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model for a linear one- . , -  
port or two-port, the time-domain resolution of a vector net- 
work analyzer can be significantly improved with respect to the 
Rayleigh limit. The measurement problem is formulated as a 
nonlinear least squares parameter estimation problem involv- 
ing the extremization of a cost function. An extremization al- 
gorithm with good global convergence properties is presented 
for the case of discontinuities of small reflectivity modeled as 
simple lumped Frequency-Dependent elements. The reflection 
eoefficient at either port of the DUT is modeled as a superpo- 
sition of Modulated complex sinusoids. Through optimization 
of a sequence of cost functions, the algorithm produces a se- 
quence of fits for models that incorporate an increasing number 
of discontinuities. 

I. INTRODUCTION 
ONSIDER a one-port or two-port device under test C (DUT) that is a cascade of transmission lines and 

lumped junctions or discontinuities. An incident wave at 
a port of the DUT will scatter on these junctions, and the 
reflected wave will provide information about the type, 
size, and position of the discontinuities. Vector network 
analyzers (VNA) apply a sinusoidal incident wave and 
measure the reflection coefficient and possibly the inser- 
tion loss at different frequencies. The conventional Fou- 
rier technique transforms this measured frequency re- 
sponse to the time domain with an inverse discrete Fourier 
transform to yield an estimate of the corresponding im- 
pulse response of the DUT. Discontinuities are revealed 
as peaks in the reflectogram thus obtained. 

The resolution (minimum separation 61 of discontinui- 
ties to be distinguishable) of the conventional Fourier 
technique with equispaced measurement frequencies is 
given by the Rayleigh limit [ 11 : 

CO 
(1.11 61 = - 

where 61 is the resolution limit in electrical length units, 
c,  is the velocity of light in a vacuum, and f p a n  is the 
difference between the highest and the lowest measure- 
ment frequency. Electrical length equals physical length 
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divided by the relative (w.r.t. c,) propagation velocity in 
the medium. The resolution obtained from analysis of fre- 
quency-domain data can be improved by introducing a 
frequency-domain model for both the lumped junctions 
and the connecting transmission lines. The increased per- 
formance is paid for with prior knowledge required to 
model the DUT. In previous attempts [2]-[4], the model 
assumptions included small, frequency-independent re- 
flection coefficients for the lumped elements and (nearly) 
lossless transmission lines. The reflection coefficient at 
either port of the DUT is then modeled as a superposition 
of complex sinusoids or cisoids as a function of fre- 
quency. The estimation of the parameters in such a model 
is intensively studied in the literature and yields super- 
resolution techniques. Among the many available meth- 
ods, MUSIC [5], [6], ESPRIT [9], and nonlinear least 
squares estimation (NLSE) [ 5 ] ,  [6] were applied to the 
reflectometry problem in [2], [3], and [4], respectively. 

In this paper, the nonlinear least squares approach will 
be chosen. It uses a signal model that accommodates fre- 
quency-dependent models for the junctions. To the au- 
thor’s knowledge, this is the first paper that treats fre- 
quency-dependent reflections in a superresolution context. 
In the first phase (Sections I11 and IV), the NLSE-super- 
resolution technique based on the simplified signal model 
of Section I1 is used. The advantages of NLSE are low 
threshold (see 141) and the ability to use a parsimonious 
parametrization. The assumptions made in phase one in- 
clude “small” discontinuities with nearly perfect con- 
necting transmission lines at all measurement frequen- 
cies. The solution obtained using these assumptions is 
used as a good initial guess for use in a second phase 
(Section V) that tunes the parameters of a more rigorous 
model. This requires prior knowledge regarding the struc- 
ture of the device, such that a parametric model can be 
compiled. 

11. A SIMPLIFIED SIGNAL MODEL 
Consider the one-port sketched in Fig. 1. Full exploi- 

tation of two-port data is postponed till the second phase. 
The DUT is composed of M junctions J k ( k  = 1 * . M )  
with frequency-dependent scattering matrix S‘JL’ ( f) and 
M connecting transmission lines T, ( k  = 1 . * M )  of elec- 
trical length I,, complex frequency-dependent constant of 
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Fig. 1. DUT structure. 

propagation y ( f )  = a ( f )  + j P ( f )  and characteristic 
impedance zc,k. In this paper, the attention is restricted to 
lumped junctions that are of the type: 

a series resistor, a shunt conduc- 
tance, a step in the character- 
istic impedance or a cascade of 
these, 

type Z (imaginary): a series inductor, a shunt capaci- 
tor or a cascade of these, 

type C (complex): a cascade of junctions of types R 
and I .  

Other junction models can be handled, as long as they 
allow an approximate cisoidal model (2.1) with known 
modulation function and linear amplitude parameters. The 
Mth junction represents the termination of the imperfect 
line (possibly the second VNA measurement port) and 
must offer a good match as well. It was shown in [4] that 
the reflection coefficient measured at the VNA port can 
be approximated as: 

type R (real): 

k -  1 \ 

(2. la)  

provided that the magnitudes of both Si?) and Si$) are 
small for all k. The approximation involves neglecting the 
multiple reflections on the junctions. Assume that the to- 
tal line attenuation a ( f ) ~ f ; ' l ,  is small, that z c , k  is nearly 
real, that P(f) is essentially a linear function of fre- 
quency (small propagation dispersion), and that the nth 
junction can be modeled as a series impedance Z,, ( f )  = 
zn ( f )Zc , , ,  a shunt admittance Y , ( f )  = ~ , ( f ) / z = , ~  or a 
step in characteristic impedance zn = 2(Z,,,+ - 
Zc,n)/(Zc,n+l + Zc,,) ,  all with Iz,(f)l << 1 at all mea- 
surement frequencies. The measured reflection coeffi- 
cient can then be written as a superposition of modulated 
cisoids [ 101 : 

(2. lb) 

where C, is a real-valued amplitude parameter, and mk (f ) 
is a complex-valued modulation function depending on 

the junction type. For type R junctions, i.e., if z k ( j )  is 
real-valued and frequency-independent, mk ( f )  = 1 ; for 
type I junctions, i.e., z k ( f )  is purely imaginary and pro- 
portional to f, mk ( f )  = jf. Extension to junctions of type 
C is achieved by modifying the modulated amplitude 
Ckmk(f)  for a single index k in (2. lb) to Rk + jflk where 
Rk and z k  are two amplitude parameters. The contribution 
w(f) in (2.lb) contains the measurement noise, the cal- 
ibration error, the multiple reflections and other approxi- 
mation errors. 

The VNA measures TI  ( f )  at frequencies (no + n) A 
Hz with n = 0 - - - N - 1 and no << N .  Introduce the 
measurement vector x' = [ r , (n ,A) ,  - * , I',,,((n0 + N 
- l ) A ) ] ,  (superscript "t" stands for vector and matrix 
transposition), the noise vector w' = [ w ( n , A ) ,  * - , 
w ((no + N - 1) A ) ] ,  the normalized cisoidal frequencies 

the linear modulation vector n,  the unmodulated steering 
vector e (U), the linearly modulated steering vector r(u),  
and the quadratically modulated steering vector q (U): 

exp ( -j27run0) 

exp (-j27ru(n0 + 1 ) )  
e (u)  = [ ; ] (2.2b) 

exp (-j2au(nO + N - 1 ) )  

r (u)  = n o e(u)  and q(u) = n o r(u) where o denotes 
elementwise matrix product (Hadamard product). Fur- 
thermore, let 

Ek(u) = e(u)  and ak E R if Jk is of type R; 

Ek(u)  = r(u)  and ak E R if scalar if Jk is of type I; 

and 

&(U) = [e(u)r(u)l  and ak E W 2  if Jk is of type C. 

x = E(u)a  + w 
Then the simplified signal model is obtained: 

(2.3) 
with 
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111. NONLINEAR LEAST SQUARES ESTIMATION (NLSE) 
Consider the general NLSE problem of fitting a cisoidal 

model with K junctions of known type to x, where K is a 
predefined integer number. The NLSE method minimizes 
IIx - E ( v )  bI(2 over the independent variables. These are 
the K-vector u of cisoid frequencies and the vector b of 
amplitudes. For notational convenience, the matrix E(u)  
defined in (2.3) contains as many submatrices Ek as there 
are entries in v (in this case K instead of M), i.e., E ( v )  
= [ E , ( u , ) ,  - * , EK(uK)].  The number of cob" in 
each of the Ek(vk) is known to be 1 or 2 from the assumed 
junction type, and the total number of columns in E ( v )  is 
called Q K .  Minimization of I(x - E(v)bl12 over b is a 
linear least squares problem that can be solved explicitly 
for each v. Substitution of this solution in I(x - E(v)b(12 
leaves the following cost to be maximized (proof is for- 
mally the same as in 141): 

Lx,K(v) = (XHE(v)>R(EH(2/)E(V))R1 ( E H ( 2 . ' ) X ) R  (3.1) 

where subscript "R" indicates the real part of a complex 
quantity, and superscript "H' ' means Hermitian trans- 
position. The cost is indexed with x to stress its depen- 
dence on the measurements and with K to indicate the 
number of junctions or modulated cisoids present in the 
model. L x , K ( ~ )  is a nonquadratic function of the parame- 
ters U that exhibits numerous local maxima. The global 
maximum can be found by a global search, that is, max- 
imizing by exhaustive search over a grid. The computa- 
tional load of this method increases exponentially with K. 
Therefore, the K-dimensional global search will be re- 
placed by a series of one-dimensional global searches that 
can be implemented efficiently. 

For simplicity, it is assumed in the remainder of this 
section that all junctions are of the same type. By defini- 
tion, the cisoid frequency estimates for this Kth order 
model are given by: 

vK = arg max Lx,K(v) (3.2a) 

with v f  = [ u I ,  - * , uK].  For K = 1, the (3.2a) is a 
maximization over one variable, which involves an ac- 
ceptable computational load. For K I 2, the problem 
must be simplified. Since all junctions are of the same 
type, the global maximizer of L,,K(v)  is not unique: per- 
mutation of the entries of v yields the same value of t,, 
The algorithm outlined in the next section is based on the 
assumption that it is possible to find a maximizer vK, 
whose upper K - 1 entries are vK - I ,  perturbed by at most 
1 /(2N) in order of magnitude, and a new Kth component 
(see [lo]). The underlying idea of the algorithm is to es- 
timate the small perturbation of using a linearized 
signal model, and this for every candidate uK. This will 
require the extremization of a modified cost function over 
just one variable. To obtain this modified cost function, 
consider the Kth component of the exact solution vK. 

U l " ' U K  

Written this way, the NLSE is formulated as fitting a 
model (3.3) to x for every choice of uK, and then selecting 
the v K  that provides the best fit in the least squares sense. 
Hence, given uK, a nonlinear least squares fit of the am- 
plitudes al,  * * - , aK and frequencies ul * * * , uK- i is 
sought in the model 

I : I  
(3.3) 

Instead of finding the optimal [ u l ,  - * - , uK- J', the vec- 
tor of optimal deviations [6,, t i 2 ,  - from the 
known vector uK-  = [uK-  uK- * - 
is sought. If these optimizing 6k satisfy lak( << 1 /(2N), 
the following truncated Taylor series can be written: 

- , t iK- 
9 u K -  1 . K -  I]' 

e(uK- i , k  + e(uK- 1.k) - 2a&kr(uK- I ,k)  (3.4a) 

Fk(v) = [e(u)r(u)J and ck E R 2  if Jk is of type R, 

F ~ ( u )  = [ r (u)q(u)]  and ck E w 2  if Jk is of type I, 

Fk(v) = [e(u)r(u)q(u)] and ck E R 3  if Jk is of type C. 

For those choices of uK where the maximizing z i I ,  * * , 
uK - deviate more than 1 /(2N) from the entries of vK - 
the linearized model (3.5) is expected to give a poorer fit 
than the correct model (3.3), since (3.5) is inadequate to 
describe the data. However, when uK assumes the optimal 
value uK,K this will not be the case, since then uK and the 
maximizer of the inner problem in (3.2b) are the compo- 
nents of vK, for which the small-& assumption is valid, 
as demonstrated in [lo]. Hence, unless the linearized 
model would occasionally produce a better fit for nonop- 
timal (in the sense of 3.2b) values of uK, the optimal value 

(3.2b) of uK for the linearized problem will approximate the true 
u K , K  = arg max { max L , , K ( ~ ) ] .  

U K  V I '  ' .  U K - I  optimizer of (3.2b). 
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The estimation of c in (3.5) is a linear least squares 
problem that is easily solved and substituted in the cost 
as was done for b. This yields a cost that is a function of 
vK only, since vK- I is known and fixed. Algebraic ma- 
nipulations then show that the optimal uK is the maxi- 
mizer of 

s ( U K ) '  T - I  ( U K )  s ( U K )  (3.6) 
with 

s ( z / K )  = ( E H X ) R  - (EHF)R(FHF)R1(FHX)R 

and 

T(uK) = (EHE)R - (EHF)R(FHF)R1  (FHE)R 

where the shorthand [F,  E ]  is used for [F(uK- I ) ,  E K ( u K ) ] .  
An approximate solution of the maximizer of (3.6) is 
found by a one-dimensional coarse search over uK, the 
result being 8. A gradient-type maximizing technique with 
initial guess [ v i -  I ,  81' can then be applied to L,,,(u) to 
finally solve (3.2a) exactly. The global search grid for 
maximizing (3.6) has a spacing of 1 INFFT,  where NFFT is 
a power of 2 that is greater than 8N.  This resolution is 
sufficient, because it was shown in the appendix of [4], 
that for a type R junction with no << N ,  the width of the 
"humps" of L,,K is approximately 1/N. The same con- 
clusion can be drawn for type I junctions, while the dou- 
ble width can be found for type C junctions. 

For junction type R and I, s and Tare scalars; for junc- 
tion type C, s E R 2  and T E R2x2 .  Since E H E  and F H F  
are independent of uK, they must be computed only once 
per grid search. The entries of ( E H ~ ) R  and de- 
pend on the differences between uK and an entry u K -  l 
only and can therefore be read from a lookup table with 
0 (NFFT) entries. Hence, the one-dimensional global 
search requires little computation. 

IV. ALGORITHM OUTLINE-PRIOR KNOWLEDGE 
Assume for the moment that all junctions are of the 

same type. The basic algorithm is: 

1. Set K = 1. A global search and a refining gradient- 
type extremization are used to maximize L,, the 
maximizer being ul (a scalar). 

2. Increment K. Maximize Lx,K(u)  by first finding the 
B on the grid that maximizes the linearized-model 
cost (3.6) and then applying a gradient-type maxi- 
mizing technique to the original cost Lx,K(u) with 
initial guess [ U ; -  

3 .  If K < M, round all entries of uK to their closest 
value on the NFFT-point grid and go to 2; else, the 
final estimate is uM. 

Due to the approximations, global convergence of the al- 
gorithm is not assured. It is possible that the algorithm 
converges to a local maximizer of L,, M ,  in particular if no 
becomes comparable to N ,  if the dynamic range of the 
signal components is large or if a multitude of junctions 
is separated by less than the Rayleigh limit. In the latter 

81'. The result is called uK. 

case, a study of the CramCr-Rao bounds reveals that an 
unbiased solution of the problem becomes extremely noise 
sensitive, i.e., even the correct solution may be of no 
practical use. The restriction on no implies that the sim- 
plified signal model must be valid at low frequencies, ex- 
plaining why the attention was restricted to low-pass junc- 
tions. 

The use of prior knowledge can conquer the problem 
of local extrema. Algorithmically, it is possible that too 
many components of uK are within 1 /(2N) of a cluster of 
fewer true frequencies of strong components that are 
themselves separated by less than 1 /(2N). Escape from 
such a local maximum of Lx,K is possible by removing 
each of the K - 1 other cisoids from the model and adding 
it again by a one-dimensional search as in step 2 of the 
algorithm. This procedure, which is similar to alternating 
projection described in [7 ] ,  is inserted in the algorithm 
after step 2. The computational load of one cycle through 
the algorithm is then increased to K (instead of 1) global 
searches. 

The algorithm can handle a mixture of junction types, 
but the problem of local extrema becomes more acute. 
The order in which junctions of different types are added 
to the model becomes important. Intelligent user interac- 
tion based on prior knowledge can exclude many possi- 
bilities. Since any cisoid frequency at any intermediate 
stage of the algorithm is assumed to be correct within 
about 1 /(2N), formula (2.2a) allows an aposteriori con- 
frontation with prior knowledge regarding the DUT struc- 
ture. Also, apriori hard bounds on the coarse search grid 
can be derived from structural information. 

More information than just the junction type might be 
available; e.g., for shunt conductance or capacitor, the 
amplitude of the modulated cisoid is negative; for series 
resistor or inductor, it is positive. All points of the grid 
that yield an amplitude of opposite sign are excluded as 
potential maximizers of (3.6). For each candidate fre- 
quency uK, the amplitude equals T-I ( u K ) s ( u K )  and can 
be checked without extra work. 

V. PARAMETER FINE TUNING 
Let S ( p ,  f) be a frequency-dependent model of the 

scattering matrix of the passive DUT, depending on the 
parameters p .  On the other hand, the measurements 
S,  (A(no + n))  (n = 0 * - N - 1) of this scattering ma- 
trix are available. An NLSE approach for the two-port 
problem then minimizes the weighted sum F (  p )  (over n 
and all measured scattering parameters) of squares of dif- 
ferences between the model and the measurements. 

In the model S ( p ,  f), p must contain the lengths be- 
tween the junctions and other parameters characterizing 
the lumped junctions themselves, the junction quanti- 
fiers (e.g., value of a capacitor, width of a microstrip, 
etc.). Minimization of F (  p )  is achieved using an iterative 
gradient-type technique. The cisoid frequencies can be 
converted to initial guesses for the electrical lengths via 
(2.2a). The remaining component values can easily be ob- 
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tained from zero initial guesses by first minimizing F (  p )  
with the electrical lengths fixed at their initial guesses. 
Subsequently, F (  p )  must be minimized over all entries of 
p ,  yielding the final estimates. 

VI. EXPERIMENTAL RESULTS 

Consider the microstrip structure shown in Fig. 2. It is 
built on “ordinary’’ epoxy/glass-fiber printed circuit 
board (p.c.b.) with a dielectric thickness of 1.55 mm k 
0.05 mm, a dielectric loss tangent tan 6 = 0.02 k 0.01 
and a relative dielectric constant E ,  = 4.3 i- 0.1. The 
reflection coefficient at the reference plane (in the SMA 
connector) is measured at 101 equispaced frequencies be- 
tween 45 MHz and 2.295 GHz, i.e., A = 22.5 MHz, N 
= 101 and no = 2. The microstrip line exhibits two steps 
in width and is terminated in a 47.0 Q _+ 0.2 Q chip re- 
sistor. To make the junctions (impedance steps) fre- 
quency-dependent, two chip capacitors of 1 pF are 
mounted between the strip and the ground plane. The no- 
tations used for the dimensions of the DUT and the com- 
ponents are defined in Fig. 2. Notice that dk is the me- 
chanical length of transmission line Tk, while its electrical 
length is denoted by l k .  The SMA-to-microstrip transition 
consists of a 0.5-mm segment of the soldering pin of the 
central conductor of the connector. 

The data is first processed by the conventional Fourier 
technique (see Fig. 3). The extrema of this bandpass im- 
pulse response do not coincide with the true positions of 
the junctions due to their frequency-dependent behavior 
and due to merging of the responses of the individual 
junctions. Moreover, the Rayleigh resolution is about 65 
mm of one-way electrical length. 

Significant reflections are expected at the connector, at 
both impedance-steps/capacitors and at the termination 
resistor. All junctions are modeled as type C junctions: 
for the step/capacitors this is obvious; the SMA-to-mi- 
crostrip transition is of type I (see [ l l ] ) ,  which yields a 
type C junction if an impedance step is present, and the 
resistive termination may exhibit spurious reactive ele- 
ments. A model containing four type C junctions is fitted 
to the frequency-domain data using the algorithm outlined 
in Section IV: 

4 

x = ( W ( U k )  + bkwh)) 
k =  1 

with uk related to the electrical lengths bye (2.2a). The 
electrical lengths are found to be ZI = 22.5 mm, Z2 = 88.3 
mm, Z3 = 114.8 mm and Z4 = 101.5 mm. The electrical 
length of 22.5 mm for the connector is obviously too 
large. To improve on these first results, the DUT is mod- 
eled as a cascade of perfect transmission lines and lumped 
elements as shown in Fig. 4. 

The electrical length of an SMA connector was mea- 
sured in a separate experiment and was found to be l ,  = 
12.4 mm, and Zc,l was set to 50.0 Q .  These connector 
characteristics will be fixed in the analysis to follow and 

Calibration reference Dlane 

Fig. 2. Descnption of the DUT (drawing not to scale). rf;v;m+ 
-0.05 

-0.1 

-0.15 
-200 0 200 400 600 800 

two-way electrical length (mm) 
Fig. 3 .  The extrema of the real part of the Inverse Discrete Fourier Trans- 
form (IDFT) of the Hamming-windowed frequency-domain data do not co- 
incide with the junction positions, making conventional Fourier techniques 
hard to interpret. The arrows show the position of both capacitors. - Calibration reference plane 

Fig. 4. Model 1 consisting of prefect transmission lines and lumped ele- 
ments. 

are not reestimated. With the initial values 1, = 98.4 mm 
(= 88.3 + 22.5 - 12.4), I, = 114.8 mm, l4 = 101.5 
mm, L,  = L2 = 0 nH, Zc,2 = Zc,3 = Zc,4 = R = 50 Q 
and C1 = C2 = 0 pF, F ( p )  as defined in Section V is 
minimized with 12, 1 3 ,  and l4 fixed, then variable. Finally, 
the characteristic impedance and electrical length thus ob- 
tained for each line are converted into initial estimates for 
the width and mechanical length of a microstrip transmis- 
sion line using the microstrip design formulae of [ 121, and 
the model parameters are estimated by minimizing the 
least squares criterion of Section V. The model, depicted 
in Fig. 5 ,  incorporates dispersion and loss in the micro- 
strips. The resulting estimates for the lumped elements 
are: L1 = 0.30 nH, & = 1.00 nH, R = 47.5 Q ,  CI = 
1.13 pF and C, = 1.11 pF. The estimated microstrip di- 
mensions are compared with measured mechanical di- 
mensions in Table I. Since the characteristic impedance 
of a microstrip is basically a function of the w / t  ratio (t 
is the dielectric thickness) and er ,  the uncertainty on t and 
E ,  can explain the differences in the estimated and mea- 
sured strip widths. 

The quality of the fit is examined using Fig. 6 .  It dis- 
plays the magnitude of the measured reflection coefficient 
and the magnitude of the residuals (the complex differ- 
ence between measured and modeled reflection coeffi- 
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rll Calibration reference plane 

Fig. 5. Model 2 consisting of nonideal microstrip transmission lines and 
lumped elements. 

TABLE I 
THE ESTIMATED VERSUS THE MEASURED MICROSTRIP DIMENSIONS 

estimate (mm) measured (mm) 

d2 50.8 50.5 f 0.5  
d3 59.9 59.5 f 0.5  
d4 51.7 51.0 f 0.5 
W2 3.64 3.44 f 0.05 
w3 2.93 2.87 f 0.05 
w4 3.51 ’ 3.56 t 0.05 

__ measured 

error (model 1) 

error (model 2) 

..... dB 
_ _  O l  

-20jd -30 V 

-60 / 
0 0 5  1 1.5 , 2  2.5 

f (GHz) 
Fig. 6.  Magnitude of measured reflection data (solid), magnitude of resid- 
uals for lossless-transmission-line model (dashed) and magnitude of resid- 
uals for microstrip model (dot-dash). 

cient). The unmodeled behavior is more than an order of 
magnitude smaller than the modeled phenomena. Also, 
the second model performs better. The remaining mod- 
eling errors are probably mainly due to the repeatability 
problems caused by the flexible cables in the measure- 
ment setup and due to the poor connector and transition 
models. 

Finally, it is worth noting that the method performed 
well, although the magnitude of the reflection coefficient 

reaches values over 0.6, a serious violation of the “ 
discontinuities’ ’ assumption. 

VII. CONCLUSIONS 
A nonlinear least squares estimation method for time- 

domain analysis from frequency-domain measurements of 
a DUT was presented. Estimation is based on a 
monious model that requires a low reflectivity as 
tion. The method copes with frequency-dependent reflec- 
tion. It was shown how prior knowledge can (and shobld) 
be used to improve the performance of the 
Analysis of experimental data illustrated the p 

method. 
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