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1 Introduction

Numerical simulation is an extremely valuable tool for those who wish to understand complex
electrostatic systems. Although there are several competing methods for achieving this goal,
one of the simplest and more straightforward of these is called the finite-difference method
(FDM). Basically, FDM works by sampling the voltage potential within some finite simulation
domain and then approximating the derivative operation with a finite-difference. When applied
to a time-independent partial differential equation, the net result is a linear system of equations
that may be readily solved via matrix inversion.

Physically speaking, the ultimate governing equation for any electrostatic system is Gauss’s
law, which is expressed in point form as

∇ ·D(r) = ρ(r) . (1)

In this context, r = xx̂ + yŷ + zẑ is a position vector in space, ρ is the charge density function,
and D is the electric flux density. Using the constitutive relation D(r) = ε(r)E(r), Gauss’s law
may be rewritten in terms of the electric field intensity E as

∇ ·
[
ε(r) E(r)

]
= ρ(r) , (2)

where ε(r) is the dielectric function. Gauss’s law may be further rewritten in terms of voltage
potential V by making the substitution E(r) = −∇V (r):

∇ ·
[
ε(r) ∇V (r)

]
= −ρ(r) . (3)

Although it is not commonly discussed in the literature, this is really nothing more than a
generalized form of the Poisson equation, and is the expression we shall be most interested
in throughout this paper. A far more familiar expression occurs if we next assume a uniform
dielectric function with the form ε(r) = ε. This gives us

∇2V (r) = −ρ(r)
ε

, (4)

which is the classical form for the Poisson equation as given in most textbooks.
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Figure 1: Mesh points for the FDM grid. For convenience with matrix indexing, the y-axis is
inverted from the typical Euclidian convention.

Although the classical Poisson equation is much simpler to numerically solve, it also tends to
be very limited in its practical utility. Realistically, the generalized Poisson equation is the true
equation we will eventually need to solve if we ever expect to properly model complex physical
systems. We shall therefore begin by using the classical Poisson equation as a demonstration
case for how FDM works before expanding our algorithm to the generalized form. For brevity
and simplicity, this paper will be strictly limited to two-dimensional systems, though a full
three-dimensional solution follows a nearly identical derivation.

2 The Five-Point Star

The first step in applying FDM is to define a mesh, which is simply a uniform grid of spatial
points at which the voltage function will be sampled. Letting h be the distance between each
sample, the points that lie on the mesh may be defined by

xi = ih , and (5)
yj = jh , (6)

where i and j are integers. In practice, i and j will eventually be used as indices for a matrix of
voltage samples, so it helps to use the convention depicted in Figure 1 with the inverted y-axis.
We may then define the voltage samples at each grid point using the short-hand notation

V (i, j) = V (xi, yj) . (7)

Along with being more compact, this notation serves as an analogy to the matrix indexing that
will be required when one actually codes the FDM algorithm into a programming language like
Matlab. In a similar fashion, we may also define the charge density samples along the same
mesh by using the ρ(i, j) notation.
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Figure 2: Basic stencil for the 5-point star.

The next step is to expand the Poisson equation by explicitly showing the partial derivatives
in space:

∂2V (i, j)
∂x2

+
∂2V (i, j)
∂y2

= −ρ(i, j)
ε

. (8)

The reason for doing this is so that we may approximate the derivative operators through the
use of finite-differences. The easiest way to do this is through the three-point approximation
for the second-derivative, which is given as

∂2

∂x2
V (i, j) ≈ V (i− 1, j)− 2V (i, j) + V (i+ 1, j)

h2
. (9)

with a similar expression for the y-component. Plugging back into Equation (8) then gives us

V (i− 1, j) + V (i+ 1, j) + V (i, j − 1) + V (i, j + 1)− 4V (i, j) = −h
2

ε
ρ(i, j) . (10)

Finally, if we solve for V (i, j), we find

V (i, j) =
1
4

[
V (i− 1, j) + V (i+ 1, j) + V (i, j − 1) + V (i, j + 1) +

ρ(i, j)h2

ε

]
. (11)

What this expression tells us is that every voltage sample V (i, j) is dependent only on ρ(i, j)
and voltage at the four nearest neighbors. A graphical depiction of this is called a computational
molecule, and is shown in Figure 2. Because of its unique geometry, this five-point stencil is
often referred to as the five point star.

Because each voltage sample V (i, j) is linearly dependent on its four nearest neighbors, the
solution over all (i, j) may be represented as a simple matrix-vector equation. This is readily
achieved if we first vectorize the voltage samples by some convention, such as

x =
[
V (1, 1) V (2, 1) V (3, 1) · · · V (2, 1) V (2, 2) V (2, 3) · · ·

]T
. (12)
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The next step is to express the linear relationship between voltage samples into a matrix A.
This effectively converts the entire problem into a matrix-vector equation with the form

Ax = b , (13)

where b simply contains all the information about charge density and Dirichlet boundary con-
ditions. The numerical solution to the system is finally found by simply inverting the matrix
A to find

x = A−1b . (14)

3 Successive Over-Relaxation

For relatively small simulation domains, the direct matrix inversion of Equation (14) works
perfectly well for obtaining a solution. However, it is important to realize that the size of
A grows directly with the square of the simulation domain. For example, given a simulation
domain of 100× 100 voltage samples, the matrix A will need to be 10, 000× 10, 000 elements.
Because direct matrix inversion is such an intense operation, it is easy to see how even small
simulations can quickly require excessive computational resources.

To reduce the computational cost required by direct matrix inversion, it helps to realize
that A is a sparse matrix, meaning the vast majority of elements in A are all zeros. This is a
direct consequence of Equation (11), which shows that each voltage element is only dependent
on four other samples. As a result, each row in A has, at most, only five nonzero entries (or
even one nonzero entry if the voltage sample is a fixed Dirichlet boundary). This allows us
arrive at a solution through the use of iterative methods that take advantage of this property,
and one of the more simple algorithms is called successive over-relaxation (SOR).

The first step when utilizing SOR is to define a residual R(i, j) as the degree to which each
voltage sample V (i, j) does not satisfy Equation (11):

R(i, j) = V (i− 1, j) + V (i+ 1, j) + V (i, j − 1) + V (i, j + 1)− 4V (i, j) +
ρ(i, j)h2

ε
(15)

The next step is to loop over every sample in V (i, j) and add a correction factor defined by
the residual R(i, j). This process is then repeated over many iterations until the residual falls
below some acceptable error value. For the kth iteration in the loop, we therefore have

V k+1(i, j) = V k(i, j) +Rk(i, j) . (16)

This method is referred to as successive relaxation, and is guaranteed to eventually converge
on the correct solution. However, it is also possible to speed up the convergence process by
multiplying R with a relaxation factor ω, such that

V k+1(i, j) = V k(i, j) + ωRk(i, j) . (17)

This is the method of successive over -relaxation, and will also converge as long as we enforce
the condition that 0 < ω < 2. The only difficult part is choosing an ideal value for ω which,
unfortunately, can only be found through trial-and-error. However, rapid converge may be
typically obtained with a value on the order of ω = 1.9.
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Figure 3: Finite-difference mesh for the generalized Poisson equation.

4 Generalized Poisson Equation

Let us now return to the generalized Poisson equation:

∇ ·
[
ε(r) ∇V (r)

]
= −ρ(r) . (18)

Although we could easily begin by directly applying numerical derivatives to this expression,
a more accurate approximation may be reached by first defining the permittivities along the
staggered grid shown in Figure 3. Mathematically, this may be written as

ε(i, j) = ε(xi + h/2, yj + h/2) , (19)

with V (i, j) and ρ(i, j) defined along the same grid points as before. What this allows us
to do is use the central-difference method on the first-order derivatives that will come out
from this expression. It also places the voltage samples along the boundaries of the dielectric
permittivities. Another change that turns out to be very convenient is to convert the Poisson
equation into its integral form. If we define Ωij as the square region around a single voltage
sample V (i, j), we may take the volume integral to find∫

Ωij

∇ ·
[
ε(r) ∇V (r)

]
dΩ = −

∫
Ωij

ρ(r)dΩ . (20)

An example of this volume element is depicted in Figure 4.
Looking first at the right-hand side of Equation (20), we note that the integral over the

charge density is simply the total charge enclosed inside the volume. We may therefore make
the replacement

−
∫

Ωij

ρ(r)dΩ = −Q(i, j) . (21)
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Figure 4: Volume element around voltage sample V (i, j). The region Ωij represents the region
enclosed by the outer surface Sij .

The left-hand side of Equation (20) may also be simplified by applying the divergence theorem.
This converts the volume integral over Ωij into a surface integral around its outer border, giving∫

Ωij

∇ ·
[
ε(r) ∇V (r)

]
dΩ =

∮
Sij

[
ε(r) ∇V (r)

]
· dS = Q(i, j) , (22)

where Sij is the enclosing surface and dS is the differential unit normal vector. It is this form
of the Poisson equation that we will now apply our finite-difference approximations to.

With the desired expression in hand, the next step is to expand out the gradient operator
to find ∮

Sij

[
ε(r) ∇V (r)

]
· dS =

∮
Sij

[
ε(r)

(
∂

∂x
V (r)x̂ +

∂

∂y
V (r)ŷ

)]
· dS (23)

In three dimensions, the surface Sij would normally be a cube, but in our two-dimensional
example is simply a square. We may use this simplified geometry to rewrite the total surface
integral as a series of sub-integrals around each side of the square. For brevity, we shall simply
write these as integrals over the four surfaces S1 · · ·S4:∮

Sij

[
ε(r)

(
∂

∂x
V (r)x̂ +

∂

∂y
V (r)ŷ

)]
· dS =

∫
S1

+
∫
S2

+
∫
S3

+
∫
S4

. (24)

This geometry is depicted in Figure 5, which highlights the contour of integration over all four
sides, taken in the counter-clockwise direction.

As an example case, let us evaluate the integral over S1, which we shall define as the right
side of the square where ds = x̂dy. For simplicity, it also helps to assume that V (i, j) lies at the
origin, though the result is equivalent at any location. We may therefore express the integral
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Figure 5: Schematic of the contour of integration along the staggered grid.

over S1 as

∫
S1

=

h/2∫
−h/2

ε(x, y)
(
∂

∂x
V (x, y)x̂ +

∂

∂y
V (x, y)ŷ

)
· (x̂)dy =

h/2∫
−h/2

ε(x, y)
∂

∂x
V (x, y)dy . (25)

Next, we note that the integral consists entirely along the border between the regions defined
by V (i, j) and V (i + 1, j). We may therefore approximate the partial derivative by using a
central difference between the two samples, and assume that it is constant across the entire
border. Calculating the integral across the two dielectric regions therefore gives∫

S1

≈ h
[
ε(i, j) + ε(i, j − 1)

2

] [
V (i+ 1, j)− V (i, j)

h

]
= (1/2)

[
ε(i, j) + ε(i, j − 1)

][
V (i+ 1, j)− V (i, j)

]
. (26)

Carrying out this same operation over the other three sides thus gives∫
S2

≈ (1/2)
[
ε(i, j − 1) + ε(i− 1, j − 1)

][
V (i, j − 1)− V (i, j)

]
(27)

∫
S3

≈ (1/2)
[
ε(i− 1, j − 1) + ε(i− 1, j)

][
V (i− 1, j)− V (i, j)

]
(28)

∫
S4

≈ (1/2)
[
ε(i− 1, j) + ε(i, j)

][
V (i, j + 1)− V (i, j)

]
. (29)
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For notational compactness, we now define the following constants:

a0 = ε(i, j) + ε(i− 1, j) + ε(i, j − 1) + ε(i− 1, j − 1)

a1 = (1/2)
[
ε(i, j) + ε(i, j − 1)

]
a2 = (1/2)

[
ε(i, j − 1) + ε(i− 1, j − 1)

]
a3 = (1/2)

[
ε(i− 1, j) + ε(i− 1, j − 1)

]
a4 = (1/2)

[
ε(i, j) + ε(i− 1, j)

]
.

Finally, we put it all together to find∮
Sij

≈ −a0V (i, j) + a1V (i+ 1, j) + a2V (i, j − 1) + a3V (i− 1, j) + a4V (i, j + 1) . (30)

Including the right-hand term, we finally arrive at

−a0V (i, j) + a1V (i+ 1, j) + a2V (i, j − 1) + a3V (i− 1, j) + a4V (i, j + 1) = −Q(i, j) . (31)

Just like Equation (11), this expression represents a numerical stencil for the generalized
Poisson equation. It is therefore a straightforward matter to generate a system of linear equa-
tions of the form Ax = b. However, just like before, A is a very large and sparse matrix, thereby
making direct inversion an impractical option. We shall therefore follow the same procedure of
successive over-relaxation by first solving for V (i, j):

V (i, j) =
1
a0

[
a1V (i+ 1, j) + a2V (i, j − 1) + a3V (i− 1, j) + a4V (i, j + 1) +Q(i, j)

]
. (32)

We next define the residual as

R(i, j) =
1
a0

[
a1V (i+1, j)+a2V (i, j−1)+a3V (i−1, j)+a4V (i, j+1)+Q(i, j)

]
−V (i, j) . (33)

And once again, the iteration formula is exactly as we found before:

V k+1(i, j) = V k(i, j) + ωRk(i, j) . (34)

5 Electric Fields

In order to properly extract the electric field intensity out of the simulation, one must be careful
to avoid any of the discontinuities that occur at the boundaries between dielectrics. This is
readily accomplished as long as we remember that only the normal components of electric fields
are actually discontinuous across boundaries. We therefore define a new staggered grid for the
electric fields by using the convention depicted in Figure 6. In terms of the the central-difference
approximation, this may be written as

Ex(i, j) = −V (i+ 1, j)− V (i, j)
h

, (35)

Ey(i, j) = −V (i, j + 1)− V (i, j)
h

(36)
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Figure 6: Grid stencil for obtaining the electric field samples. Note how only the tangential com-
ponents of the E-field are defined at any of the boundaries, thus preventing any discontinuities
to exist within the mesh.

The downside to this staggered grid approach is that E-field components are not sampled
along the same points in space. One simple way to fix this is by choosing a new set of sample
locations that lie in between the boundaries and then averaging over the nearest neighbors.
Letting E′x and E′y represent the new set of grid samples, this is written as

E′x(i, j) = (1/2)
[
Ex(i, j + 1) + Ex(i, j)

]
(37)

E′y(i, j) = (1/2)
[
Ey(i+ 1, j) + Ey(i, j)

]
. (38)

This new geometry is depicted in Figure 7, which shows that the new electric field samples
are effectively placed at the same grid locations as the permittivities. Such an arrangement
avoids any of the confusion that occurs at the boundaries between dielectric surfaces, since
normal components are discontinuous. It also places all E-field samples along a grid that is
interior to the voltage samples. For this reason, the number of rows and columns in the E-field
and permittivity matrices will be one less than those of the voltage matrix.

6 Example: Parallel-Plate Capacitor

In this final section, we conclude with an example simulation of a parallel-plate capacitor using
FDM with SOR. The simulation domain is 338 × 205 grid steps in size, and uses Dirichlet
boundaries of V = 0 at all four edges. Using a relaxation factor of ω = 1.9, this simulation
required only 670 iterations before converging. Figure 8 shows the voltage mapping of the
system. The top plate is at a potential of +1.0 V while the bottom plate is−1.0 V. Superimposed
on the image is a quiver plot to represent the electric field vectors.
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Figure 7: Modified E-field stencil. Each field component is defined by the average between
the two nearest neighbors from the previous stencil. This places the E-fields along the same
staggered grid as the permittivities.

Figure 8: FDM simulation of a parallel-plate capacitor. The top plate is at a potential of
+1.0 V while the bottom plate is at −1.0 V. The color mapping represents voltage potential
throughout space while the quiver plots represent electric field vectors.
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