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I.  Introduction 
 

The finite-difference time-domain (FDTD) method has been used extensively 
over the last decade for bioelectromagnetic dosimetry – numerical assessment of 
electromagnetic fields coupled to biological bodies [Gandhi; Lin & Gandhi].  Values of 
interest in these assessments include induced current or current density and specific 
absorption rate (SAR), which is a measure of absorbed power in the body.  The FDTD 
algorithm is extremely simple and efficient, which has made it one of the most versatile 
numerical methods for bioelectromagnetic simulations.  It is particularly well suited to 
these applications because it can efficiently model the heterogeneity of the human body 
with high resolution (often on the order of 1mm), can model anisotropy and frequency-
dependent properties as needed, and can easily model a wide variety of sources coupled 
to the body. It has been used to analyze whole-body or partial-body exposures to spatially 
uniform (far field) or non-uniform (near-field) sources.   These sources may be 
sinusoidally varying (continuous wave (CW) ) or time-varying such as those from an 
electromagnetic pulse (EMP).  The FDTD method has been used for applications over an 
extremely wide range of frequencies, from 60 Hz through 6 GHz, and also for broad-band 
applications.  This paper describes several of these applications, and some of the details 
of how the FDTD method is applied to bioelectromagnetic simulations. 
 
 
II.  The Finite-Difference Time-Domain Method 
 
 The FDTD method was originally developed by [Yee] and has been described 
extensively in the literature [Kunz & Luebbers; Taflove].  This method is a direct 
solution of the differential form of Faraday’s and Ampere’s laws 
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Assuming that and are isotropic, frequency-independent, and constant over the region 
where the equation is being solved, (1) and (2) can be divided into six partial differential 
equations 
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The model space is then divided into a lattice of discrete unit cells, which is shown in 
Figure 1. A space point in the lattice is defined as (x,y,z) = (ix, jy, kz), and any 
function of space and time is defined as Fn(i,j,k) = F(ix, jy, kz, nt) where x,y, z 
are the lattice space resolutions in the x,y,z coordinate directions, t is the time 
increment, and i,j,k and n are integers.  
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Figure 1:  The “Yee” cell or FDTD lattice showing distribution of the electric 
                 and magnetic field components 

 
The differential equations in (3) and (4) are then converted into difference 

equations using the central difference approximations 
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For evenly spaced lattices, the error for these equations is (x)2 and  (t)2, respectively.  
Thus, these first order difference equations provide second order accuracy. Since the field 
components are interleaved on each unit cell as shown in Figure 1, the E and H 
components are half a cell apart, which is referred to as a “leap-frog” scheme.  In 
addition to being leap-frogged in space, they are also leap-frogged in time.  The E field is 
assumed to be  at time nt, and the H field is assumed to be at time (n+1/2)t.  
 

Applying the central difference approximations in (5a) and (5b) to (3a) and (4a) 
gives the difference equations 
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In these equations, E and H are generally of different orders of magnitude.  To reduce the 
numerical errors which arise from taking the divided differences of significantly different 
values, a normalization factor, 
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is used to make E and H be of the same order of magnitude. Using the value t = 
x/(2co),  the constants in equations (6) and (7) become 
  Chy = co t / (ur(i,j,k)y)      (9) 
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Similar equations and constants are obtained for (3b),(3c),(4b),(4c).  These constants can 
be used to represent anisotropic properties which are present in muscle and cardiac 
tissues at low frequencies by allowing the values of rr to be different in the x,y,z 
directions.  For biological tissues, r = 1.

The steps in the FDTD solution are: 
 

1)  Define model values of r, , r at each location i,j,k, and calculate the 
constants given in (9) . 

2)  Assume initial conditions (usually that all fields and the source are zero). 
3)  For each time step, n 

a)  Specify fields at source. 
b)  Calculate En for all locations. 
c)  Calculate Hn+1/2 for all locations.  

4) Stop when the solution has converged.  For transient fields, this means all of 
the fields have died away to zero.  For sinusoidal fields, this means that all of the 
fields have converged to a steady-state sinusoidal value.


 There are two constraints controlling what values are defined for the space 
resolutions, x, y, z, and the time resolution, t.  The space resolution in 
bioelectromagnetic simulations is generally controlled by the grid resolution of the 
human model.  Since these models are extremely difficult to create, only a few models 
are available in the world, and while grids can be adjusted somewhat (cells combined to 
reduce resolution, or subdivided to increase the resolution), for the most part only an 
isolated set of resolutions are available.   Resampling of the model is possible, but in 
general, the grid resolution is more or less set.  What is important is to determine the 
maximum frequency which a given resolution can be accurately used for.  A rule of 
thumb is that the largest grid dimension, x, for instance, should not be larger than /10, 
where  is the smallest wavelength in the model.  This limitation comes from the fact that 
the numerical grid produces a certain amount of artificial (numerical) dispersion which 
increases with the grid size and direction of propagation as shown in Figure 2.  When the 
resolution is /10, the numerical dispersion is approximately 1% .   
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Figure 2: Variation of the numerical phase velocity with wave propagation angle 
in two-dimensional FDTD grid for three dimensions [Taflove] 
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Figure 3:  Wavelength of muscle, fat, and air as a function of frequency.  
Additional body tissues fall between fat and muscle. 
 
In order to determine the maximum frequency a given grid size is suitable for, 

Figure 3 shows the wavelength as a function of frequency for several tissues of the body.  
Not only does the standard relationship between electrical properties and frequency 
control the wavelength, but the electrical properties of the tissues also vary with 
frequency.   Although it is ideal to limit the use of a given grid to frequencies which 
make the resolution be less than /10, bioelectromagnetic simulations sometimes push 
this limit, and resolutions of /4 have been successfully used [Furse, et al., 1994].  For 
many simulations, this does not cause problems, because the wave is absorbed before it 
can propagate far, so the dispersion error is relatively small.   
 

A second constraint is that to maintain the stability of the FDTD simulation the 
time resolution must be sufficiently small such that 
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where vmax is the maximum velocity of propagation in any material in the model.  The 
value of t = x/(2co), which is used in many FDTD codes, is well within this limit.  
These two constraints provide limits on the time and space resolutions which must be 
used in order to accurately model time domain behavior of a given waveform. 
  
 But what happens when a waveform is used which has frequency components 
above the “limit” of the FDTD grid, such as in many pulsed simulations?  In this case, the 
numerical dispersion in FDTD solutions serves an interesting purpose.  It disperses these 
high frequency components, thus making it impossible for them to propagate and cause 
frequency aliasing errors [Furse, 1994].  This makes it possible to use any waveform, 
even a narrow rectangular pulse with near-infinite frequency spectrum as a source for 
FDTD simulations.  The high frequency components do not propagate,  so are effectively 
filtered out of both the time and frequency domain simulations.  They provide no 
information, but also do not cause any errors.  
  
III. The Frequency-Dependent FDTD Method 
 
 The electrical properties of biological tissues vary significantly with frequency, as 
shown in Figure 4.  For single-frequency simulations, the FDTD method can be used, 
with the particular tissue properties at that frequency, but for broad-band simulations, this 
is not sufficient.  The frequency-dependent finite-difference time-domain (FD)2TD 
method is therefore used to overcome this limitation.  Two general approaches to the  
(FD)2TD method have been developed.  One approach is to convert the complex 
permittivity from the frequency domain to the time domain and convolve this with the 
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time-domain electric fields to obtain time-domain fields for dispersive materials.  This 
discrete time-domain convolution may be updated recursively for some rational forms of 
complex permittivity, which removes the need to store the time history of the fields and 
makes the method feasible.  This method has been applied to materials described by  
first-order Debye relaxation equation [Luebbers, et al. 1990; Bui et al.; Sullivan 1992], a 
second-order Lorentz equation with multiple poles [Luebbers, et al., 1992], and to a 
gaseous plasma [Luebbers, et al., 1991].   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Electrical properties of fat and muscle as a function of frequency.  
Measured values from the literature are compared to those modeled with a 
second-order Debye equation [Furse, et al., 1994] 

 
 A second approach is to add a differential equation relating the electric flux 
density D to the electric field E and to solve this new equation simultaneously with the 
standard FDTD equations. This method has been applied to one-dimensional and two-
dimensional examples with materials described by a first-order Debye equation or 
second-order single-pole Lorentz equations [Joseph, et al.; Lee, et al.], to 3D sphere and 
homogeneous two-thirds muscle equivalent man model with properties described by a 
second-order Debye equation [Gandhi, et al., 1993a, 1993b; Furse, et al., 1994], and to a 
heterogeneous model of the human body exposed to ultra-wide band electromagnetic 
pulses [Gandhi and Furse, 1993], as described below. 
 
 The time-dependent Maxwell’s equations have already been given in (1) and (2).  
Ampere’s law can be rewritten as  
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D
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
      (11) 

where the flux density vector D is related to the electric field E through the complex 
permittivity *( of the local tissue by the following equation: 
 
    D = *(      

Since (1) and (11) are to be solved iteratively in the time domain, (12) must also be 
expressed in the time domain.  This may be done by choosing a rational function for 
*( such as the Debye equation with two relaxation constants: 
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Rearranging (13) and substituting in (12) gives 
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where the dc (zero frequency) dielectric constant is given by    s = s1 + s2 - 
Assuming ejt time dependence, (14) can be written as a time-domain differential 
equation 
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As in  [Gandhi, et al., 1993a, 1993b], this equation is then converted into a second order 
difference equation, which requires storage of one past time step for the D and E fields.  
Equations (1) and (11) are then solved subject to (15).  The steps for the (FD)2TD method 
are: 
 

1)  Define value of  for each tissue and use least-squares to find an optimal 
fit of s1,s2, , ,  in (13) for each tissue.  Calculate constants for (15). 

2)  Assume initial conditions (usually that all fields and the source are zero). 
3)  For each time step, n 

a)  Specify fields at source. 
b)  Calculate En for all locations. 
c)  Calculate Dn for all locations. 
d)  Calculate Hn+1/2 for all locations.  
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4)  Stop when the solution has converged.  For transient fields, this means all of 
the fields have died away to zero.  Continuous wave fields are not used in 
(FD)2TD simulations (since they are not broad-band, FDTD is used). 

 
IV. Methods of converting from Time to Frequency Domain 
 
 Since the FDTD and (FD)2TD methods are intrinsically time-domain methods, 
when frequency-domain information is required, some method of conversion must be 
used.  Examples of frequency-domain parameters which are calculated are magnitudes of 
fields (for one or more frequencies), specific absorption rate (SAR), which is calculated 
from field magnitudes, currents or current densities, and integrated properties such as 
radiation pattern or total power absorbed or reflected.  There are several methods which 
have historically been used to transfer from sampled time domain to frequency domain 
data for bioelectromagnetic applications.  These are peak detection methods, Fourier 
transform methods, and a direct calculation method.  The goal of all of these methods is 
to detect the magnitudes and possibly the phases of the time-domain fields.  Which of the 
methods is used is particularly important in bioelectromagnetic simulations, since it is 
common for a huge number of time-to-frequency domain conversions to be required  
(such as at every location in the body for calculation of SAR or current density 
distributions), and the computer time and memory can be nearly as large as those 
required for the time-domain simulation itself.   
 
 The peak detection method is of historical interest only, as it is the least efficient 
and least accurate of the methods.  The values of successive time steps in a sinusoidal 
simulation are compared to determine when the  peak of the wave has been reached, and 
this value is recorded as the magnitude of the wave.  This method is time-consuming (a 
series of IF-THEN computer statements), and requires storage of past-time values for 
comparison.  It is the least accurate of the methods, as the peak may occur between 
successive time samples, so the value recorded for magnitude will be slightly lower than 
the actual magnitude.  Phase calculations using this method are highly inaccurate for this 
reason. 
 
 The Fourier transform method is probably the most widely used of the methods of 
determining magnitude and phase, and is highly accurate.  For either transient or 
sinusoidal calculations, the complex magnitude of the wave can be calculated from the 
time-domain waveform using 
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where  
G(kf) is the complex magnitude 
g(nt) is the time-domain waveform 
f is the frequency resolution 
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t is the time resolution 
n is the time step index = 0,1,2, … N 
k is the frequency index  
N is the length of the Fourier transform = 1/(ft)  
 

For transient simulations, the simulation may converge, and all field values, g(nt) may 
go to zero before the summation in (16) is complete.  In that case, the summation can be 
stopped before N summations, which saves computational time.  For sinusoidal (single-
frequency) applications, the summation is done for one cycle after the simulation has 
converged to steady-state.  This requires running the FDTD simulation an additional 
cycle, which can be burdensome or even impossible at lower frequencies.  
 
 The Fourier transform in (16) can be calculated with either the Fast Fourier 
Transform (FFT) or the discrete Fourier transform (DFT) in (16).  It has been shown 
[Furse and Gandhi, 1995] that the DFT is actually faster than the FFT for FDTD 
applications, although many people still use the FFT method because of the convenience 
of prepackaged Fourier transform software.  Both methods are equally accurate.   
 

Time decimation [Bi, et al.] can be used to significantly reduce the length of the 
sum in (16), and improve the computational efficiency of the algorithm.  This method 
recognizes that, although the FDTD constraints that x /10 and t = x/(2co) produce 
a sampled time sequence from the simulation which is far over-sampled in terms of the 
Nyquist criterion, that only two samples per cycle are actually required for accurate 
calculation of the magnitude and phase of the wave.  Thus, the number of samples used 
in the Fourier transform can be significantly reduced.  This applies to both transient and 
steady-state simulations. 

 
Taking this one step further, a direct method [Furse]  for finding magnitude and 

phase provides great flexibility of magnitude and phase calculations coupled with 
efficiency and accuracy.  It is apparent that for sinusoidal simulations the two samples 
which are used need not be evenly spaced.  This method is based on writing two 
equations in two unknowns (magnitude and phase) for the time-domain fields, and then 
solving the directly for the magnitude and phase. At a given location in space, we can 
write 

 
 A sin(t1 + g1       (17) 

 A sin(t2 + g2 

 

where A is the magnitude,  is the phase, and  (=2F) is the angular frequency.  At two 
times, t1 and t2, the two values of g1 and g2 are known from the FDTD simulation.  
Therefore, these two equations can be solved directly for the unknowns A and .  No 
theoretical constraints are given on t1 and t2, so they can be taken to be the last two time 
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steps of the simulation.  This allows calculation of magnitude and phase with no 
additional computer memory, which is a considerable advantage in the large-scale 
simulations typical of bioelectromagnetic simulations.  This method is also considerably 
more efficient than the Fourier transform methods, as it does not require a summation to 
be done over several (or several hundred) time steps.   The DFT and peak detection 
methods require approximately as much computational time and memory as the FDTD 
simulation, if time-to-frequency domain conversions are required in all cells in the body, 
which is typical of bioelectromagnetic simulations.  The direct method, on the other 
hand,  requires virtually no computational time,  and can be programmed with virtually 
no memory requirement. These significant advantages make it the primary method of 
choice for bioelectromagnetic  simulations. 
 
 The direct solution method does have some limitations.  First, it can only be used 
for single-frequency FDTD simulations.  Second, it is only accurate when the simulation 
produces a clean, perfectly converged sine wave without DC offsets or noise.   
 

The significant advantages of this method have led to its use in some novel 
applications.  The first is the use of the direct method for determining convergence of 
sinusoidal simulations.  It is relatively easy to tell when transient simulations have 
converged … all the fields have gone to “zero”.  For sinusoidal simulations, this has been 
more difficult.  Calculating the magnitude and phase historically required a full cycle of 
the simulation to be run “past convergence”, and running still more cycles to check on 
convergence is often prohibitively expensive.  Generally a few indicative test cases 
would be checked for convergence, and then similar simulations would be assumed to be 
converged in a similar amount of time.  This direct method provides a way to calculate 
magnitude and phase with great efficiency, and without requiring a large number of time 
steps of the simulation to be run, so the calculations of magnitude and phase can be 
repeated within the simulation itself to test for convergence. 
 
 A second advance which this direct solution method has enabled is calculation of 
extremely low frequencies using the FDTD method.  There has been no intrinsic 
limitation of the FDTD method for running low frequency simulations, but there was no 
method of extracting the magnitude and phase from these simulations.  For a 6mm human 
model at 60 Hz, for instance, one cycle requires 1.6 x 109 time steps.  It is not feasible to 
run even an appreciable portion of a cycle, which would be required by the Fourier 
transform or peak detection methods.  Using this direct method, the solution can be found 
with about 2000 time steps.  This application presents some unique numerical challenges, 
as the fields change so little from one time step to another.  Unlike higher-frequency 
simulations where round-off errors between two immediate time steps are negligible, 
significant numerical error is observed when calculating the magnitude and phase if the 
last two time steps are used for extremely low frequencies.  For the simulation described 
in section VIII.A, t1  was taken to be 100 time steps before the final time step, t2, which 
reduced the numerical errors in this calculation.    
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V.  Human Models and Tissue Properties 
 
 Model development is one of the significant challenges of numerical 
bioelectromagnetics.  Models have progressed from the prolate spheroidal models of the 
human used during the 1970s to roughly 1cm models based on anatomical cross sections 
used during the 1980s [Gandhi, et al. 1992a ] to a new class of millimeter-resolution 
MRI-based models of the body which are the hallmarks of research in the 1990s [Gandhi 
and Furse, 1995; Dimbylow, 1995; Olley & Excell, 1995; Stuchly, et al., 1995].  MRI 
scans provide an ideal initial data base for voxel-based models of this type, but the scans 
alone do not define the types of tissue which are in each location.  Instead, MRI scans 
provide a voxel map of MRI densities, which unfortunately do not have a one-to-one 
correspondence to tissue type.  These images are interpreted as grey-scale images by 
which the several tissues can be “seen”.  Image segmentation is necessary to convert 
these density mappings into mappings of tissue type.  This is generally done semi-
manually, although automatic methods are under development.   
 

Several MRI-based models of the human body [Gandhi and Furse, 1995; 
Dimbylow, 1995 ] or the head alone [Olley & Excell, 1995; Stuchly, et al., 1995; Jensen 
& Rahmat-Samii] are now in existence.  With the exception of some basic automatic 
tissue classification based on MRI densities (dry tissue can be separated from wet tissue, 
for instance), these models have required significant effort to obtain, and there are many 
unique challenges in developing models suitable for use in bioelectromagnetic modeling.    

 
First, there are issues which must be addressed in obtaining the MRI scans.   It is 

important to use MR settings to optimize the contrast between the soft tissues, and to use 
saturation pulses to reduce pulsatile blood flow artifacts, and time gating to reduce 
blurring from breathing and the beating heart. Depending on the amount of time gating 
and optimization, scanning the complete body with a vertical resolution of 3mm takes 6 
to 24 hours.  The person being scanned will need to be repositioned during this time, as 
that is too long to expect a live person to hold still, and this presents some difficulties in 
rematching the images from successive positions.  It is useful to position the person in 
exactly the stature that is desired for modeling, such as ensuring that the feet are in a 
“standing” position, as opposed to “relaxed”, and that the head is in alignment with the 
spine, as opposed to on a pillow.  Arms have caused significant difficulty in several 
modeling efforts, as in a relaxed position, they tend to fall out of the range of MRI 
scanning.  Most of these problems are eliminated if a cadaver is used as the subject to be 
scanned, such as in the Visible Man project [National Library of Medicine], although the 
difficulty of positioning the model is still a problem, and this model [National Library of 
Medicine] is also missing portions of the arms due to limitations of scanning range.  
Using a cadaver provides challenges in itself, as body fluids tend to pool at the back of 
the body, organs shrink or swell, and airways collapse very soon after death.  It has also 
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been observed that the overall height of the body increases by several cm when it is lying 
(such as in an MR machine) as opposed to standing, for both live humans and cadavers. 

 
An additional problem with MR scanned images is there is a tradeoff between 

signal-to-noise ratio and a shift which is seen between fat and water-based tissues such as 
muscle.  When the signal-to-noise ratio is optimized, the fat will appear slightly shifted in 
location relative to muscle.  The shift may be as much as 4-5 mm [Gandhi & Furse, 
1995].  In general this is a minor issue, as the majority of fat deposits are sufficiently 
large that this shift is inconsequential.  While the fat shift may not cause much difficulty 
in defining the regions of fat, it does cause difficulty in defining the regions of skin.  On 
the “read” side of the model, the fat obliterates the skin layer, making it appear very thin, 
while on the other side of the model, the skin appears very thick.   A solution to this 
problem is to specify a pre-defined thickness of skin covering the whole body, and to 
apply this with a computer algorithm after image segmentation of the other tissues.  This 
algorithm can be progressively refined as needed, to control the thickness of skin 
throughout different regions of the body. 

 
An additional consideration when developing a model for bioelectromagnetic 

simulations is the question of uniqueness of individuals.  It has been shown that the 
height of a person affects how much current will be induced by high voltage lines 
[Deno], and that the size of the head (children as compared to adults) affects the 1-gram 
averaged SAR from cellular telephones [Gandhi, et al., 1996].  It has also been shown 
that minimal differences in 1-gram averaged SARs from cellular telephones were 
obtained for several head models without the ear [Hombach, et al.], although it is likely 
that differences in ear shape could affect the 1-gram averaged SAR.  The “average” man 
is defined in [Snyder, et al.].  Although it is unlikely that any given model which is 
scanned will provide exactly the same height, weight, and organ sizes of the reference 
man, this source is useful to compare given organ weights of a tissue segmented model to 
be certain they are similar to expected values.  Another option is scaling the voxel size of 
the image-segmented model to obtain a model with exactly the height (176 cm) and 
weight (71 kg) of the reference man [Snyder, et al.].   

 
As an example of one tissue segmented model, the MRI-based man model 

developed at the University of Utah was taken with an MRI voxel size of 1.875 x 1.875 x 
3mm.  The software ANALYZE, developed at the Mayo Clinic was used to segment the 
tissues.  This package allows the user to define regions based on ranges of density, and 
convert each region into a tissue type.  Proceeding to subsequent layers the density range 
is repeated, so that large, well-defined organs or bone can be readily defined.  This 
somewhat automated the process of converting from density to tissue type, but it was still 
a tedious process, requiring a trained anatomist.  The height of the volunteer was 176.4 
cm, which is quite close to the height of 176 cm of the average “reference” man [Snyder, 
et al.], so no scaling was done in the vertical direction.  The weight of the volunteer was 
64 kg, which was somewhat lower than the average weight of 71 kg [Snyder, et al.], so 
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the horizontal voxels were scaled to 1.974 mm, in order to bring the weight of the 
segmented model to 70.93 kg.   
 
 Once a tissue-segmented model has been developed, the electrical properties of 
the tissues are defined. The properties of human tissue change significantly with 
frequency, so it is essential to use data accurately measured at the frequency of interest. 
There is a wide range of published data on measured tissue properties [Gabriel; Stuchly 
& Stuchly; Rush, et al.; Durney, et al.; Geddes & Baker; Foster & Schwan], and work is 
still underway to measure and verify these properties.  The most complete measurements 
have been done by [Gabriel], and these measurements are being tested for repeatability 
by other groups [Davis].  In addition to the measured values at individual frequencies 
from 10 Hz through 20 GHz for 30 tissue types, the data in [Gabriel] were fit to a 4th 
order Cole-Cole equation, which provides a good interpolation for electrical properties of 
tissues at any specific frequency of interest.  This Cole-Cole interpolation is assumed to 
be a good interpolation above 1 MHz, where the data is well-defined in the literature, and 
should be used with caution in the region below 1 MHz, where literature is still sparse.   
 
 As expected, the results from bioelectromagnetic simulations are significantly 
affected by the electrical properties of the tissues which are used [Gandhi, et al., 1996], 
so it is important to use properties measured as accurately as possible. 
  
VI. Validation 
 
 The accuracy of the FDTD method has been extensively validated by comparing 
simulated results with analytical and measured results for sources in the far field coupled 
to a variety of geometries including square [Umashankar & Taflove ] and circular 
[Umashankar & Taflove; Furse, et al., 1990; Taflove & Brodwin; Borup, et al.] cylinders, 
spheres [Holland, et al.;Gandhi & Chen, 1992;Sullivan, 1987; Gao & Gandhi], plates 
[Taflove, et al., 1985], layered half spaces [Oristaglio & Hohmann], and complicated 
geometries such as airplanes [Kunz & Lee].  Figure 5 shows the comparison for the 
electric fields calculated  inside a 20-cm diameter sphere made up of 2/3 muscle 
irradiated  by a plane wave at 200  MHz. The FDTD calculations are compared to the 
analytical solution based on the Bessel function expansion. 
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Figure 5: Magnitude of Ez along the y-axis of a 2/3 muscle sphere at 200 MHz.  
The plane-wave is incident from the y-direction.  [Furse, et al., 1994] 

 
In addition to these far-field validations, several near-field validations have also 

demonstrated that the FDTD method can be used to accurately model localized sources 
very near the human body.  [Furse and Gandhi] One such example is the modeling a 
Hertzian (infinitessimal) dipole at 900 MHz located 1.5 cm from a 20-cm diameter brain-
equivalent (r=43.0,  = 0.83 S/m) sphere.  This is a very near-field simulation of a 
curved (spherical) model.  The infinitessimal dipole is modeled as a single Ez source 
location, and is excited with a ramped sinusoidal source where 

 
Ez(feedpoint) = [1-cos(t)]sin(t)  for 0  t  T 
                     = sin(t)          for t  T 
 

where T is the period of the sine wave.  This ramped sine wave has been shown to reduce 
high-frequency transients [Beuchler, et al.] and DC offsets [Furse, 1994] sometimes 
associated with unramped sine waves.  The cubical cell size is  = 5 mm, which makes 
the sphere 40 cells in diameter.  Figure 6 [Furse, et al., 1996] shows the relative SAR 
along the y-axis from the front edge of the sphere calculated using the FDTD method and 
compared to an analytical solution based on the Bessel function expansion [Dhondt & 
Martens]. 
 

- - -  F D T D
 *  A n a ly t ic a l
    ( D h o n d t )

  
 

Figure 6: Relative SAR distribution along the y-axis of a homogeneous brain-
equivalent sphere excited by an infinitessimal dipole.  Analytical solution from 
[Dhondt and Martens].  FDTD from [Furse and Gandhi, 1996] 
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VII. Calculation of SAR, currents, and 1-gram SAR, and temperature 
 
 The FDTD method calculates the time-domain vector E and H fields at every 
location inside and outside of the body.  These can be converted to frequency domain 
fields (magnitude and phase at given frequencies) using the methods described in section 
IV.  Values commonly of interest in bioelectromagnetic simulations are specific 
absorption rate, current density, total power absorbed, temperature rise, etc.   
 
 Specific absorption rate (SAR) at a given location is given by: 
 

  SAR i j k
i j k E

i j k
( , , )

( , , )

( , , )





2

2
      (18) 

 
where (i,j,k) is the electrical conductivity and (i,j,k) is the mass density at the location 
of interest.  |E|2 is the magnitude of the electric field at the location of interest.  Since the 
Ex,Ey,Ez components of this field are offset throughout the cell as shown in Figure 1, 
this requires that they be averaged to obtain the |E| at exactly the location of interest.  For 
instance, if the SAR is desired at the bottom left corner of the cell, |E| is computed thus: 
 
 Ex(corner) = [ Ex(i,j,k) + Ex(i-1,j,k) ] / 2. 
 Ey(corner) = [ Ey(i,j,k) + Ey(i,j-1,k) ] / 2. 
 Ez(corner) = [ Ez(i,j,k) +  Ez(i,j,k-1) ] / 2. 
 |E|2 = Ex(corner)2 + Ey(corner)2 + Ez(corner)2 
 
The 2 in the denominator of (18) converts the magnitudes of |E| calculated from FDTD 
from peak values to RMS.  This precision in calculating |E| at a particular location in the 
cell is of minimal importance in far-field applications where the fields are not changing 
too rapidly within the cell.  In near-field applications, such as analysis of cellular 
telephones, however, this is significant, as the fields are varying rapidly with the cells.   
 
 For near-field applications, such as cellular-telephones, numerical simulation is 
often used to determine if these devices comply with the ANSI/IEEE safety guidelines 
[ANSI] and newly-mandated FCC guidelines [FCC] which state that an exposure can be 
considered to be acceptable if it can be shown that it produces SAR’s  “below 0.08 W/kg, 
as averaged over the whole body, and spatial peak SAR values not exceeding 1.6 W/kg, 
as averaged over any 1 g of tissue (defined as a tissue volume in the shape of a cube)” 
[ANSI]. Because of the irregular shape of the body (eg. the ears) and tissue 
heterogeneities, a tissue volume in the shape of a cube of say, 1x1x1 cm will have a 
weight that may be in excess of, equal to, or less than 1 gram.  Larger or smaller volumes 
in the shape of a cube may, therefore, need to be considered to obtain a weight of about 1 
gram.  Furthermore, for an anatomic model with parallelepiped voxels (such as the 1.974 
x 1.974 x 3mm voxels of the University of Utah model), it is not very convenient to 
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obtain exact cubical volumes even though nearly cubic shapes may be considered.  It is 
therefore desirable to take volumes as close to cubical as possible (such as 5x5x4 and 
6x6x3 voxels for this model), and to consider volumes with weights above 1 gram.  In 
addition, rather than averaging the individual SAR values in each of these volumes (since 
significant portions are likely to be in air because of the irregular shape of the body), it is 
better to obtain the 1-gram averaged SAR by dividing the total power absorbed in the 
volume by the total weight of that volume.  When a result has been obtained, it is further 
necessary to carefully scrutinize that volume, and also neighboring volumes, to be certain 
that the volume is inside the body as much as possible, and that the amount of external air 
included in the volume is minimized, given the irregular shape of the body [Gandhi, et 
al., 1996]. 
 
 Another factor of interest in bioelectromagnetic simulations is the current or 
current density.  The vertical current density is calculated: 
 

 J i j k t
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where the derivatives are calculated numerically using (5b).  Horizontal current densities 
are found similarly, and current is found by multiplying by the area.  Total current 
passing through a layer is commonly reported, because this can be compared with 
experimental results [Gandhi & Chen, 1992 ].   
 
VII. Computational Issues 
  

A. Truncated Models 
 
 As progressively finer resolution models are used, the amount of required 
computer memory expands dramatically.  For a doubling of resolution (cutting the cell 
size in half), eight times as much memory is required.  In general, this higher resolution 
is required for higher frequencies, which are known to have minimal penetration into the 
body.  In particular, for cellular telephones, the distal side of the head is almost 
completely shielded from the telephone.  It is therefore possible to reduce the problem 
size to half or less of the original problem size by truncating the model.  This is done 
with an efficient truncation scheme [Lazzi & Gandhi; Gandhi, et al., 1996].  Because of 
the minuscule coupling of the far side of the head to the telephone, a second, identical 
source (telephone) can be placed on the opposite side of the head, leaving the problem 
unaltered, provided that this second telephone is devoid of RF power (unfed).  This 
model of the two sources, one fed and the other unfed, can be modeled using 
superposition of two simulations.  The first (even) simulation models both sources as 
positively fed, and the second (odd) simulation models both sources  fed, but with the 
first positively fed, and the second negatively fed.  When the two simulations are 
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superimposed, the first source is represented as positively fed, and for the second source, 
the positive and negative feeds cancel out, and the source is unfed.  
 

The even simulation, which models both phones as positively fed, can be reduced 
in size by placing a perfect magnetic conductor in the center of the simulation. The odd 
simulation, which models one phone as positively fed and the other as negatively fed, can 
be reduced in size by placing a perfect electric conductor in the center of the simulation.   
Thus, both the even and odd simulation are half as large as originally modeled, so the 
memory requirement to run them is half of the original problem.  In addition, if the power 
deposition from a single (fed) telephone reaches less than half way into the head, say less 
than 1/3 of the way into the head, the problem size can be reduced even further.  Instead 
of placing the magnetic and electric conductors in the center of the problem, they are 
placed 1/3 of the way through the head.  To check the validity of this approach, several 
test cases, including spheres, layered spheres, etc. were considered for an assumed 
radiation frequency of 1900 MHz.  Excellent agreements were obtained for the SAR 
distributions from the full, half, and 1/3 models. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 7 [Gandhi, et al., 1996] shows the SAR distributions obtained for an MRI-
based model of the human head for which a quarter-wave monopole over a box is 
placed against the left ear.  The SAR distributions are shown for the whole model, 
the truncated half model, and the truncated 1/3 model in the plane containing the 
base of the antenna, and z=4.5 cm above this plane.  Minimal error is observed. 

 
 The steps to run this truncation method are: 
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1)  Pick a plane of symmetry.  This is generally chosen to be beyond the 
penetration of the fields, but can actually be within the field region itself, if 
errors near this symmetry plane can be tolerated. 

2)  Even simulation:  Place a perfect magnetic conductor at the symmetry plane.  
This is programmed by setting the tangential magnetic fields = 0 on the 
symmetry plane.  Run an FDTD simulation and store the complex values of 
all fields of interest from this simulation.   

3)  Odd simulation:   Place a perfect electric conductor at the symmetry plane.  
This is programmed by setting the tangential electric fields = 0 on the 
symmetry plane.  Run an FDTD simulation and store the complex of all fields 
of interest from this simulation. 

4)  Superposition:  Add the stored complex values of all fields of interest.  
 
Note:  If the only data of interest is in the high field region near the source, either the 
even or odd simulation alone is generally sufficient.  The superposition is required to 
improve accuracy near the truncation boundary. 
 

B. Convolution Method 
 
 The simple convolution technique is very useful in FDTD and (FD)2TD 
simulations [Chen, et al., 1994].  To apply this technique, the impulse response of the 
man model is calculated using the complete simulation method, and is stored for later 
use.  When the response of the body to a specific waveform is desired, the impulse 
response is convolved with the desired waveform to obtain the response of the body to 
that waveform.  This convolution requires far less computational effort than rerunning the 
complete simulation with the new waveform.  These are the steps for the convolution 
method: 
 

1a)  Choose an incident impulse waveform Iinc(t) which has a frequency spectrum       
( ( ))I tinc  which contains all of the frequency components of interest.  An ideal 
incident impulse is a rectangle function:    
    

 Iinc(t) = 1    for 0  t  5t     (20) 
             0    for t > 5t 
 

which has the frequency spectrum ( ( ))I tinc  = 1 for all frequencies.  The    
frequencies in this pulse which are above the limit of the FDTD grid are 
dispersed.  They do not propagate, and they do not cause aliasing errors in the 
FDTD simulation, as discussed in section II. 
 
Alternatively: 
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1b) Use a series of continuous sine waves (CW) at each frequency of interest as 
the incident waveform, Iinc(t).  Combine their Fourier Transforms to find  
( ( ))I tinc . 

 
2a) Run the (FD)2TD simulation using the incident impulse waveform Iinc(t) as 
the source function.  The   (FD)2TD  method is needed to properly model the 
frequency dispersion of the tissues over a broad band.  Store impulse response of 
the simulation, Ires(t).  This may be the field component(s) at a given location, the 
current, power absorbed, or any other value which can be measured as a function 
of time.  Calculate the frequency spectrum of the impulse response, ( ( ))I tres .   
 
Alternatively: 
2b) Run the FDTD simulation using single-frequency simulations at each 
frequency in the band of interest with appropriate tissue properties at each 
frequency.  Superimpose them to obtain ( ( ))I tres . 

 
3) Specify the desired incident waveform Ides(t) and calculate its frequency 
spectrum, ( ( ))I tdes . 

 
4) Find the frequency response of the simulation to the desired waveform: 

   
 


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I t I t
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 and find the time domain response of the simulation to the desired waveform: 
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VIII. Examples of Applications 
 

A.  Low Frequency  (below 1 MHz) 
 
 The biggest limitation of FDTD for low frequency simulations has been that for 
typical resolutions each cycle has a huge number of time steps, and it is prohibitive to run 
even a single cycle.  For 1mm resolution, for instance, using t= x/(2c) a 60 Hz wave 
has 1010 time steps.   This problem was first overcome by [Gandhi & Chen, 1992] using 
the method  of frequency scaling [Guy, et al., 1982].  Frequency scaling observes that in 
a quasi-static simulation, the simulation can be run at a slightly higher frequency (f’ still 
in the quasi-static range) than the actual frequency of interest (f), and the results can be 
linearly scaled to the lower frequency using 
 
  E(f) =  f_ E’(f’)       (23) 
                  f’ 
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The simulation is run using the tissue properties at frequency f, so that no scaling of the 
tissue properties is required.  In [Gandhi & Chen, 1992 ] the FDTD frequency f’ = 10 
MHz was used, and scaled to f = 60 Hz.  A single cycle (4580 time steps) of the 10 MHz 
wave was used with peak detection to find the magnitudes of the fields and calculate the 
total vertical current passing through each layer for comparison with measured values 
[DiPlacido, et al.], as shown in Figure 8 [Gandhi & Chen, 1992 ]. 
 
 A more modern method of obtaining the magnitudes of the fields is to use the 
method described in (17).  For low frequency simulations, the simulation is generally 
observed to converge in far less than a single cycle (because the body is miniscule 
compared to a wavelength), and the magnitude can be found by running the simulation 
only until convergence is reached (a small fraction of a cycle), and using the method in 
(17) to calculate the magnitudes.  There can still be difficulties with numerical roundoff 
errors in the calculation of the magnitudes, because the waveform is radically 
oversampled.  Frequency scaling significantly reduces the roundoff errors, by reducing 
the sampling of the waveform.  Using a 10 MHz waveform instead of a 60 Hz waveform, 
for instance, gives a sampling of 60,000 time steps per cycle rather than 1010 time steps 
per cycle.  An additional reduction in roundoff error can be obtained by choosing the two 
time steps, t1 and t2 reasonably far apart.  The least error will occur when the time steps 
are a quarter wavelength apart, but far less is sufficient.  Using 100 time steps between t1 
and t2 gives roundoff errors on the order of 10-6 at 10 MHz, and this is generally more 
than sufficient for dosimetric calculations.  An additional reason to use frequency scaling 
for low frequency simulations is that the field values inside the body decrease linearly 
with frequency following (23), so that at low frequencies, the fields penetrating into the 
body are substantially lower than on the outside of the body.  This causes significant 
roundoff errors in the FDTD calculations, which can again be avoided by using 
frequency scaling.   
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Figure 8: Calculated layer currents for saline-filled grounded and ungrounded 
human models exposed to a vertical 10 kV/m, 60 Hz electric field.  For the FDTD 
techniques, Hinc = 26.5 A/m oriented from side-to-side of the body has also been 
included.  Measured values are given in [DiPlacido, et al.], calculated values 
given in [Gandhi & Chen, 1992] 

 
 Another issue in low-frequency simulations is the absorbing boundary conditions.  
The PML boundary condition has been shown to be effective (errors less than 5%) at low 
frequencies, if the number of time steps is minimized.  Mur boundary conditions, perhaps 
surprisingly, do not completely break down but are slightly less accurate than the PML 
conditions [De Moerloose, et al.].     
 

B.   Mid-Frequency  (1 MHz - 1 GHz) 
 
 The FDTD method has been applied to a myriad of mid-frequency simulations 
including calculation of SARs and induced currents in the human body for plane wave 
exposures [Gandhi, et al., 1992], exposure to the leakage fields of parallel-plate dielectric 
heaters [Chen & Gandhi, 1991a], exposure to EMP [Chen & Gandhi, 1991b ], annular 
phased arrays of aperture, dipole, and insulated antennas for hyperthermia [Chen & 
Gandhi, 1992], coupling of the cellular telephones to the head[Gandhi, et al., 1996; 
Jensen & Rahmat-Samii; Dimbylow & Mann; Luebbers, et al., 1992; Okoniewsi & 
Stuchly; Watanabe, et al.], and exposure to RF magnetic fields in magnetic resonance 
imaging (MRI) machines [Gandhi, et al., 1994].  Tissue properties and human models are 
well-established in this frequency band, and the FDTD method is a well-accepted 
simulation method in this range.   
 
 Simulations of the coupling of cellular telephones to the head has shown that the 
head absorbs 40-50% of the power radiated from an isotropic antenna such as is 
commonly used on cellular phones [Gandhi, et al., 1996 ], and that consequently the head 
significantly alters the radiation patterns from these phones [Jensen & Rahmat-Samii; 
Okoniewsi & Stuchly ] and also the matching characteristics of the antenna.  The cellular 
telephones are generally modeled as a metal box covered by plastic.  The size of this box 
has been shown to influence the radiated fields and SAR distribution patterns [Gandhi, et 
al., 1996].  In addition, the plastic covering the box and antenna also affects these 
parameters.  Since the plastic is generally thinner than the resolution of the FDTD grid, 
an effective dielectric constant is used in this cell to model the plastic [Gandhi, et al., 
1996].  This effective dielectric constant, Ke, is derived by noting that the electric fields 
close to a metallic surface such as that of a handset are primarily normal to the metal, and 
only a part of the FDTD-cell width is actually filled with the dielectric material.  The 
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required continuity of the normal component of D=E with the outer region can be used 
to obtain Ke.  This gives an equation for Ke in an FDTD cell of size which is somewhat 
lower than the dielectric constant of the plastic, r , of thickness w (generally about 1mm) 

    K
w we

r

r


 




 [ ( ) ]
    (24) 

Here is the dimension of the FDTD cell, which is x,y, z depending on which surface 
of the metal handset or antenna is being considered.   
 
 Elements of cellular telephone simulations which have been found to significantly 
affect the accuracy of the simulation include the size of the metal box of the telephone 
and the dielectric properties used for the head [Gandhi, et al., 1996].  It has been shown 
that several different head models (with ears removed) can provide similar results, 
although homogeneous models have been found to significantly overestimate the 1-gram 
SAR value (by roughly 30%) [Gandhi, et al., 1996; Hombach, et al.],.  Although 
[Hombach, et al.] did not consider the effect of ear shape, it is likely that the shape of the 
ear (pressed against the head or not pressed against the head) does affect the local SAR 
distribution.  Two of the most significant parameters affecting the power deposition in 
the head from the cellular telephone is the nature of the antenna (length, shape, etc.) and 
how close it is to the head.  For accurate modeling, it is essential to properly represent the 
length of the antenna, the exact configuration of the feedpoint (especially if any metal 
parts such as those used to hold the antenna protrude above the top of the box), and the 
exact location of the antenna on the top of the box.  This can be done with engineering 
drawings or xrays of the actual phone.  For accuracy, it is a good idea to model the 
telephone without the head first, and compare to a known measured value such as 
radiation pattern or near-field measurements without the head, to ensure that the model of 
the telephone and antenna is accurate.  Once the telephone model is verified, there is still 
the question of how to position the telephone relative to the head.  This has been done 
several different ways in the literature.  One school of thought is to find the absolute 
worst position the phone could be held in, such as directly in front of and nearly touching 
the eye.   Another school of thought is to position it in approximately the position it 
would be used, but without the ear, as the ear significantly complicates both 
measurements and interpretation of the measurements [Gandhi, et al., 1996 ].  Still 
another school of thought is to attempt the most realistic placement for ordinary 
operation of the phone, including the effect of the ear [Lazzi & Gandhi, 1996].  In this 
case, the ear is compressed as it generally is when people press the phone against their 
ear.  Care is taken to line up the listening microphone with the ear canal, as this is 
observed to be the position where the phone is generally used.  The effect of tilting the 
telephone towards the mouth, in the most realistic position, has also been examined 
[Lazzi & Gandhi, 1996 ].  In this case, the telephone is modeled on the vertical FDTD 
grid, and the head is tipped, to prevent errors due to stair-case modeling of the metal 
phone parts.   
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As an example of the effect of these parameters, Table 1 shows a comparison of 

several different orientations of the head for a 2.76 x 5.73 x 15.5 cm telephone at 835 
MHz, covered with 1 mm of plastic (modeled as one cell thick using (24) ), with a /4 
antenna, also coated with plastic.  The phone model is held against the Utah model of the 
human head, and the simulation has an overall resolution of 1.974 x 1.974 x 3mm.  Three 
values are shown, one for the phone held vertical to the head, touching the ear, which is 
pressed against the head.  The second model has the phone tilted towards the mouth, but 
not pressed against the cheek, and the third model has the phone tilted towards the mouth 
and pressed against the cheek.  As the phone is tilted towards the mouth, the antenna is 
effectively tilted away from the head, thus lowering the localized values very near the 
antenna, and consequently the 1-gram SAR value.  This effect is most notable for 
physically long antennas. For the shorter antenna used at 1900 MHz, the 1-gram SAR is 
not lowered significantly as the phone is tilted.  This is because the antenna remains very 
near the head, despite being tilted 
 

Table 1:  Comparison of the 1-gram SARs for a cellular telephones next to the 
head as a function of phone position [Lazzi and Gandhi, 1996] 
 
Frequency 
(MHz) 

Vertical Head 
Model 

Tilted 30 degrees 
head Model 

Tilted 30 degrees 
head model with 
additional 
rotation of 9 
degrees 

835 2.93 W/kg 2.44 W/kg 2.31 W/kg 
 

1900 1.11 W/kg 1.08 W/kg 1.20 W/kg 
 

 
 
 
 

C.  High Frequency (above 1 GHz) 
 
 The use of the FDTD method for high frequency simulations is limited only by 
the resolution of the grid and the ability of the computer to analyze the very large models 
which result from small grid resolutions.  Fortunately, at high frequencies, the power 
deposition is highly superficial, so methods such as truncating the model [Lazzi & 
Gandhi, 1996] are highly effective.  This method has been used for cellular telephones 
working at 6 GHz [Gandhi and Chen, 1995] 
 

D.  Broad-Band 
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 Since the properties of biological tissue are significantly frequency dispersive, 
one of two methods must be used to predict broad-band effects.  Either the convolution 
method must be used, where individual FDTD simulations are run at every frequency of 
interest (where tissue properties can be precisely prescribed), as described in section II, 
or the (FD)2TD method should be used as described in section III.  The convolution 
method is very cumbersome if a large number of frequencies are of interest  The relative 
accuracy of the two methods depends on the accuracy of the Debye equation (13) fits to 
the measured tissue properties.  If the match is perfect, the two methods provide identical 
accuracy.  If the match has some error, the error observed in the (FD) 2TD simulation is 
the same as would have occurred if the FDTD simulation had been run with that error in 
the tissue properties.   In general, truly broad-band simulations have such a large number 
of frequencies in the pulse that the  (FD) 2TD is preferable to multiple FDTD simulations. 
  

As an example, the FDTD and (FD)2TD methods were compared for finding the 
layer-averaged SARs in a 1.31 cm resolution model of the human body over the 
frequency range from 20 to 915 MHz [J.Y. Chen, et al., 1994 ]. Figure 9 shows the layer-
averaged RF current at 40, 150, and 350 MHz for this simulation.   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9: Layer-averaged RF currents in the human model comparing the 
accuracy of the FDTD and (FD)2TD solutions.  Tissue properties are modeled 
with second-order Debye equations. 
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Figure 10: Time-domain currents through the heart, simulated using the (FD)2TD 
method. 
 
The results of the (FD)2TD simulation are shown in Figure 10 in the time-domain 

for a raised-cosine pulse which has a bandwidth from 0 to 915 MHz.  The layer-averaged 
current is shown for the layers of the eyes and the ankles.  This broad-band time-domain 
simulation would have been prohibitively cumbersome to obtain without the (FD)2TD 
method because of the large number of frequencies in this pulse.   
 
V.   Conclusions 
 
 The FDTD method has proven to be one of the most flexible, efficient, and 
applicable methods for numerical calculations of electromagnetic interaction with the 
body from the quasi-static to near-optic range.  It lends itself particularly well to 
modeling the heterogeneities of the human body in millimeter resolution, and to 
modeling a wide variety of electromagnetic sources in the far field or very near the body.  
In addition to the basic efficiency of the algorithm, numerous additions to the method 
make the application of this method even more efficient for particular applications.  The 
FDTD algorithm is efficiently programmed for either serial or parallel machines, and is 
found to scale very near linearly as the number of processors is increased.  Methods to 
reduce the model size such as grid truncation have been shown to be highly effective.  
Signal processing techniques can be optimized for this method, and a frequency-
dependent FDTD method provides data for broad-band simulations.  The flexibility and 
efficiency of this simple algorithm have made it the popular electromagnetics simulation 
method that it is. 
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Figure Captions 
 
Figure 1:  Distribution of electric and magnetic field components in a single FDTD (Yee) 
cell   [Furse, 1994] 
 
Figure 2: Variation of the numerical phase velocity with wave propagation angle in two-
dimensional FD-TD grid for three grid resolutions [Taflove] 
 
Figure 3: Wavelength of tissues as a function of frequency for  several body tissues. 
 
Figure 4: Magnitude of Ez along the y-axis of a 2/3 muscle sphere at 200 MHz.  The 
plane wave is incident from the y-direction. [Furse, et al., 1994] 
 
Figure 5:  Relative SAR distribution along the y-axis of the homogeneous brain-
equivalent sphere excited by an infintessimal  dipole.  Analytical solution from [Dhondt 
& Martens].   FDTD from [Furse and Gandhi, 1996] 
 
Figure 6: Comparison of the SAR distributions for te full model and the truncated half 
and one-third models of the human head along the axis for z=0 and z=4.5 cm for a /4 
monopole above the handset.  Frequency = 1900 MHz.  Radiated power = 125 mW. 
 
Figure 7:  Calculated layer currents for saline-fileed grounded and ungrounded human 
models exposed to a vertical 10 kV/m, 60 Hz electric field.   For the FDTD technique, 
Hinc = 26.5 A/m oriented from side to side of the body has also been included.  
Measured values are given in [DiPlacido, et al.], calculated values given in [Gandhi & 
Chen, 1992 ]. 
 
Figure 8:  Layer-averaged SAR for several frequencies.   Solid line: FDTD (7 separate 
simulations) with exact properties; broken line: FDTD (7 separate simulations)   with 500 
MHz properties.   Dot: (FD)2TD (single simulation)  with Debye fit properties. [Furse, et 
al., 1994] 
 
Figure 9:    Layer averaged RF current as a function of time. (a) Eye layer, (b) Neck 
layer, (c ) Heart layer, (d) Liver layer, (e) Bladder layer, (f) Knee layer, (g) Ankle layer  
[Furse, et al., 1994] 
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Figure 1:  Distribution of electric and magnetic field components in a single FDTD (Yee) 
cell   [Furse, 1994] 
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Figure 2: Variation of the numerical phase velocity with wave propagation angle in two-
dimensional FD-TD grid for three grid resolutions [Taflove] 
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Figure 3: Wavelength of tissues as a function of frequency for  several body tissues. 
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Figure 4: Magnitude of Ez along the y-axis of a 2/3 muscle sphere at 200 MHz.  The 
plane wave is incident from the y-direction. [Furse, et al., 1994] 
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Figure 5:  Relative SAR distribution along the y-axis of the homogeneous brain-
equivalent sphere excited by an infintessimal  dipole.  Analytical solution from [Dhondt 
& Martens].   FDTD from [Furse and Gandhi, 1996] 
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Figure 6: Comparison of the SAR distributions for te full model and the truncated half 
and one-third models of the human head along the axis for z=0 and z=4.5 cm for a /4 
monopole above the handset.  Frequency = 1900 MHz.  Radiated power = 125 mW. 
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Figure 7:  Calculated layer currents for saline-fileed grounded and ungrounded human 
models exposed to a vertical 10 kV/m, 60 Hz electric field.   For the FDTD technique, 
Hinc = 26.5 A/m oriented from side to side of the body has also been included.  
Measured values are given in [DiPlacido, et al.], calculated values given in [Gandhi & 
Chen, 1992 ]. 
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Figure 8:  Layer-averaged SAR for several frequencies.   Solid line: FDTD (7 separate 
simulations) with exact properties; broken line: FDTD (7 separate simulations)   with 500 
MHz properties.   Dot: (FD)2TD (single simulation)  with Debye fit properties. [Furse, et 
al., 1994] 
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Figure 9:    Layer averaged RF current as a function of time. (a) Eye layer, (b) Neck 
layer, (c ) Heart layer, (d) LIver layer, (e) Bladder layer, (f) Knee layer, (g) Ankle layer  
[Furse, et al., 1994] 
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Table 1: Comparison of several different orientations of the head for a 2.76 x 5.73 x 15.5 
cm telephone at 835 MHz, covered with 1 mm of plastic (modeled as one cell thick using 
(24) ), with a 3/8 antenna, also coated with plastic.  The phone model is held against the 
Utah model of the human head, and the simulation has an overall resolution of 1.974 x 
1.974 x 3mm. 

 
 

Frequency 
(MHz) 

  
 

Vertical 
Head Model 

 
 

Tilted 
30° Head Model 

Tilted 
30° Head Model, 

with Further 
Rotation of 9° 

835 Peak 1-g SAR  
for head 
 

2.93 
(1.01 g) 

2.44 
(1.03 g) 

2.31 
(1.10 g) 

  
Peak 1-g SAR 
for brain 

 
1.13 

(1.09 g) 

 
0.93 

(1.02 g) 

 
0.66 

(1.00 g) 

 
1900 

 
Peak 1-g SAR  
for head 
 

 
1.11 

(1.03 g) 

 
1.08 

(1.03 g) 

 
1.20 

(1.01 g) 

  
Peak 1-g SAR 
for brain 

0.19 
(1.00 g) 

0.20 
(1.04 g) 

0.16 
(1.02 g) 

 
 


