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Abstract—This paper presents novel implementation of for-
ward modeling methods for simulating reflectometry responses of
faults in the shields of coaxial cable or other shielded lines. First,
cross-sectional modeling was used to determine the characteristic
impedance of various wire sections. These values were then
incorporated into longitudinal models to simulate the overall
reflectometry response. The finite-difference method (FDM) is a
cross-sectional modeling method that was used to simulate cross-
sectional characteristic impedance. Results using this method are
accurate within 1% of analytical solutions, and can be simulated
very quickly using in-house codes. The finite-integral technique
(FIT) was also used to model chafes on wires with TEM and
higher order modes. Because FIT is computationally slow, a curve
fitting technique was used to predict the chafe profile within
0.01% of the simulated values. Modified transmission matrix
(MTM) and S-parameter methods were used to provide responses
with accuracies within 0.3% of the measured profiles.

I. INTRODUCTION AND BACKGROUND

Location and diagnosis of faults in aging electrical wiring
can enable their timely repair, thus preventing costly and
potentially hazardous failures. This research focuses on one
of the most challenging problems in electrical fault location—
finding small chafes in the shields of shielded wires (coax,
twisted shielded pair, etc.). These small faults produce such
small reflection signatures that in many cases they are un-
detectable against the background noise in aircraft and space-
craft [1]. The goal of this work is to use the models developed
here to design new detection schemes and predict when small
fault detection may be possible.

Hard faults (opens/shorts) have been well studied [2]. These
faults are easier to find, and traditional reflectometry measure-
ments are effective for locating them. However, partial faults,
or chafes, are more difficult to identify and model because
the fault signatures are small and the electrical system usually
does not show any noticeable symptom until the fault is severe.
Chafes are typically the result of abrasion or vibration against
other wire or structural members, and they often worsen over
time. Like human health, early detection is key to curing the
problem and preventing catastrophic disasters.

The objective of this wire modeling is to simulate the
reflectometry response of the wiring system. Reflectometry is
a method of determining wire characteristics from reflections
of high frequency electrical signals resulting from impedance
discontinuities. Finding the small anomalies of frayed wire
before they become hard faults is of significant interest,
yet a challenging problem. These types of faults have been

Fig. 1. Flow chart of forward modeling types.

far less studied than hard faults, and the forward modeling
methods described in this paper present novel implementation
of these methods specialized to the chafe problem. Chafing
insulation results in a very small change in the wire impedance,
and because the reflection depends on the magnitude of the
impedance discontinuity, this results in a very small reflec-
tion that may be lost in the noise of the environment and
measurements. Therefore, the problem has previously been
considered more difficult to solve relative to the impact of
hard faults. Fortunately, chafes are much more detectable in
shielded wiring, where noise levels are significantly lower
and impedance levels remain more consistent along the wire
length, and where controlled impedances are less affected
by surrounding structures, environment, and vibration [3].
Models and analysis of shielded cables, where the external
environment has little or no impact on the cable, enable
location of much smaller faults than previously detectable.

In modeling these wiring systems, two types of forward
models are used together: cross-sectional and longitudinal.
Cross-sectional models are used to determine characteristic
impedance of wire sections, and these impedances are then
implemented longitudinally where an overall system response
can be obtained using reflectometry. These two modeling
processes are illustrated in Figure 1.

This paper provides detailed models of shielded faults and
a method to integrate fault models (including measured data)
in a unified forward model that describes the effects of the
fault in a realistic electrical system. Unique aspects of this
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model include its modularity (ability to efficiently integrate
data from multiple simulations and measurements), detailed
fault models (including frequency dependence of the faults),
and the ability to model small faults with great precision
while still incorporating them into a full system model (which
normally has lower precision for more efficient computation).

II. CROSS-SECTIONAL MODELING METHODS

A. Finite-Difference Method (FDM)

The finite-difference method [4] is a numerical tool for
solving the generalized Poisson equation,

∇ · (εr∇V ) = − ρ

ε0
, (1)

where V is the unknown voltage potential function, ρ is the
charge density function, εr is the relative permittivity function,
and ε0 is the permittivity of free-space. The basic principle
of FDM is to approximate the Poisson equation by replacing
derivatives by finite-differences and to sample the continuous
functions along a discrete, finite grid. The net result is a linear
system of equations that may be solved to find the potential
fields and characteristic impedance of the wire.

The fault impedance ZF is found by using techniques out-
lined in [5], [6] and [7]. First, a 2D cross-section of damaged
cable is modeled by defining the appropriate dielectric function
εr and boundary conditions for V . An example model is shown
in Figure 2, which depicts a pie-chafe cutaway of φ = 36◦

on a slice of RG-58 C/U coaxial cable. Such a model is then
solved via FDM to find potentials V , after which a set of
electric field samples may be found by applying E = −∇V .
A simple method for this procedure is also outlined in [4],
which again uses finite-differences as an approximation to the
gradient operation. Finally, the total charge q per unit length
along the inner conductor is found by evaluating Gauss’s law.
In integral form, this is written as

ε0

∮
S

εr(x, y)E(x, y) · dn = q , (2)

where dn is the differential normal vector that points outward
along the closed surface S, which in 2D is simply a closed
contour. Because E and εr are both discretely sampled along a
rectangular grid, evaluation of q may be readily accomplished
through the use of a finite summation along the appropriate
contour. Any choice for S is acceptable, provided that it
completely encloses the inner conductor of the model and fits
within the shield. It is therefore common to simply define S
as a rectangle, as shown by the box surrounding the center
conductor in Figure 2.

Once the Gaussian contour has been integrated to find q,
the next step is to calculate the capacitance C per unit length
of the FDM model. We therefore begin by noting that

C =
q

V0
, (3)

where V0 is the excitation voltage of the inner conductor. This
value is arbitrarily defined as a boundary condition within the

Fig. 2. left: Simulated damaged dielectric, where red represents the inner
dielectric and cyan represents the inner and outer conductors. The box
surrounding the center conductor represents a contour of integration for
calculating q. right: Voltage potential function V and electric field vectors
E computed using FDM.

FDM model, and so may be simply fixed at a normalized value
of V0 = 1.0 V.

With C now a known value, we are ready to express the
characteristic impedance ZF using

ZF =

√
L

C
, (4)

where L is the inductance per unit length. Although L is
an unknown value, it is possible to sidestep this parameter
by noting that the velocity of propagation up for a TEM
transmission line satisfies

up =
1√
LC

. (5)

In the absence of any dielectric insulation between the inner
and outer conductors, it is a known fact that up = c0 =
2.996× 108 m/s, which is the speed of light in a vacuum [8].
Furthermore, because L is independent of any non-magnetic
materials within the system, it is possible to write

c0 =
1√
LC0

, (6)

where C0 is the capacitance per unit length in the absence of
any insulation. With this information in mind, we may now
express ZF in a modified form as

ZF =

√
L

C
=

√
LC0

CC0
=

1

c0
√
CC0

. (7)

As we can see, ZF is now independent of any inductance term
L and the only new information we need is C0. Fortunately,
this value may be readily computed by simulating an identical
system as before, but without any embedded insulation. For
comparison, the characteristic impedance of an ideal coaxial
cable can then be calculated analytically [8], and demonstrates
less than 1% error against the FDM simulations. We therefore
have a simple, accurate method for computing ZF through the
use of FDM.

The cable can be modeled using this method by program-
ming the cable dimensions, along with the fault size, in a
2D grid as shown in Figure 2. The box surrounding the



center conductor will then be used to calculate the contour
integral from the voltage potential matrix, eventually yielding
the characteristic impedance of the chafe through the process
described in this section. Results for this method compared to
other methods are found in Table I, where RG-58 was used as
the wire model. Measurement of undamaged cable is possible
simply by matching the cable end while connected to a
reflectometry scope. The load on the wire end can be adjusted
until the reflections become zero, thus matching the cable and
determining its characteristic impedance. Measurement of the
characteristic impedance of a single small chafe is much more
difficult, and thus methods of validated computational forward
modeling become rather useful. The analytical solutions for
determining characteristic impedance of coaxial cable have
been well studied and can be found in [8].

TABLE I
COMPARISON OF CHARACTERISTIC IMPEDANCE RESULTS FOR

UNDAMAGED RG-58.

Method Z0

FDM 51.4Ω
FIT 50.0Ω

Analytical 50.9Ω
Measured 50.0Ω

Fig. 3. Undamaged (left) and damaged (right) coaxial modeling dimensions.

TABLE II
COAXIAL CABLE DIMENSIONS (a− d IN MM) AND DIELECTRIC

CONSTANTS OF INSULATION εr AND JACKET εj .

Type a b c d εr εj
RG58 0.41 1.47 1.75 2.48 2.25 (PE) 3.18 (PVC)

TABLE III
CROSS-SECTIONAL IMPEDANCE FOR PIE CHAFE ON RG-58 CABLE

CALCULATED USING FDM.

Fault Width w RG-58 ZF

0 mm 51.4 Ω
0.7 mm 51.9 Ω
1.5 mm 53.1 Ω
2.2 mm 55.2 Ω
2.9 mm 62.0 Ω

Fig. 4. Electric field (left) and magnetic field (right) in coaxial cable with
60◦ cutaway. The chafe is 5 cm long and the frequency is 5 GHz.

B. Finite-Integral Technique (FIT)

The finite-integral technique (FIT) is a method that numer-
ically solves electromagnetic field problems in the spatial and
frequency domains [9]. FDM provides the impedance of the
chafe on a 2D cross-section for a TEM wire. However, when
the shield is damaged as shown in Figure 4, the field lines bend
and the models are no longer strictly TEM. Thus, FIT can be
used to find the cross-sectional 2D characteristic impedance
of a 3D chafe, including the higher order modes developed
when the fields exit the chafe. Although this makes FIT more
computationally expensive, it also allows one to model the
effects of more complex faults at specific, higher frequen-
cies. FIT is therefore a popular method used in commercial
software packages such as Computer Simulation Technology
(CST) [10].

Figure 4 shows the output of an FIT simulation for a 60◦

cutaway in RG-58 C/U coaxial cable at 5 GHz. Because FIT
can be computationally expensive at high resolution, we can
utilize a polynomial curve fitting algorithm to minimize the
points required. This is demonstrated by the impedance profile
shown in Figure 5.

Like most iteration-based algorithms, FIT can be compu-
tationally expensive at high resolution or where the point of
interest is small and the wire is long. While FDM can be run
in a matter of seconds, FIT simulations can take several hours.
Efficiency and precision can be critical in modeling, yet they
are often mutually exclusive. Instead of running the numerical
modeling for every single chafe possibility, we can utilize a
polynomial curve fitting algorithm to minimize the detailed
simulations required.

The quasi-TEM mode simulation using FIT combines the
effect of both TEM and higher order modes. This method was
used to calculate the characteristic impedance of chafed cable.
Polynomial curve fitting was used to represent the impedance
profile of the faulty coax, as in Figure 5.

This method yielded the characteristic impedance of chafe
by programming the dimensions of the cable and the chafe
in CST software, which then computes the cross-sectional
impedance. Results for this method are found in Figure 5,
and a comparison this method is found in Table I.



Fig. 5. Coaxial RG-58 C/U cutaway angle vs. characteristic impedance at 5
GHz.

III. LONGITUDINAL MODELING METHODS

Once the characteristic impedance of the chafe is obtained
using FDM, FIT, or perhaps measurements, a longitudinal
modeling method can be used to simulate the overall forward
response. These methods simulate the time-domain reflec-
tometry (TDR) response. Although the step-function TDR is
presented, these methods can also be applied to pulse-shaped
TDR, spectral time-domain reflectometry (STDR), or spread-
spectrum time-domain reflectometry (SSTDR) [11]. The only
difference in the simulation process is the multiplication of
the different source signal in the frequency domain before
performing the inverse Fourier transform.

A. Finite-Difference Time-Domain (FDTD) Method

The finite-difference time-domain (FDTD) method is a
computational electrodynamics modeling technique that solves
the differential form of the telegrapher’s equations in the time
domain. These equations are defined as

−∂V (z, t)

∂z
= R(z)I(z, t) + L(z)

∂I(z, t)

∂t
, (8)

−∂I(z, t)

∂z
= G(z)V (z, t) + C(z)

∂V (z, t)

∂t
, (9)

where R (resistance), L (inductance), G (shunt conductance),
and C (capacitance) are the wire or fault parameters, which
can be defined either for the wire as a whole or changed
per cell in the simulation. The voltages and currents at any
point along the line are simulated, including reflected voltages
from impedance discontinuities caused by wire chafing. These
reflections, along with the input signal, can then be used to
calculate the reflectometry response [12].

One advantage of the FDTD method is that it can be
used for simulation of faults containing graded (gradual)
impedance changes along the line. Many faults contain graded
changes, so these simulations provide a more realistic method
of determining the types of reflections and signal changes that

Fig. 6. Reflections from chafe simulated in FDTD. Here, a sinusoidally
modulated Gaussian pulse is reflected from the impedance discontinuity
located at 100 m on a 200 m wire.

can be expected from such faults. A discretized approach to
adjusting the RLGC parameters can be implemented in a cell-
by-cell manner, where the resulting characteristic impedance
gradually changes across the length of the fault. FDTD can
then be used to obtain reflectometry responses for chafes and
other impedance discontinuities by simulating the reflected
voltages and taking the corresponding impulse signal into
account. These voltages can be obtained at any point along the
line and source signals can be modified within the software.
An example of the transmitted and reflected signals is shown
in Figure 6. Calculations can be done in either the time or
frequency domain with any type of input signal.

B. Modified Transmission Matrix (MTM) Method

The transmission matrix method, which evaluates ABCD
matrices [13], is used to evaluate linear networks and is
commonly used in microwave engineering [14]. A modified
version of this method was used to simulate the reflectometry
response of cascaded transmission lines, as shown in the
simple TDR setup displayed at the top of Figure 7. This is
called the modified transmission matrix (MTM) method. A
TDR tester, with characteristic impedance ZS , is connected
to the transmission line as a signal source. A load, with
characteristic impedance ZL, is at the end of wire. The
transmission line has a characteristic impedance ZT , phase
constant β, and length l. The equivalent circuit is depicted at
the bottom of Figure 7.

The source (M1), lossless transmission line (M2) and the
load (M3) can be represented in ABCD matrices as:

M1 =

[
1 ZS

0 1

]
(10)

M2 =

[
cosβl jZT sinβl

jYT sinβl cosβl

]
(11)

M3 =

[
1 0

1/ZL 1

]
=

[
1 0
YL 1

]
(12)

The consolidated matrix becomes:



Fig. 7. TDR setup and equivalent circuit.

Fig. 8. n-section cascaded transmission line.

M = M1M2M3 (13)

=

[
(1 + YLZS)cosβl + j(ZTYL + ZSYT )sinβl ξ

ξ ξ

]
(14)

where ξ represents the unnecessary parameters that can be
discarded in order to conserve computational expense. For a
lossy transmission line, M2 can be written as

M2 =

[
coshγl ZT sinhγl
YT sinhγl coshγl

]
, (15)

where the complex propagation constant γ = α+ jβ and the
attenuation constant α is nonzero.

To use the MTM method for TDR, we need to consider
the wave propagation of the forward and reflective paths. Fig-
ure 8 shows an n-section configuration. TDR data is typically
acquired between source (M1) and the first section of the wire
(M2). The TDR transfer function is essentially the relationship
or ratio of voltages V1 (incident) and V2 (reflected).

The forward path V1 and reverse path V2 are represented
by:

V1 =

[
n∏

x=1

Mx

]
A

· Vn (16)

V2 =

[
n∏

x=2

Mx

]
A

· Vn (17)

where MA denotes the element A of the ABCD matrix M .
The transfer function is calculated as,

H(ω) =
V2
V1

=

[
n∏

x=2

Mx

]
A

/

[
n∏

x=1

Mx

]
A

, (18)

and the time domain response is then simply the inverse
Fourier transform,

Γ(t) = F−1 {S(ω)H(ω)} (19)

Fig. 9. A multi-section setup with a reactive load.

Fig. 10. Simulated and measured results of the multi-section setup with a
reactive load shown in Figure 9.

where S(ω) is the source signal in frequency domain and
H(ω) is the transfer function of the TDR. Figure 9 shows
a multi-section setup with a reactive load. The result is shown
in Figure 10, showing good agreement between simulated
and measured values. Although the step-function TDR is
presented, this method can also be applied to pulse-shaped
TDR, STDR or SSTDR. The only difference in the simulation
process is the multiplication of the different source signal in
the frequency domain before performing the inverse Fourier
transform.

Integration of FIT and MTM: The MTM and FIT methods
were combined to predict the TDR signature for a chafed
RG58 coax, as shown in Figure 11. A Campbell Scientific
TDR100 is used as the test source. A shield cutaway of 120◦,
5 cm in length, located at 6.5 ft on a 12 ft RG-58 coaxial
cable was synthesized. This stepped voltage TDR produced a
small reflected pulse shown in Figure 12. This is because the
chafe creates two overlapping reflections—one at the start of
the chafe and another, nearly equal and opposite, at the end
of the chafe.

Instead of discretizing the wire into numerous FDTD grids,
the MTM method simply represents the entire structure with
three sets of ABCD matrices, which represent the section
before the chafe, the chafe itself and the section after. In
order to have a functional and realistic forward model, the
frequency-dependent characteristic impedance of the chafed
wire section is obtained using this proposed method.

The TDR result of the chafed scenario described previously
is presented in Figure 12. The measured and simulated results
agreed excellently at the location of interest. If this simulation



Fig. 11. Shield damage at 6.5 ft on 12 ft RG-58.

Fig. 12. Simulated and measured results for the 5 cm, 120◦ shield cutaway
shown in Figure 11.

was done entirely using 3D FIT, it could take several hours to
complete depending on the resolution setup. With the defined
fault profile and the assistance of the frequency-domain MTM
method, the proposed method took less than a second to
perform the same task. Additionally, with the defined fault
profile, one can easily plot the prediction of 5 cm chafes of
various angle cutaways on an RG-58 at 6.5 ft. This is shown
in Figure 13.

With the integration of cross-sectional and longitudinal
models, the modeling of chafed wires can be made more

Fig. 13. Prediction of fault signatures on chafed RG-58, with a 5 cm chafe
located at 6.5 ft on a 12 ft cable.

Fig. 14. Chafe dimensions and location used in the S-parameter model.

efficiently.

C. S-Parameter Method

Another longitudinal method is the S-parameter ap-
proach [15]. This method differs from the MTM method
in that matched load conditions are used to determine the
matrix parameters, rather than open/short conditions. The S-
parameters are then defined by transmitted/reflected waves and
reflection coefficients.

In order to simulate the response of the wire system
(the forward model), a system of S-parameter equations was
derived for the damaged wire case. This case included one
chafed section of length z2, located at a distance z1 along a
wire of total length zT . This is shown in Figure 14.

The transfer function H(ω) was derived from S-parameter
theory using a highly detailed model [15]. The forward voltage
VM (ω) can then be obtained by multiplying the frequency
response VS(ω) of the input (source) signal with the transfer
function H(ω) of the system. Time-dependent voltage vM (t)
is obtained by using the inverse Fourier transform. The fol-
lowing equations outline the steps taken to obtain vM (t), the
simulated time-domain reflectometry (TDR) response:

VS(ω) = F {vS(t)} (20)
VM (ω) = H(ω) · VS(ω) (21)

vM (t) = F−1 {VM (ω)} (22)

The resulting system response from (22) can then be plotted as
shown in Figure 15. This method was validated to be accurate
within 0.3% of measured impedance profiles.

TABLE IV
ACCURACY OF REFLECTION COEFFICIENT |Γ| OBTAINED FROM EACH

METHOD.

Method |Γ|
FDTD 0.01
MTM 0.01

S-parameters 0.003

IV. CONCLUSION

This paper presents novel implementation of forward meth-
ods used for simulating faults in the shields of coaxial cable
and other shielded lines. First, cross-sectional modeling was



Fig. 15. Forward voltage response of system with chafe located at 6 m on
a 7 m line. The tiny reflection resulting from the chafe is circled.

used to determine the characteristic impedance of various
wire sections, and then longitudinal methods were used to
simulate the reflectometry response using these characteristic
impedance values.

The finite-difference method (FDM) is a cross-sectional
modeling method that was used to simulate cross-sectional
characteristic impedance. Results using this method are ac-
curate within 1% of the analytical solution for characteristic
impedance of a coaxial cable and can be simulated rather
quickly using an efficient algorithm which was develeoped.

Because chafed wire carries a mix of TEM and higher order
modes, the finite-integral technique (FIT) can be used to model
chafes between these modes. Because FIT is computationally
slow, by simulating limited number of points, a curve fitting
technique can be used to predict the chafe profile within 0.01%
of the simulation values. A polynomial equation is generated
to represent the chafe fault profile that can be used in the
inversion scheme to predict the nature of the fault. The coaxial
cable example is presented, but the same concept can be used
in other wire types.

The modified transmission matrix (MTM) and S-parameter
methods provide quick yet realistic solutions to transmission
modeling. MTM simplifies the transmission line by repre-
senting each line section with a single ABCD matrix. Thus,
modeling a cascaded transmission line system is easily done
by connecting the modulized blocks. The ABCD matrices
not only represent the characteristic impedances of trans-
mission lines, they also characterize the reactive components
such as capacitors and inductors. These frequency-dependent
components are typically not simulated in the time domain
methods due to the limited capabilities. Unlike its time domain
counterparts which divide wires into numerous small sections
or meshes, the performance of the MTM and S-parameter
methods does not depend on the resolution of the transmission
length. Therefore, the modeling process requires fewer com-

putational resources. The S-parameter method was also used
to simulate the reflectometry response in the frequency and
time domains in a matrix approach, with accuracy of about
0.3% of measured reflectometry profiles.

These new methods have proved highly useful for simula-
tion and analysis of complex systems. Results can be obtained
by using detailed models of the faults and a method to integrate
multiple fault models (which can include measured data) in a
unified forward model that describes effects of the fault and its
surrounding system. Models of shielded cables can be used,
where the external environment has little or no impact on
the cable, and thus potentially enable the diagnosis of much
smaller faults than have previously been detectable. This can
lead to accurate identification, location, and diagnosis of faults
with high precision, providing real solutions for greater safety
and reparability in aerospace wiring systems.
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