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Abstract  
Significant international research and development efforts have been devoted to methods 
and equipment for locating wiring faults particularly those on aging aircraft.  Several 
reflectometry methods that send high frequency signals down the line and analyze the 
returned reflections have risen to the forefront of these technologies.  While these 
methods are proving to be accurate for location of “hard” faults (open and short circuits), 
location of “soft” faults such as frays and chafes remains elusive.  This paper analyzes the 
impedance of several types of soft faults and their resultant reflectometry returns, which 
are shown to be smaller than returns from other sources of physical and electrical noise in 
the system.  Through numerical simulations verified by measurement, it is shown that 
soft faults are virtually impossible to locate using today’s reflectometry methods 
including time domain reflectometry, frequency domain reflectometry, and spread 
spectrum time domain reflectometry.  The methods used in this analysis can be extended 
to other types of reflectometry as they emerge.   
 
1.  Introduction 
 

Reliable wiring systems are critical to the safe operation of aircraft, power plants 
(nuclear and conventional), and the space shuttle.  As these modern systems age, many 
researchers and government agencies have been working on methods to find potential 
faults in aging wiring [1-12].  Much of the research is based on reflectometry techniques, 
which send high frequency signals down the wire, and observe the reflections returned 
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from the junction and terminations.  These methods include time domain reflectometry 
(TDR) [4,13] which uses a fast rise time step or pulsed signal, frequency domain 
reflectometry (FDR) [14] which uses multiple sinusoidal signals, sequence TDR (STDR) 
which uses pseudo noise, and spread spectrum TDR (SSTDR) which uses pseudo noise 
modulated onto a sinusoidal carrier signal for live testing with minimal interference with 
low frequency signals [15,24].   

Location of open and short circuits is certainly a very important aspect of wire 
health monitoring; however there is also significant interest in locating much smaller 
faults before they become large enough to electrically impact the system.  Chafes or frays 
(words generally used synonymously) occur when part of the insulation is worn away 
from the conductor, and perhaps even the conductor itself is damaged.  This may be 
because of natural aging, when brittle insulation cracks and/or flakes away from the 
conductor.  More often, frays occur when the wire rubs against the metal aircraft 
structure, another wire, a wire clamp, etc.  Most of these faults are the results of 
improperly installed wire, poorly designed installations systems, or maintenance-induced 
damage to a previously acceptable system. 
 Finding the small anomalies of frayed wire before they become hard open or short 
circuits is of significant interest; however it is an extremely difficult problem.  Chafing 
insulation from the conductor results in a very small change in the wire impedance.  
Since the reflection obtained by reflectometry depends on the impedance discontinuity, 
this results in a very small reflection that may be lost in the noise of the measurements.  
Some authors have reported success locating frays in a controlled laboratory 
environment.  In [4], TDR is used to detect bends, heating, and compression in coaxial 
and unshielded wiring, in a controlled setting where the wire is not allowed to move 
around, is isolated from other wires, and from the physical structure of the plane.     
 In [9, 12] the authors observed that frays are more observable at high frequencies 
than low frequencies, which could potentially be used to distinguish them from the 
normal wire.  In [21] a method for using a sliding correlator to locate the signature of the 
fray from within the other noise on the wire was shown to be effective even for very 
small faults in a highly controlled setting. 
 With these early analyses, there could be some hope for location of frays, 
however it should be noted that these tests were done in a very controlled laboratory 
environments.  The wire is normally taped to a table or other surface to prevent 
movement and vibration (which create impedance changes), and carefully measured with 
no additional signal on the line and minimal measurement noise.  The fray is then made, 
which generally results in a reflection too small to see in the raw data.  The frayed and 
unfrayed signatures are subtracted, giving a response that may then show the fray.  This 
baseline or differential approach is a natural fit for finding small changes such as frays.  
Unfortunately, obtaining a perfect baseline in a realistic environment is not easy.  Even if 
you could baseline all wires on a plane, when the plane flies, the wires vibrate and move 
enough that the changes in the baseline may outweigh the changes due to the fray, 
making fray location impossible.  The analysis of the reflections from the fray compared 
to likely changes in the baseline is the subject of this paper.  This will tell us the 
likelihood and reliability of the fray detection capability of several reflectometry 
methods.  In this paper TDR, FDR, and SSTDR are evaluated on small frays, large frays, 
water drops on the wire, and normal movement of the wires.  The results do not bode 
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well for fray detection in general, as we shall see.  Section 2 of this paper models 
common fray conditions using the finite difference frequency domain (FDFD) method. 
This gives a formal analysis of the impedance of various fray conditions.  Section 3 
shows results from measured frays in the lab and some ideas of measurement error 
associated with them.  Section 4 discusses the implications of these results, and section 5 
provides the conclusions from this work.   
 
2.  Simulation of Fray Impedance 
 The finite difference frequency domain method (FDFD) is used to calculate static 
voltages, fields, impedances, etc. in metallic and dielectric structures.  This method is 
described in detail in [19] and is briefly summarized here.  Laplace’s equation describes 
the variation of voltage distribution within a system, which in this case is the cross 
section of a wire: 
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where V is the voltage distribution, q is the charge, and ε is the permittivity, in this case 
of the insulating material and air surrounding the wire.  This equation can be converted to 
its discrete difference form by dividing the cross section of the wire into a discrete grid of 
dimension h and applying the central difference equation to convert the derivatives to 
differences, yielding:  
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where V(i,j) represents the voltage at the (i,j) location on a square grid of dimension h.   
This equation can be converted to a system of difference equations that can be solved for 
the voltage distribution by applying it at every (i,j) location within the grid.  Two sets of 
boundary conditions are required in order to complete this solution.  First, the voltage 
distribution on the conductors is set.  One conductor is set to 1V, and the other to 0V 
(ground).  A second boundary condition, on the outer boundary of the simulation region 
(outside of the wire being simulated)  is set to a Dirichlet boundary sufficiently far from 
the wire that the voltage can be assumed to be zero.  Symmetry boundary conditions can 
also be used to reduce the simulation region.   The sparse matrix equation obtained is 
commonly solved for V(i,j) using an iterative method such as successive over relaxation. 
The electric field distribution is then found by taking the derivative (in difference form) 
of the voltage distribution.  The capacitance per unit length can then be found from 
Coulomb’s law by numerically integrating the electric field on any closed contour 
(usually a convenient rectangular region) around the positive conductor of the wire.  
Finally, the characteristic impedance is calculated knowing that  
 

LC
Z 1
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where L and C are the inductance and capacitance per unit length of the transmission line.  
The inductance is not known, but is the same regardless of the dielectric coating on the 
wire.  Thus, by analyzing the transmission line with and without its dielectric insulation, 
the impedance can be calculated from the relative capacitance  
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where c is the speed of light in a vacuum, and C0 is the capacitance per unit length of the 
transmission line without any dielectric.   From the impedance, the voltage reflection 
coefficient can be calculated (as described in section 2b).  This code was written in 
MatlabR . 

In our simulations, one conductor of the two-wire transmission line model is set to 
1V, and an outer boundary 200 cells from the transmission line is set to simulate 0V at an 
infinite distance.  In order to model frays, a suitable two-wire conductor General Cable 
SKU 02301.R5.02 lamp cord shown in figure 1 is used.  The wire is very similar in loss 
and impedance to many types of aircraft wiring, is easily and inexpensively available, 
and is generally used in our lab to test hardware and theory.  The lamp cord consists of 
two wires that are surrounded by PVC insulation.  The insulation is somewhat flattened 
as is common for this type of cable.  It has the dimensions given in table 1.   The wire is 
modeled on a 400x400 grid with 0.05 mm cells.  The conductors have a radius of 0.51 
mm and are separated by a distance of 2.06 mm.  The insulation thickness is set to 0.76 
mm, and the insulation relative permittivity is assumed to be 4.   
 
 

 
Figure 1: General Cable SKU 02301.R5.02 lamp cord used for simulations and 
measurements.   
 
 
Table 1:  General Cable SKU 02301.R5.02 Dimensions 
Cable Dimension (mm) 
Width 5.35 
Height 2.60 
wire diameter 1.00 
insulation thickness on horizontal edge 1.14 
insulation thickness on vertical edge 0.80 
distance between inner conductor edges 1.06 
 
a. Fray Type, Impedance, and Reflection Coefficient 
   The ability of a given reflectometry method to locate a fray depends on how large 
a reflection can be observed.  This depends on the severity (impedance) of the fray, the 
length of the fray, and the nature of the reflectometry method.  Several simulated frays 
were analyzed for impedances and reflection coefficients.  These include: 
 

0. Cable with no insulation (for modeling purposes only) 
1. Test cable with no cuts 
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2. Water drop on top of insulation in center 
3. Cut 0.15 mm off top of right side  
4. Cut 0.45 mm off top of right side 
5. Cut 0.76 mm off top of right side 
6. Cut 0.15 mm off right side   
7. Cut 0.45 mm off right side    
8. Cut 0.76 mm off right side   
9. Cut in side (cut into top on right side) 
10. Water in the cut  
11. Radial crack (all insulation removed on one side) 
12. Water in radial crack 
 

Figures 2 and 3 show the structure as it was modeled for each of these fray types.  The 
voltage at each point in the simulation space was calculated using FDFD.  Then the 
gradient was taken to compute the electric field at each point.  Figure 2 shows the 
magnitude of the electric field of all the scenarios.  Figure 3 shows the electric field 
direction and magnitude and the dielectric boundaries.  From the capacitance 
calculations, (which were computed with the electric fields) the voltage reflection 
coefficients were calculated based on the fray type.  Results of these calculations are 
given in table 2. 

 
Figure 2: Electric field magnitude.  Dark values are low, and white values are high.  (a) 
Test Cable with no cuts, (b) Water Drop, (c) Cut 0.76 mm off top, (d) Cut 0.76 mm off 
side, (e) Groove Cut on top, (f) Water in Groove, (g) Radial Crack no insulation, (h) 
Water in Crack.  
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Figure 3: Lines show the magnitude and direction of the electric fields for the upper right 
wire.  Dielectric boundaries are also shown.  (a) Test Cable with no cuts, (b) Water Drop, 
(c) Cut 0.76 mm off top, (d) Cut 0.76 mm off side, (e) Groove Cut on top, (f) Water in 
Groove, (g) Radial Crack no insulation, (h) Water in Crack. 
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Table 2: Capacitance, characteristic impedance, and voltage reflection coefficient of 
simulated frays   

Scenario 
Label for 

Experiments 
Capacitance 

F/meter Zfray (Ω)
Voltage Reflection 

Coefficient (Gamma) 
Open Circuit b     1 
Short Circuit c     -1 

1. Test cable with no cuts a 6.74E-11 81.85 0 
2. Water Drop  8.11E-11 74.61 -0.046277 
3. Cut .15 mm off top  6.73E-11 81.9 0.000292 
4. Cut .45 mm off top  6.64E-11 82.43 0.003528 
5. Cut .76 mm off top f 6.07E-11 86.26 0.026248 
6. Cut .15 mm off side  6.74E-11 81.85 0.000023 
7. Cut .45 mm off side  6.73E-11 81.89 0.000225 
8. Cut .76 mm off side d 6.71E-11 81.99 0.000851 
9. Groove Cut on top  6.65E-11 82.38 0.00323 
10. Water in Groove  6.86E-11 81.11 -0.004526 
11. Radial Crack no 
insulation 

e 
2.50E-11 134.4 0.242911 

12. Water in Crack  1.71E-09 16.24 -0.668869 
13. ¼ conductor damage g 3.89E-11 107.9 0.13729 
 
The analytical solution for the characteristic impedance of a two-wire line is given by 
[20] 
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where ηo is the characteristic impedance of free space (377 ohms), εr is the relative 
permittivity of the surrounding dielectric, D is the distance between the two wires (center 
to center), and d is the diameter of each conductor.   Using the values of 2.06 mm for the 
center distance D between wires, a wire diameter d of 1.02 mm, and εr = 4, gives a 
characteristic impedance Z0 of 79.7 ohms, which is close to the simulated value of 81.85 
ohms.  Variations due to finite insulation thickness account for this difference.   
   
b. Analysis 
 A changing impedance on a transmission line causes a transient voltage reflection 
Γ, and transmission T defined by  
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T = Γ +1                (7)         
  
 
where Zfray is the impedance at the fray and Z0 is the impedance of the lamp cord without 
any alterations.  Figure 4 shows the reflections Γ and the transmissions T.  At each 
boundary of the fray some of the signal is reflected, and the rest is transmitted.  As can be 
seen from table 2, no significant reflections occurred unless the insulation was 
completely removed or water was on or in the system.  The highest reflection for a fray 
was found when 0.76 mm was cut from the top of one of the wires giving a voltage 
reflection coefficient of 2.62%.   
 It should be noted that signals move down the wire at a speed of  
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when εr = 4. 
 
For a fray 1 cm long (which in practice would be enormous), the voltage reflection seen 
on a TDR due to the fray would only last  
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/105.1
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until the secondary reflection on the other end of the fray cancels the primary reflection 
as shown in figure 4.    Assuming infinite rise time on the TDR signal and its reflection, a 
0.133 ns spike would be all that is left from the reflection at the fray.  Not only is this 
normally immeasurable, but the rise time is also not infinite.  The TDR signal is barely on 
its rising edge when the reflection returns to cancel it out, so in practice the “spike” is 
immeasurably small.  In addition, the actual reflection is likely to be smaller than 
predicted, because the change in impedance will be continuous, rather than instantaneous.   
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Figure 4: Reflection and transmission boundaries of a fray.   
 
 Table 3 shows the magnitude of the reflections in Figure 4 for specific 
simulations.   The secondary reflections and transmissions quickly cancel or very nearly 
cancel the initial reflection, leaving only a small return, T3.  The steady state input 
impedance seen at a fray boundary is given by [18] 
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+
+
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In this case the load ZL is the characteristic impedance of the lamp cord, and Z0 would be 
the impedance of the fray.  β is the phase propagation coefficient and is equal to 2π /  
wavelength.  Table 4 shows the magnitude of the reflections for various fray types vs. the 
percentage of fray length relative to the wavelength.  
 
Table 3:  Transient voltage reflections shown in Figure 4 for selected simulations.   
 

Scenario/Fray Type Γ1 T3 
      No Changes 0 0 
2.   Water Drop -0.046277 -4.54E-10
5.   Cut .76 mm off top 0.026248 8.55E-12
8.   Cut .76 mm off side 0.000851 3.25E-22
11. Radial Crack 0.242911 4.99E-05
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Table 4: The voltage reflection magnitude (T3) is shown for a sinusoidal steady state 
signal, as a function of fray length.   

T3 (for Fray Length as % of Wavelength) 
Scenario/Fray Type 0.10% 1% 2% 5% 10% 

      No Changes 0 0 0 0 0 
2.   Water Drop -3.68E-06 -3.67E-04 -1.50E-03 -8.90E-03 -0.032
5.   Cut .76 mm off top 2.08E-06 2.07E-04 8.26E-04 5.00E-03 0.0181
8.   Cut .76 mm off side 6.75E-08 6.74E-06 2.68E-05 1.63E-04 0.000590
11. Radial Crack 2.29E-05 2.30E-03 9.10E-03 5.29E-02 0.1747
 
3.  Measurement Validation 
 

In order to validate the observations with measurements, the frays given in Table 
2 were created at 22 feet (6.7 meters) on a 30 foot (9.14 meters) long lamp cord. These 
frayed wires were then tested using TDR, FDR and SSTDR. In order to precisely control 
the impedance of the wire, it was laid straight and taped on a wooden table.   For all 
methods, the response due to the frays is so small that it is very difficult or impossible to 
see in the raw data. Hence in all three methods a baseline response from a good wire is 
taken and then compared with the response of the frayed wire. 

The following sections discuss the results of TDR, FDR and SSTDR. Tests are 
conducted on open and short circuits, insulation damaged frays and 1/4 conductor 
damaged frays. In the case of insulation damaged frays, the largest change in impedance 
occurs for the 0.76mm insulation cut from the top and side. Hence instead of including 
the results for all the insulation damaged frays, results for only these two cases are 
included.   
  
 
a. Time Domain Reflectometry (TDR): 

In Time Domain Reflectometry a fast rise time step or pulsed signal is transmitted 
on the wire. Any discontinuity on the wire (chafes, frays etc) causes a reflection which 
can be analyzed for information about this anomaly. A commercial TDR unit was used 
for these measurements. [23] The responses of the TDR for the different forms of frays 
described and simulated in section 2, and an open circuit (line b) and short circuit (line c) 
are compared with the response of a good wire (line a) and are shown in figure 5.   Each 
line is labeled to indicate the fray type corresponding to table 2.   The original good wire 
was 9.14 meters long, and frays or open/short circuit damage were made at 6.7 meters.  
The signature at the fray location is blown up for better observation in the small box on 
the left.  Reflections other than open (b) and short (c) are so small that they are not easily 
seen on the original graph, but can be seen on the blown up graph.  Unfortunately, it is 
also clear from the original graph that miscellaneous variation in the signature along the 
length of the line is as large as or larger than the signatures due to the frays.  The 
signature at the end of the line is also blown up in the small box on the right.  Although 
this is not the location where the fray should be detected, it is common to see effects from 
the fray at the end of the line due to the small delay the fray creates.   The step function 
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input waveform is also seen in Figure 5, as the initial step at location 0 on the far left of 
figure 5. 

 

 
Figure 5: Response of TDR for different frays 

 

It is difficult to visually analyze the TDR response and determine the location of the 
frays. The response of open and short circuits gives visibly accurate location, but for 
frays, the response is similar to the good wire response, and it is not possible to visibly 
identify the fray location. As nothing can be determined from this raw data, a sliding 
correlator (matched filter) is applied to augment the location of the faults as in [21].  The 
difference between the responses of frayed wire and the baseline (good wire response) is 
convolved with a predefined window function. A peak is observed in the region where 
the window function approximately matches the shape of the difference, which should be 
the response of the fray. This peak occurs only where the match is the closest, and it 
gives the location of any form of discontinuity. Different window functions and sizes 
(different matched filters) can be used for better results. The sliding correlator responses 
for the raw TDR data in Figure 5 are shown in Figure 6.   The small signatures of the 
frays are blown up in the inset figure, and labeled to indicate the fray type as in table 2.  
Again, these signatures are too small to detect amongst the other variations on the wire, 
except for the open (b) and short (c).    The end of the line, and the junction where the 
TDR is connected to the cable can also be seen.  The noise level is shown, based on the 
peaks of the sliding correlator along the length of the cable . The sliding correlator 
method generally provides an improvement on the location of the fault, however it is still 
not sufficient to distinguish these faults from other variation on the line. For idealized test 
cases where the wire is taped to the table, frayed, and then retested without moving the 
wire 63% of the frays were identified within 0.3 m of their actual location, 13% of the 
frays were located within 0.3 m and 0.6 m of the prediction, and for 25% of the frays, a 
fray was predicted but could not be visually confirmed.  These results were relatively 
positive, however when the wire was moved at all between tests, the faults could no 
longer be located, because differences in the impedance of the wire caused by moving it 
around produced reflections that are as significant as the reflection from the fray.  All of 
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these differences were picked up, and the fray could not be selected from amongst all of 
the other differences. 
 

It should be noted that the sliding correlator used here is an example of a matched 
filter used to detect small signals in noise, which has been studied extensively in the 
contexts of image processing, radar, sonar, echo cancellation, etc.  The shape of the 
reflected signal can be at least approximately known based on the parameters of the wire 
(its transfer function) and the impedance of the fray.  Thus, improved signal processing 
methods can improve the detection of this type of signal.  Unfortunately, other types of 
impedance changes that are normal and expected on the wire also produce similar 
responses.  For instance, small impedance variations caused by the wire being near a 
metallic structure, other wires, separation of the wire conductors (typical of uncontrolled 
impedance cables), etc. have as large or larger impedance variations and produce 
reflections that are as large or larger than the fray and of identical or very similar shape.  
Thus, while it is possible to create a filter that identifies the fray (such as this sliding 
correlator), the same filter also identifies a number of “normal” impedance variations that 
mask the fray, thus making it indistinguishable from the background impedance changes.  
The background becomes even more complex for wires in a moving vehicle that are 
vibrating, as the impedance changes do not remain uniform with time.   

 

 

 
 

 
Figure 6: Response of Sliding Correlator for different frays. 

 
It is observed that the noise due to vibrations or wire movement is an important 

factor in fray detection. A few peaks corresponding to frays are observed, but they are 
lower than the noise level. These peaks are so small that they remain hidden among peaks 
due to noise, which makes fault location an impossible task. Figure 7 gives a direct 
comparison of the peak values for different forms of discontinuities.  
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Figure 7: Peak values for different frays. (1)  Hardware Noise, (2) Movement noise, (3) 

0.15 mm cut from top, (4) 0.45 mm cut from top, (5) 0.76 mm cut from top, (6) 0.15 mm 
cut from side, (7) 0.45 mm cut from side, (8) 0.75 mm cut from side, (9) insulation 

removed from single side, (10) water on good wire, (11) ¼ conductor damaged, (12) 
water on cable with insulation removed, (13) Open Circuit, (14) Short Circuit. 

 
It can be clearly observed in figure 7 that the peaks due to frays are similar to or 

less than the peaks due to noise, and hence the location of the fray cannot be determined. 
Only the peaks due to open or short circuits are significant and can be definitively located 
using TDR.  From these results a conclusion can be drawn that insulation damage and, 
radial cracks cause a very small change in impedance which cannot be detected in a 
realistic environment.  

 
The TDR data is indicative of what is seen for other reflectometry methods, as 

well, as will be seen in the following sections. 
 
b. Frequency Domain Reflectometry (FDR): 

Frequency Domain Reflectometry uses stepped frequency sinusoidal signals as 
the source signal. [14] A sinusoidal signal is transmitted on the wire, and the reflection of 
this wave due to a discontinuity is measured separately using a directional coupler.  The 
incident and reflected signals are multiplied in a mixer.  The mixer outputs two signals, 
one of which is DC and is proportional to the phase shift between to two signals.  This 
phase shift is proportional to the electrical length of the wire, and is measured using a 
simple analog integrator (capacitor).  The other signal is double the input frequency, and 
it is filtered out by the simple analog integrator, and therefore does not interfere with the 
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measurement.  The FDR steps through a band of frequencies in this way, measuring the 
DC voltage that is proportional to electrical length of the wire at each frequency.  This set 
of measurements provides a sinusoidal response, such as that seen in Figure 8.  The 
number of cycles in this set of measurements can be found using methods such as Fourier 
transformation and is proportional to wire length or distance to the fault.  

 
The hardware that was developed in house and used for these tests is described in 

detail in [14].  For our analysis the frequency range of the FDR is 100 MHz – 200 MHz. 
Figure 8 shows a typical response of a FDR for a good wire and a frayed wire. 

 

 
Figure 8: Typical response of FDR for good wire and frayed wire.  

 
For further analysis, the fast Fourier transform (FFT) of the difference of these 

two responses is taken.  This gives a peak whose location corresponds to the location of 
fault and whose magnitude (which is small in this case) corresponds to the magnitude of 
the reflection coefficient.  [14] Since this peak is often too small to extract from the noise, 
a sliding correlator explained in the TDR section is applied, and the results are shown in 
Figure 9.  The FDR detects open and short circuits and may detect severe conductor 
damage, but it cannot detect the insulation damaged and insulation removed frays.    
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Figure 9: Sliding Correlator Response of FDR for different frays.  The difference of the 
two signals in Figure 8 was Fourier transformed to identify locations of peaks 
corresponding to the reflections.  A sliding correlator was applied to the transformed 
signals to augment the peak locations. 
 
c. Spread Spectrum Time Domain Reflectometry (SSTDR):  
Spread Spectrum Time Domain Reflectometry is used to locate faults on live wires. [15] 
Sequence TDR (STDR) uses a pseudo noise (PN) test signal, and spread spectrum TDR 
(SSTDR) uses a pseudo noise signal modulated onto a sinusoidal carrier signal for live 
testing without interference with existing low frequency power or higher frequency data 
signals [15].  The PN code for this case is 128 bits long, and has a very specific set of 1’s 
and 0’s, although to any other system, this code appears like noise.  [24] The transmitted 
and reflected signals are correlated using hardware analog correlation, and the location of 
the peaks in the correlation such as those shown in Figure 10 indicate the location of the 
sources of reflection (faults) on the wire.  Noise or existing signals on the wire are not 
picked up by the correlator so do not interfere with the tests.  The STDR and SSTDR 
signals are transmitted at a level well below the 17dB noise margin of the system, so they 
do not interfere with the existing systems on the line.  The hardware that was developed 
in house and used for these tests is described in detail in [15, 24].  Figure 10 shows the 
response of the SSTDR for different types of frays, open circuit, and short circuit 
compared with the response of a good wire.  The STDR correlation response (not shown) 
has a single peak at the location of each discontinuity.  The SSTDR correlation response 
(shown) has a triple peak at the location of each discontinuity, such as the one that can be 
seen at the 0 location in Figure 10.  Each SSTDR peak has a large central peak with two 
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negative side peaks, as shown.  There is always a positive peak at the 0 location where 
the SSTDR hardware is connected to the wire under test, because there is always an 
impedance discontinuity there.  Later positive peaks indicate the ends of the wire (line b 
and the peaks due to the end of the wire at 30’).  For a negative reflection coefficient, 
such as a short circuit, the peaks are inverted, as shown in Figure 10, line c. 
 
 

 
Figure 10:  Response of SSTDR for different frays. 

The SSTDR is able to accurately detect the open and short circuit, but it is not 
able to detect the other frays. The response of the frayed wire is similar to the good wire 
response. Its strength is for running live and detecting the intermittent open or short 
circuit conditions that result in chafes, frays, wet arcs, etc. It is expected that longer PN 
codes could reduce the noise enough to enable SSTDR to locate faults of about the same 
magnitude as the TDR, FDR, etc. 
 
4.  Discussion:  

Over the past several years, there has been significant interest not only in finding 
existing faults on aging wiring, but also in being able to predict them in advance (predict 
them) to enable repairs during routine maintenance rather than after the system has 
demonstrated a fault condition.  This paper analyzed the feasibility of locating small 
faults on wiring with reflectometry.  The impedance of insulation damage, conductor 
damage, and water drops on the cable were calculated using the finite difference 
frequency domain (FDFD) method.  The reflection coefficient was then calculated 
analytically.  It was observed that the length of the fray matters significantly, because 
there is a reflection at both the front and back ends of the fray that approximately cancel 
each other out.  The reflection coefficients for all but the largest conductor damage were 
found to be so small as to be virtually invisible.  Measurements using TDR, FDR, and 
SSTDR were then taken, confirming these results.  It was observed that simply moving 
the wire around in ways that could occur during regular use created more impedance 
changes than the fray.  This means that regardless of how accurate and sensitive we make 
our systems, the environmental impedance changes can be expected to be larger than the 

Deleted: Submitted 



Accepted to IEEE Sensors Journal, Revision 2 
 
 

 17 

fray impedance change, making it impossible to locate the frays.  Particularly problematic 
are moving or vibrating systems, where the background impedances change with time. 

 
These results have some very important implications for the way we evaluate and 

analyze wire faults and the methods that we develop in the future to find them.  First, if 
reflectometry cannot get a sufficient change in electrical signal to be able to locate the 
fault, then it is reasonable to expect that the system also is not seeing any effect from this 
fault.  Previous inspections of aging aircraft have found literally thousands of wire faults 
throughout a plane, very few (hopefully none!) of which are noticeably impacting the 
performance of the plane at the time.  If we warned the maintenance crew of every one of 
those faults (which we can’t), this would require them to make judgments on whether or 
not to replace or repair wiring that has nothing wrong with it from a system point of view.   

 
If we want to be able to prognose wiring faults, we are going to have to locate 

(not just detect) minute changes in system performance prior to actual symptoms of 
system degradation being noticed by the system.  Continuous monitoring of the wires 
(which implies testing while the wires are live with a system such as SSTDR that does 
not interfere with the aircaft) could be used to local intermittent failures that predate 
symptomatic system performance.  This seems likely to be a reasonable approach for the 
following reasons.  First, aircraft mechanics consistently report that when a plane is 
brought in for routine maintenance or modification with no known problems that they 
will commonly find a few spots where the wire is charred or partially short circuited, 
implying that intermittent short circuits commonly occur without otherwise observable 
system degradation.  The second reason we think this is feasible is that when arc fault 
circuit breakers are tested with wet arcs of saline dripped over two neighboring wires 
with radial cracks, making a water bridge, that several (often something on the order of 
10-20) drips are required before the system flashes over.  This would imply that similar 
numbers of repeated intermittent faults would occur when the wire is in the plane, as 
well.  It is likely that most of these wet faults are too short in duration to negatively 
impact the performance of the system, yet they should be detectable if the wire was being 
continuously monitored.  Thus, it is reasonable to expect that prognostics are more 
promising with continuous monitoring for intermittent faults than with location of frays. 

 
The implications of continual monitoring of live wires include some sizeable 

advantages as well as several challenges.  Methods to miniaturize SSTDR systems to 
enable their implementation within aircraft circuit breakers, power control systems, 
avionics boxes, connectors, etc. are currently under development.  Conversion of existing 
circuit boards to integrated circuits will significantly reduce their size, cost, and power 
requirements.  Even so, the costs in size, weight, dollars, and complexity of monitoring 
every wire in a legacy aircraft are probably prohibitively large.  For existing planes, it 
may be reasonable to monitor high risk cables, cables with a history of failure, etc.  It 
may be reasonable to include test electronics in all upgraded and repaired avionics, circuit 
breakers, cables, etc.  And it may be reasonable to have a temporary test system that can 
be implemented on an “as needed” basis for diagnosis of an intermittent fault and 
removed once the fault has been located.  New planes, particularly those currently in the 
design phase, may benefit the most from this type of technology, as it can be integrated 
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directly within the physical structure of the wiring system.  Data from these sensors could 
be integrated directly within the existing monitoring system of the aircraft, and routine 
power for the sensors could be included as well.  Having multiple sensors interconnected 
can provide many advantages including dual or multiple testing of the wiring, redundant 
data communication, and self-testing and diagnosing of the sensors themselves.    

 
5. Conclusion: 
 
 This paper provides simulations and measurements (TDR, FDR, and SSTDR) for 
a variety of fray conditions.  The most significant observation of this paper is that frays 
on wires have a reflectometry signature that is smaller than ordinary impedance changes 
on the wire and are therefore going to remain invisible to reflectometry methods.  Even 
with further developments in the methods that might be able to make them sensitive 
enough to locate frays in idealized test environments, the normal impedance variation in 
the environment of the cable is greater than the impedance change due to the fault itself.   
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