆z

2

)

∆z

}
= j

2 sin
(
kz

∆z
2

)

∆z
G̃(kz)

(4.131)

which is the transform of the discrete derivative based on the two point for-
mula. It simply implies that in (4.1224.122) we must make the replacement

kz →
2 sin

(
kz

∆z
2

)

∆z
= kz sinc

(
kz

∆z

2

)

where sinc
(
kz

∆z
2

) → 1 as ∆z → 0, an expected result. Finally, to obtain

the discrete counterpart of G̃wr(kz) the simplest approach is to replace it by

the sample train G̃wr(p∆kz) with p = −(N−1), . . . , 0, 1, . . . , N since the DFT
must be of finite length equal to 2N in order to satisfy the convolution require-
ments. However, unless G̃wr(kz) is of negligible value for |kz| > N∆kz = 1/∆z,
this truncation will cause aliasing errors which will affect the convergence of
the CG algorithm and the accuracy of the solution. To avoid aliasing, one
approach is to increase the size of the DFT. Generally, though, the DFT must
be an integer power of 2 to take advantage of the available FFT algorithms.
If we then set M = 2γ, where M > 2N − 1, in accordance with the above
discussion we must have

γ = Integer {log2(2N − 1) + ρ} (4.132)

where ρ ≥ 1 is an integer and determines the order of the FFT’s dimension
or pad. The minimum value of ρ is unity and can be increased as required
to reduce aliasing. In this case all arrays must be increased accordingly, and
except for G̃wr(n∆kz) the rest must be padded with zeros. In particular, the
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first N points of the array {In} are filled with the initial guess and the array
is then transformed using a length of M = 2γ to obtain {În}. To recover the
next {In} after inverse transformation only the first N points are again kept
and the others are zeroed.

In accordance with the above discussion, the discrete counterpart of (4.1054.105)
is

{Vm}=−jZo

ko

DFT−1

{[
k2

o−n2(∆kz)
2 sinc 2

(
n∆kz

2
∆z

)]
Înf̃(n∆kz)G̃wr(n∆kz)

}

(4.133)

The left and right hand sides of this equality should be interpreted as columns
or vectors of length N with the one from the right side obtained after trun-
cating the padded array. More specifically Vm = −Ei

z(ρ = a, zm) whereas the
right side should be equal to the column generated from the operation [Z]{In}.
Thus, in the CG algorithm we should set

[Z]{In} = −jZo

ko

DFT−1

{ [
k2

o − n2(∆kz)
2 sinc 2

(
n∆kz∆z

2

)]

· Înf̃(n∆kz)G̃wr(n∆kz)

}
(4.134)

This eliminates a need to generate the matrix thus reducing the storage to
O(N) instead of O(M2) required with the direct solution. Moreover, because
the DFT can be computed by performing only M log2 M operations (provided
M = 2γ), the required CPU time per iteration is reduced to 4M(1 + log2 M).
Thus, the total solution CPU time becomes 4MNI(1 + log2 M) and as before
NI denotes the number of iterations to reach convergence. Actual CPU times
for computing the current of a 1λo dipole are given in Fig. 4.214.21. As seen,
the CPU time in conjunction with the FFT (usually referred to as the CGFFT
method) is nearly a linear function of the number of unknowns whereas the
CPU time associated with the direct (matrix inversion) solution is a quadratic
function of the unknowns. Also, we observe from Fig. 4.264.26 that the use of
higher order basis leads to better convergence rates.

We close this section by noting that an alternative and more appropriate
way to compute the column [Z]{In} is to consider the discretized equation

Vm =
N−1∑
n=0

InZmn =
N−1∑
n=0

InZ(m− n) =
N−1∑
n=0

InZm−n
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Figure 4.28: A comparison of the CPU time required by the MOM and the
CGFFT formulations for the solution of the 1λo wire dipole problem.
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Then by application of the discrete convolution theorem it follows that

{Vm} = DFT−1{ẐÎn}

where Ẑ denotes the discrete transform of the sequence Z0n or the sequence
Zm−n = Zp with p = −(N−1), . . . , 0, 1, 2, . . . , N−1. Because of the periodicity
of the discrete FFT aliasing is eliminated once the FFT length is set equal to
2N − 1 to accommodate spreading due to the convolution. The sequence Z0n

can be obtained from the expressions given earlier by (4.364.36), (4.754.75) or
(4.804.80). If 2N − 1 is not a power of 2 then the values of the Zp sequence
should be arranged as shown in Fig. 4.274.27.

Zero padding

-N+1 -N+2 -3 -2 -1 0 1 2 3 N-2 N-1 M/2 2N-3

2N-2

2N-1

M ≥ 2N-1

Figure 4.29: Arrangement of the Zm−n = Zp sequence before inverse fourier
transformation.

In general the computation of the Zmn elements may be difficult due to
kernel singularities and the requirement to perform rather involved integra-
tions. In this case, a third alternative would be to return to (4.1344.134) and

replace G̃wr(kz) by the discrete transform of the sequence

Gwr(zn) =
e−jko

√
(n∆z)2+a2

4π
√

(n∆z)2 + a2

with n = −N − 1, . . . , 0, 1, . . . , N − 1. This procedure should substantially
reduce aliasing errors and is equivalent to setting

Ẑn = −jZo

ko

{[
k2 − n2(∆kz)

2 sinc

(
n∆kz∆z

2

)]
f̃(n∆kz)Ĝwr

}
. (4.135)
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where Ĝwr corresponds to the transform of the discrete sequence Gwr(zn). By
taking the inverse DFT of the above Ẑn we will then (approximately) recover
the original sequence Zn. Any aliasing errors will be due to the truncation of
f̃(kz) but these should be negligible.
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Sticky Note
Now how about a summary of the different topics in this chapter, what the strengths/weaknesses/applications of each are.  Any examples of the types of real-world/research problems being solved with these methods, an idea of scale ... do we do 2000 unknowns routinely or 20 million.  What sorts of software is avialable today ... now these do make the book potentially dated and need updated editions ... a tradeoff.
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