Figure 3 Measured radiation patterns at 1.79 GHz
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Figure 8 Measured antenna gain versus frequency

can cancel out the feed inductance to enhance the impedance,
axial ratio, and gain bandwidth effectively. The use of a cross
slot on the circular patch also effectively reduces the physical
size of the circular patch.
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ABSTRACT: The perfectly matched layer (PML) absorbing boundary

‘condition has- been used for a wide range of applications since its

introduction in 1994. Most of these applications have used the PML in
a uniform air-filled zone around a nonair scatterer. This paper describes
the application of the PML to a geophysical prospecting problem where
the PML is applied in a conductive host material containing the scatterer.
The conductivity profile is optiniized using parameter estimation. © 2000
John Wiley & Sons Inc. Microwave Opt Technol Lett 25: 253-255,
2000.
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INTRODUCTION

The perfectly matched layer (PML) absorbing boundary con-
dition was first introduced by Berenger in 1994 [1], and
extended to three dimensions by Katz, Thiele, and Taflove
[2]. This boundary condition was shown to provide substan-
tially better absorption of electromagnetic waves than Mur,
retarded time, or Liao boundary conditions [1, 2]. The analy-
sis of this boundary condition was initially done. for tradi-
tional finite-difference time-domain (FDTD) simulations
where a scatterer is surrounded by air, and the PML is
applied within this. external .air region. Berenger’s formula-
tion of the PML assumes that the host material of the model
has infinite resistivity (such as air). Modifications of this
formulation have been developed for truncating volumes in
which nonair materials that may be conductive, magnetic,
anisotropic, dispersive, etc., impinge on the boundary {3-6].
The use of a PML for evanescent waves was examined by
DeMoerloose and Stuchly {7]. These PML absorbing bound-
ary conditions can be used to effectively eliminate spurious
reflections from the outer surface of the computational mesh.

The effectiveness of the PML technique relies upon an
appropriate choice of stretching factor profiles (or conductiv-
ity profiles) within the absorbing boundary layer. Suitable
profiles depend on the frequency of interest and resolution of
the FDTD grid; and can be found by either trial and error or
different types of mapping methods as in [8].- A more rigorous
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method of finding the ‘optiriized: conductivity profile for PMLs
was ‘applied by Lazzi and’Gandhi' using - Newton’s nonlinear
optimization technique [9]. This method was done for the
standard Berenger PML int air for a smgle frequency

This paper describes the application and’ optimization of
the PML formulation developed by Chen, Chew, and
Oristaglio [3] and Chew and- Weedon [4] for a geophysical
simulation of a cross-borehole method to delineate a conduc-
tive ore deposit. The PML is suitable for use in nonair
material and pulsed (multifrequency) sources, and the optr-
mization is done using parameter estlmatlon ‘

OPTIMIZATION OF THE PML ABSORBING
BOUNDARY CONDITIONS .

The PML derivation using “stretched coordr §7 [3, 4] is
based upon a transformatron of Cartesian coordinates:

{x,y, 2} = (s, 95,0 25, ) 1)
where the “coordinate stretching factors™ s, s y, and s, are
complex numbers. A stretching factor s/is deﬁned as.

B(p) .éz(p)
+1 -
w.€ we

3

s(p) =

where w, is the source center frequency, and .p corresponds
to the elements of the Cartesian basis x; 'y, or-z. The
functions a{p) and B(p) control the rate ‘of -attenuation
within the PML in‘the direction" p. Choosmg a(p) =0 and
B(p) = w_ e reduces the PML equations to Maxwell’s equa-
tions, so that the rate of attenuation within the ‘medium is
controlled by its physical propertles In resxstlve medxa this
rate of attenuation may be too small to. guarantee that all
EM energy is dissipated’ before reaching the outer edges of
the computational domain. Greater rates of attenuation can
be attained by choosing larger Values of a.and B. However,
an attenuation rate that is too-large gives fise to spurious
numerical reflections. A compromise must be. reached. be-
tween insufficient attenuation, which causes EM waves to
reach the outer boundary of the mesh and reflect back into
the region of interest, and excessive attenuation, which causes
spurious reflections to occur at interfaces within the PML.

The performance of the PML absorber can be optimized
by the application of parameter estimation. Let the exact
solution to a given EM propagation problem be given by d°,
which is observed data to be fitted by a set of predicted data
d? produced by the FDTD numerical model. Now, define A4
as the forward modeling operator that maps a set of PML
coefficients m onto a set of predicted data d?:

a7 = A@m). ©)

Having fixed the physical parameteérs of the model, the PML
coordinate stretching factors define thevset of free model
parameters. The error due to numerical reflections from the
PML is equal to the misfit between the observed data d° and
the predicted data d” that correspond to the miodel parame-
ters-m. The goal is to minimize this misfit. Simply minimizing
this misfit will, unfortunately, lead to PML profiles that are
wildly varying between the layers, and:although this may
theoretically lead to an optimal PML, ‘these rough profiles
tend to be highly problematic and sensitive to numerical
errors. A better PML is obtained by requiring the variation
between the layers to be smooth. There are several ways of

. @
w

doing this. For this paper, the PML parameters were opti-
mized while model m is as close as possible to-some a priori
model m,,. In this case, m,, -is simply our initial model,
chosen to be a “good” model found by trial and error or past
experience. Thus, we seek to minimize the regularized mis
functional:

d(m?) ={ld? — d°l* + wlm — m,,|I*

=l A(mP) = &°l* + «lm —m 7. (@

Here, « is a regularization coefficient, which controls the
degree to which minimization of the misfit function is traded
for minimization of variation in the model parameters from
the a priori model. It is more important to obtain a low value
of the misfit functional for & given background medium than
it is to maintain a small degree of variation from the a priori
coordinate stretching coefficients. Therefore, we can permit

_k to become small as we approach the desired minimum

misfit. .

This problem can be solved using parametér estimation
techniques. A parameter estimation technique implemented
by Portniaguine and Zhdanov [10] was applied in this case.
This method uses a regularized Newton method, with Frechet
derivatives calculated by finite differencing. In practice; the
inversion for PML profiles is highly nonlinear, and therefore
difficult to solve using this technique. Attempts to solve the
inverse problem for independently varying coordinate stretch-
ing factors failed because the forward modeling algorithm is
unstable with respect to perturbations in these parameters,
resulting in the Frechet derivatives being undefined. This
problem was dealt with by parameterizing the real and i imagi-
nary parts of the PML coordinate stretching factor profiles /|
terms of simple functions, such as sines, which are partict
larly desirable because of their smoothness. For minimal
reflection, the PML equations should match Maxwell’s equa-
tions at the interior boundary of the layer, and the stretching
factors may increase toward the outer boundary. In practice,
it was necessary to introduce a dc offset in the stretching
factor profiles to account for discretization of the PML. The
stretching parameters to be optimized are therefore given by

L a, ) nmw T b )
an) = 7{1 + sm( NPML 3)] +5b,

and

nar w

NPML 2

B(n) = wye + -“2—"[1 + sin( )] +b, (6

where NPML is the number of cells in the PML, and # is the
number of cells between the given node and the interior
boundary of the PML. The variables a,, ag, and by are the
new model parameters to be optimized.

A one-dimensional EM wave propagation problem was
used as the forward modeling operator A which can be
computed simply and rapidly. The PML coordinate stretching
factors estimated using such a model may be applied to a
three-dimensional modeling problem with similar physical
and numerical parameters. )

A standard one-dimensional FDTD code was used for tk
optimization, and a plane-wave vertical magnetic field pulsc. .
was introduced by forcing the vertical magnetic field at one
point in an FDTD mesh, representing a plane perpendicular
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Figure 1 Optimized PML profile results. (a) Comparison of the
ideal reflection-free solution. and the solution showing (negligible)
reflections from the PML. (b) Optimal profiles for alpha and beta

to the line. The magnetic field in this plane is given by

e
- _ - =0~ 1p)?
H,(t) 20(¢ — 1)/ 50 ¢ @)

where 6 = w?/2 and the center frequency is 1 MHz. The
relative electrical permittivity ¢, = 10, the magnetic perme-
ability u = wy, and the conductivity o = 0.0001 S/m, which
are typical parameters of a host rock.

To obtain an ideal, reflection-free set of data, the effect of

‘a boundless host medium was simulated by extending the

j;ite-difference mesh a sufficient distance from the transmit-

-~«e€r-receiver pair, such that no numerical reflections from the

mesh boundaries were observed at the receiver during the
time interval of interest. This model provided the ideal,
reflection-free set of observed data d°. The transmitter—
receiver pair was then moved to a point near the interface
between the PML and the interior region of the mesh. The
model data generated in this configuration provided the pre-
dicted data d” which were to be fit to the observed data in a
least squares sense by adjusting the PML coordinate stretch-
ing factor profile.

The parameter estimation program PAREST [10] was
used to minimize the misfit functional given in (4) by adjust-
ing the parameters a,, b,, ag, and b, in (5) and (6). The
optimized stretching coefficients are shown in Figure 1(b).
The performance of the optimized PML was tested by com-
paring the ideal reflection-free fields with the fields obtained
using the PML. As shown in Figure 1(a), the results are
excellent.

CONCLUSION

The use of parameter estimation techniques for optimizing
PML boundary conditions was examined. It was found that

- the solution of this problem is highly non-linear, and pro-

vided spurious results uniess some a priori model was used to
smooth the data. This was done using a sinusoidal profile for
the PML, and optimized results provided an excelient PML

for a pulsed source in a nonair interface.
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ABSTRACT: Scattering from an azimuthally periodic cylindrical striic-
ture is carried out with the objective of minimizing, with a systematic
strategy, the number of times required to analyze the basic periodic sector,
and the number of Hankel functions needed for describing the scattered
field. A hybrid FEM / BEM has been implemented for validation.
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I. INTRODUCTION

Recently, several papers have dealt with the scattering from
cylindrical structures that show an azimuthal periodicity {1-6].
Some of them introduce the periodicity of the structure by
expanding the scattering field in terms of an orthonormal set
of Floquet harmonics [1-4]. This allows one to deal with a
basic sector (or period) of the structure only. However, the
basic sector has to be analyzed for each of the infinite
cylindrical harmonics in which the incident wave can be
decomposed. It is now our intention to verify that it is
sufficient to analyze the basic sector only a number of times
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