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CURRENTS INDUCED IN THE HUMAN BODY FOR
EXPOSURE TO ULTRAWIDEBAND ELECTROMAGNETIC PULSES

I. INTRODUCTION _

We have previously used a sixteen tissue anatomically based model of the human body to
calculate induced currents for exposure to vertically polarized electromagnetic pulses (EMP) [1].
Since the bandwidths associated with these EMPs with risetimes on the order of 10-30 ns and
durations on the order of 100-300 ns were fairly small, typically 0-100 MHz, a conventional
nondispersive finite-difference time-domain (FDTD) method could be used for the calculations. In
this method the tissue propcrtles are assumed to be independent of frequency and are takcn ata
center-based frequency of 40 MHz. While the conventional FDTD method which ignores the
dispersion of the tissue's dielectric properties may be appropriate for narrowband irradiation, it is
clearly not _suitable for wideband irradiation such as that due to short pulses with subnanosecond
risetimes and pulse duratlons on the order of a few nanoseconds. We have consequently modified
the FDTD algorithm to incorporate the frequency dispersion of the dielectric properties for the
various tissues [2,3]. Wé have used the new frequency-dependent finite-difference time-domain
((FD)2TD) mcthod’ to calculate the inducedAcurrents and specific absorptions (SA) for an
ultrawideband pulse, the time history of which was prescribed on a diskette by Jim O'Loughlin of
Kirtland AFB, New Mexico. This was arranged by Dr. David N. Erwin of Armstrong Laboratory,
Brooks AFB, Texas.

II. THE FREQUENCY-DEPENDENT FINITE-DIFFERENCE TIME-DOMAIN ((FD)2TD)
METHOD

The time-dependent Maxwell's curl equations used for the FDTD method are:
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where the displacement vector D is related to the electric field E thtbu'gh the coinplex permittivity
e*(w) of the local tissue by the following equation:
D =e¥(w) E , .3
For the conventional FDTD method the cqmplex permittivity ”e*((o) is assumed to be
independent of the frequency ®, Equation 3 is substituted into Equation 2, and Equations 1 _and 2
are then solved iteratively in the time domain. _ , v
For the new frequency-dependent FDTD method 8*(05) is dependent on the frequency ,
and Equation 3 must be converted to a form which can be solved iteratively in the time domain
along with Equations 1 and 2. This conversion may be done by choosing a rational function for

e* (0)) such as the Debye equation with two relaxation constants [2]:
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From Equation 3 we can write D(w)
e+ ]0)(8 T, + € 'Cl) mtte
D(®) =e*(0) E(w) =¢ E(w)
1+ JO)("Cl + 7T 2) - % % )
where the zero (static) frequency dielectric constant &5 is given by
Es =E€s] + €52 - €0 . : ' S (6)

Since Equation 5 is a frequency-domain description of D obtained for a single-frequency
sinusoidal variation of fields, we can write it for an arbitrary time variation in-terms of the

following differential equation:
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As can be recognized, Equation 7 is a modified version of the polarization equation in the
relaxation theory of dielectrics. For the (FD)2TD method, we need to solve Equations 1 and 2
subject to Equation 7. Similar to references 1-4 the space and time derivatives in these equations

can be approximated by differences, and these equations may be solved for E—> H - D



-iteratively. In the (FD)2TD method [2] we use the values of E to calculate H (Equation 1), use
H to calculate D (Eq. 2) and use D to solve for E (Eq. 7). The detailed procedure and the
difference equations for Equations 1, 2 and 7 are given in reference 2.

From the calculated internal fields we calculated the vertical currents passing through the

various layers of the body by using the following equation:

2 dD
®=38 Z

where d is the cell size (=1.31 rcm), and the summation is carried out for all cells in a given layer.

We also calculated the layer-averaged absorbed energy density or SA and the total energy W
absorbed by the whole body using the following relationships:

_5N' EGik® | 9DGikD
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- In Equations 9 and 10 8t is the time step (= 8/2c = 0.02183 ns) used for the time-domain
calculations, N is the number of ceils in layer k of the body, and p(i,j.k) is the mass density in
kg/m3 for each of the cells in the corresponding layers.

For the various calculations we have used both the isolated model of the human body as
well as the model standing vertically on a conducting ground plane. For the latter, the shoe-
wearing condition is modelled by a separation layer of rubber (g = 4.0) of thickness 2.62 ¢cm (20)

assumed between the feet and the gi'ound plane.




1. MODELING OF BIOLOGICAL TISSUE PROPERTIES WITH THE DEBYE

- EQUATION

The measured properties of biological tissues (muscle, fat, bone, blood, intestine, cartilage,

lung, kidney, pancreas, spleen, lung, heart, brain/nerve, skin, and eye) were obtained from
reference 5. Optimum values for &sl, €52, €o, T1, and T2 in Equation 4 were obtained by nonlinear
least squares matching to the measured data for fat and muscle. All other tissues have properties
* falling roughly between these two. Optimum values shown in Table 1 for eg, €5, and €, for all
tissues were then obtained with T-and T being the average of optimized values for fat and muscle.
This was done to facilitate volume averaging of the tissue properties in cells of the heterogeneous
man model. Having 1; and 1:2 constant for all tissues allowed linear (volume) averaging of the £
values for each tissue in a given cell to calculate € values for that cell. The measured tissue
properties and those computed from the Debye equation with tjand ) being the average of fat and
muscle are shown in Figure 1 for fai And muscle. Similar comparisons were also obtained for the

other tissue types.

Table 1. Debye Constants for Tissues
T1=290.6 x 109/2x

T2=0.5x 1092x
(average of optimum for fat and muscle)

Tissue €0 €51 €52
Muscle 40.0 3948. 59.09
Bone/Cartilage 34 312.8 7.11
Blood 35.0 3563. 66.43
Intestine 39.0 4724, 66.09
Liver 36.3 2864. 57.12
Kidney 35.0 3332. 67.12
Pancreas/Spleen 10.0 3793. 7391
1/3 Lung 10.0 1224. 13.06
Heart 38.5 4309. 54.58
Br@in/Nerve 325 2064. 56.86
Skin 23.0 3399. 55.59
Eye 40.0 2191. 56.99




: IV THE ANATOMICALLY BASED MODEL ‘
_ The procedure to obtam the anatomlcally based model of the human body is detailed in our
earlier publication [1]. Briefly, we used anatomical sectional diagrams of the human body that were
available in the book by Eycleshymer and Schoetnaker [6]. For each of the available cross
sectlons/ the predommant tissue (1 of the 16 tissue types such as muscle, fat, bone, and blood,
© etc.) was 1dent1f'1ed for each of the square cells of dimensions 0.635 x 0.635 cm (1/4 in. x 1/4in.)
artanged in the form of a grid.

By interpolating between the anatomical cross sections that were available with variable
separations of 2.3-2.7 cm (0.9 to 1.06 in), compositions of the various tissues were obtained for
cubical subvolumes (cells) of dlmensxons 0.635 cm (1/4 in.) for each side. Smce this arrangement
resulted in a model with about 360, 000 cells representing the whole body (about 3 million cells for
the entire interaction space to the absorbmg boundaries) this model was difficult to accommodate
within the memory space of readily accessible computers. A 45,024-cell model with cubical cells
of twice the initial dimension (1.27 cm or 0.5 in.) was developed next by averaging the data for 2 x
2 x 2 = 8 of the initial cells. Without ﬁchanges in the relative properties of the various tissues, this
process allows some fle)tibility in the height and weight of the model. We have taken a slightly
" larger cell size of 1.31 cm (0.516 in.) for the model to obtain a total height and body weight of
175.5 cm (169/in.) and 69.6 kg (153 Ib ), respectively. ’

V. RESULTS

A typical ultrawideband pulse with a peak amplitude of 1.1 V/m is shown in Figure 2. 1tis
interes_ting to note that kthe pulse has a rise time of about 0.2 ns and a total time duration of about
7 - 8 ns. As aforementioned, this pulse was prescribed in digitized form on a computer diskette by
Jim O'Loughlin of Kirtland AFB. We have calculated the Fourier spectrum of the prescribed pulse
which is shown in Figure 3. Most of the energy in the pulse is concentrated»i‘n the 200 - 900 MHz
band with the peak of the energy being at about 500 MHz. Since fairly similar Fourier spectra were

calculated for all six of the pulses given on the diskette, we decided to treat the pulse waveform of

Figure 2 as repreéentative of all of the pulses.
f




We assumed the incident fields to be vertically polanzcd, sincé this polarization is known to
result in the s&ongest coupling for standing individuals. Using the procedure of Section II .
(Equation 8), we have calculated the temporal v‘z:\riatior-x.s' of total vertical 'currcnts for the various
sections of the body both for the shoe-wearing grounded, and ungrounded 'exposure conditions of
the model, respectively. The current variations for some representative sectioﬁs such as those
through the eyes, neck, heart, liver, bladder, knees, and ankles are givén in Figure 4a-g,
respecti\;ely. The calculated peak currents are on the order of 1.1 to 3.2 mA/(V/m). It is interesting
to note that there is very little difference in the induced currents whether the model is grounded or
not, because most of the energy in the pulse is at frequencies in excess of 300 MHz where the
effect of tt{e ground plane on the induced currents or thé SARs 1s minimal [7, 8].

In Figure 5 we have plotted the pcak current for each section of the body with a resolution
of 1.31 cm (0.516 in.) Also identified in this figure are the sections passing through the eyes,
neck, etc., for which temporal variations are shown in Figurc 4. As seen in Figure 5,the maximum
peak current of 3.5 mA which is 3.2 mA/(V/m) 6ccurs at a height of 96.3 cm (38 in.) above the
bottom of the feet. A very similar result had previously been observed for calculations using -
isolated and grounded models of the human body for plane-wave exposures at frequencies of 350-
700 MHz where the highest induced currents on the order of 3.0-3.2 mA/(V/m) were calculated for
sections of the body that are at heights of 85-100 cm relative to the feet [7,8].

The Fourier spectra of the currents shown in Figure 4 for the various sections of the body
are given in Figure 6. As expected, components from low frequencies to frequencies in excess of
1,000 MHz are observed. From Figure 6 it is obvious that émy instrumentation to measure the
induced currents through the feet or at any location of the body must have a bandwidth in excess of
1,000 MHz and subnanosecond response time. |

Using Equations 9 and 10 we have also calculated the SA and the total absorbed energy for
exposure to the ultrawideband pulse of Figure 2. The SAs are plotted in Figure 7 as a function of

height above the feet of the variplis sections of the body for isolated and shoe-wearing conditions.




.Note that because of the very limited time duralion of the pulse (7-8 ns) the specific absorptions are
on the order of 0. 02 to 0. 20 pl/kg. Using Equatron 10 the total energy absorbed by the body as a
function of time has been calculated and is shown in Flgure 8. The energy is virtually all absorbed
in the first 6 to 8 ns. The total energy absorbed by the body exposed to a single pulse is calculated
to be 2.0 and 1.91 pJ for isolated and shoe-weéxring grounded conditions, respectively.

VI PROJECTIONS FOR HIGHER PULSE AMPLITUDES AND REPETITION RATES

It is recognized that the SA and tlre energy absorbed by the body should be multiplied by
square of the peak incident electric field amplitude and the pulse repetition rate in case the body is
irradiated by more than onevpulse at a time.

To illustrate, let us say that the pulse peak amplitude is 1 kV/m rather thah 1.1 V/m that has
been assumed for tlre 'ebove calculations. Furthermore, let us assume that the pulse repetition rate is
1,000 pulses per secohd rather than a single pulse. For such a train of pulses' for any 6-min period
there would be 3.6 x 1(l5 pulses. Specific absorptions for the various sections of the body'(from’
Figure 7) would be on the order of (0.02 to 1.8) x 1012 x (103/1.1)2 x 3.6 x 105 = (0.6 to 5.4)
ml/kg. _Siinilarly rhe total 'ene'rgy absorbed by the body in arly 6-min period would be 0.59 and
0.57 J for isolatecl and shoe?weéﬁng‘ grounded conditions, respectively. Both the SAs and the
whole-body absorption are considerably less than the 6-min averaged values of 144 J/kg and
10,080 J, respectively that are suggested in the ANSI/IEEE C95.1-1991 RF safety guidelines [9].

" Foral kV/m peak amplitude pulse the induced peak currents for the various layers of the
body can be scaled from the values given in Figure 5 for a 1.1 V/m peak amplitude pulse Induced
peak currents on the orderof 1.1 - 3.2 A are calculated for 1 kV/m peak arnphtude pulse and the
values would be proportionately hrgher for larger amplitudes of the pulse
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Figure 2. The prescribed electromagnetic pulse. Peak incident field = 1.1 V/m.
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