Absorption Parallel configuration

\[R_L' = \frac{R_L^2 - X_L^2}{R_L} \]
\[X_L' = \frac{R_L R_L'}{X_L} \]

Convert to:

\[Y_L'' = \frac{1}{X_L''} \]
\[Y_p = \frac{1}{X_p} \]

Find \(X_L'' = \frac{1}{\frac{1}{X_L'} + \frac{1}{X_p}} \)

Replace \(X_p \) by impact of load

Replace \(Y_L'' \) by parallel to \(X_L'' \)

\[\omega^2 = \frac{X_R X_L''}{X_L'} \]
\[X_L = \frac{\omega^2}{X_L''} \]
Absorption - Series Configuration

Absorb as much of load \(X_L \) as possible into \(X_s \) (similar to \(Y_c \) T network)

\[
X_L = X_s + X_L''
\]
Find \(X_L'' = X_L - X_s \)

Replace \(X_s \) by \(X_s \) part of load:

\(X_L'' \) (You are using your load as part of the matching circuit)

Now resonate (serial) the \(X_L'' \)

\[\text{Load} \quad i_0^2 = X_L X_L'' \]
Find \(X_L = \frac{\omega^2}{X_L''} \)