Matlab® M File Functions

Matlab has the ability to be programmed. The user can create scripts or a text file of commands that Matlab® can run when called. Alternately and more powerful a function can be created. These functions are similar to functions in C/C++.

First an example.

function [khi,gamma]=polarization(ax, ay, delta)

% returns the rotation angle, gamma, and the eplipticity angle, khi in degrees

% ax and ay are scalars while delta is the phase angle difference in degrees

deltar=delta*pi/180;

psir=atan(ay/ax);

gammar=1/2*(atan((tan(2*psir)*cos(deltar))));

khir=1/2*asin(sin(2*psir)*sin(deltar));

khi=180*khir/pi;

%convert from radians to degrees

gamma=180*gammar/pi;

if cos(deltar)>0 & gamma<0

 gamma=gamma+90;

elseif cos(deltar)<0 & gamma>0

 gamma=gamma-90;

else

 gamma=gamma;

end

This is an simple function that we can use to learn the rules of programming for Matlab® functions.

· File Name -- The file name of any function is the name of the file. So in our exampe function polarization the file name is polarization.m.
· Comment lines (denoted by the %) up to the first noncomment line are displayed when you type help function. This will be very helpful in remembering the calling parameters and what each function does.

For example:

help polarization

 returns the rotation angle, gamma, and the eplipticity angle, khi in degrees

 ax and ay are scalars while delta is the phase angle difference in degrees

· The function will terminate when it either reaches the end of the file (such as above) or it encounter the command return.
· Matlab® is capable of doing recursion with functions.
· Functions can share global variables with the Matlab® Command Window, other functions and recursive calls to itself. The variable must be declared global though.
· Functions can be nested. That is a function may contain a call to another function whether it be different or itself.
File Management

Typically we will be using the computer lab for access to Matlab®. It is acceptable to add a search path to the Matlab® path variable for either the floppy drive or a local directory on the hard disk. This can be done by using either the Path Browser (button in toolbar with two folders) or manually using the command path or addpath.

Path is a more powerful access to the path variable. Use care when changing it.

To prepend a path to the search paths use the following command.

path('newpath',path) prepends a new directory to the current path

This will ensure that it looks at your directory, newpath before using the other default directories.

The faster and safer way is to use the addpath command. To add your path 'newpath' use addpath like this:

addpath ('directory') prepends the specified directory to MATLAB's current search path.

addpath ('dir1','dir2','dir3',...) prepends all the specified directories to the path.

Further Help

All of the above information and more can be found in the Student Edition of the Matlab® User's Guide for Version 5 or in the Help Desk under the help menu in the Matlab® Command Window.

If you have any questions that aren't answered in the above documentation e-mail me at dhill@sysdiv.sdl.usu.edu.

Bonus

Attached is a full blown function for the Trapezoidal Integration Method.

function [area,error]=trapint(polynomial,upper_limit,lower_limit,resolution)

% Trapezoidal Numerical Integration Method

% Duane Hill

% Spring 1999 -- ECE 5130 Computational Methods for Electromagnetics

%

% Usage:

% polynomial -- array of coefficients of polynomial to be integrated

% upper_limit -- upper limit of definite integral

% lower_limit -- lower limit of definite integral

% resolution -- number of points in integral

%

% Returns:

% area -- area under the curve

% error -- error term

% BEGIN

%

% Variable Declaration

% A -- Area under curve; initially set to 0

% f0 -- first point

% f1 -- second point

% numpoints -- number of points between a and b with given resolution

% funct -- array of points at vertices of trapezoids

% when evaluated by function

% increment -- increment step; = (b-a)/numpoints

%

% deriv -- array of derivatives corresponding to points

% Initialization

area=0;

f0=lower_limit;

numpoints = 10;

% Calculate points array

increment=(upper_limit-lower_limit)/numpoints;

funct=zeros(numpoints,1);

for i =1:numpoints+1

 funct(i)=polyval(polynomial,f0);

 f0=f0+increment;

end

% Calculate Area

for i=1:numpoints

 f0=funct(i);

 f1=funct(i+1);

 area=area+(f0+f1)/2*increment;

end

% Calculate the Error
