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Abstract:

Reflectometry methods including time, frequency, sequence, and spread spectrum
reflectometry methods are capable of providing highly accurate location of faults on
aircraft wiring. One of the significant challenges in applying these methods in
practice is that many wires, particularly power wires, branch into tree-shaped
networks from which multiple reflections create extremely difficult-to-interpret
reflectometry responses. In this presentation, we will discuss the complexity of the
branched network problem and why accurate measurements of the length and
magnitude are so critical for solving this problem. We will also introduce two
functional novel systematic approaches to solve this problem, which do not require
prior measurements as baselines. Additionally, we will present results from our
approaches with both simulated and measured reflectometry data of branched
networks.Sources of error including measurement error and topology ambiguity are
considered, and an assessment of network mapping strategies is given for both
ideal and nonideal data.
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Reflectometry-Based
Fault Location Methods

Analog %
FDR
SWR

STDR

Digital SSTDR  ®DrR Time Domain

b

Capacitance / Inductance

University of Utah




PN Code

time shift

PN Code

time shift

University of Utah




Modulated
PN code
with

time shift

Modulated
PN code
with

time shift

University of Utah



Reflectometry Measures the
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Impulse Response Shows
Magnitude and Delay of Each
Reflection
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Typical Branched Network Has

Many SMALL Reflections
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Feflection Coefficient

Noise Masks Small Reflections
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What About FRAYS and ARCS?
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Fray on a Network

All the lines have characteristic impedance Z0= 50 ohms.

The lines are terminated by shorted ends.
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Reflectometry Response

Comparison of forward solutions of networks with different severities of frays
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Simulated Frays

Cross-section of a two wire line Potential Distribution for a twin lead wire
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Fray impedances and reflection coefficients

Characteristic
Scenario Impedance (€2) Reflection Coefficient

Short Circuit -100 %
Open Circuit 100 %
No changes 0
Water Drop 2.4 %
Cut .15 mm off top 0.014%
Cut .45 mm off top 0.044%
Cut .76 mm off top 0.28%
Cut .15 mm off side 0.0021%
Cut .45 mm off side 0.0056%
Cut .76 mm off side 0.017%
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Fray Impedance is Similar
to Normal Impedance Variation on

UnControlled Impedance Wire
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Location of Faults on Branched
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” SSTDR Response
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Overlapping Peaks Occur when
Reflections are Close Together
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Reflections Add Up
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Overlapping Peaks Must be
Filtered to Find Impulse Response
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Flow chart of branch network detection
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Actual network
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Successful Detection

(simulated Network)
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Unsuccessful Detection

(simulated network)
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Detection with measured data
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Detection with measured data

Detected network
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Detection with measured data
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Detection with measured data
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Detection with measured data
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Questions ?
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