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Non-Destructive Fault Location on Aging Aircraft
Wiring Networks

Part 2 — Live Wires in Flight

By: Paul Smith**, Alyssa Magelby*, Deekshit Dosibhatla**, Chet Lo, Cynthia Furse®, Jacob Gunther**

Center of Excellence for Smart Sensors

University of Utah™ and Utah State University**

50 S. Campus Drive 4120 Old Main Hill

Salt Lake City, Utah 84112 Logan, Utah 84322-4120

Aging aircraft wiring has been identified as an area of critical national concern. As the system ages, the wires become brittle and crack, break, or
develop short circuits. Short circuits, in particular, have been implicated in a variety of smoke incidents, in-flight fires, and crashes. Some of
these faults are intermittent, occurring only sporadically as the physical vibration, stresses, temperatures, electrical loads, moisture
condensation, etc. change throughout the flight. When the plane is on the ground, no fault can be found. These types of problems are among
the most frustrating for aircraft maintainers, resulting in a typical “no fault found” incident taking tens or even hundreds of hours to locate.
Some planes even remain grounded for extended periods of time until basic electrical systems can be fully replaced at great cost and labor.

One of the greatest hazards of these systems is that they may foreshadow a more serious in flight hazard as a small fault grows, yet for all
intents and purposes, the system checks out OK.

This paper describes two systems based on spread spectrum technology that are the first known sensors that can actively locate faults on live
wires in flight without disrupting or interfering with existing 400 Hz power or 1553 data bus signals. These systems are found to be highly
robust to in-line noise, connection mismatches, etc. They provide measurements accurate to within inches or feet over several hundred feet of
both shielded and unshielded cables. They can function accurately within a realistic network environment, and can locate intermittent short
circuits (wet or dry arc events) in flight. The sensor development and testing for realistic situations, algorithms for enhanced data processing,
and real-time analysis methods are described.
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Fig. 7.98: SSTDR test on a 25ft 75{) cable with Mil-Std 1553 at 5.0V RMS. This figure
shows how small the SSTDR waveform is on the Mil-Std 1553 signal. Neither signal
interferes with the other signal. If the Mil-Std 1553 signal amplitude is doubled, SSTDR
will not be able to reliably detect reflections.
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Fig. 7.54: Estimated distance versus measured distance to an open circuit. The background
signal was 60H z 28V AC. The coax cable was 752, and capacitor C5 was used.
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Fig. 7.72: Estimated distance versus measured distance to an open circuit. The background

signal is 60H 2 28V AC. The cable is a 22 conductor aircraft cable made with 22 gauge
discrete wires. Capacitor C5 was used.
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Table 7.3: ML Codes: Effects of Scaling
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