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This paper addresses the propagation of a signal through a small aperture in cable
shielding. This may enable the location of holes (faults) in shielded cables using
reflectometry. Reflectometry is an effective method for locating hard faults, such
as an open or short, in transmission lines. However if the fault is small, such as a
partial break in cable shielding, current methods are not capable of detecting and
locating the fault. The impedance change due to the small breaks in shielding are
so small that environmental variation masks them. As an alternative, this paper
evaluates a novel method of using the transmitted field through the hole and
propagating down the length of the cable to locate the fault in the shield.

The premise of this work is that when a break in cable shielding occurs, the signal
that was exclusively internal to the cable now exists on the outside of the cable
and can be used to locate the fault. This paper includes simulations of the fields
that escape the hole. These results are compared to those of an analytical model
for small faults: (R.E Collin, Foundations for Microwave Engineering, IEEE

Press Series on Electromagnetic Wave Theory, 2nd edition, John Wiley and Sons,
2000). Next, both simulated and measured results are given for the fields
propagating on the outside of the cable. The velocity of propagation and
polarization are evaluated. Once the signal is propagating along the exterior of the
cable, there are various methods for detecting it. In this paper, a ferrite loaded
toroid sensor as shown in Figure 1 is used to receive the external magnetic fields.
The design of the sensor will be discussed from its analytical model to an analysis
of measured and simulated data.






Incident Pulse sent down wire Reflected Pulse comes back

Time delay

Time delay between Incident
and Reflected Pulses tells
distance to fault.



Common Reflectometry Methods
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TDR Fault Response
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« A common method of fault location iIs
reflectometry, however this method is not able to

detect the very sma

damage.
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« For small faults the initial reflected signal will be
cancelled out by the secondary reflected signal
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TDR Fault Response
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TDR Fault Response
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Coax — no impedance change from
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TDR — Requires Large Dynamic Range
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A different method:
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Receiver Choices - Inductive
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Coax is shielded.

NO SSTDR signal from inside should be outside.
ANY SSTDR signal is from the hole.

We can receive the S|gnal detect the nole, locate

the hole.




ncident Excitation > E&H Fields Inside Cable
N




Internal E&H Fields Leak Out of Hole (HP Filte

* Hole = HP Filter (Current is derivative of Incident
Signal)



Leaky (H) Fields Produce Surface Current

* Line is LP Filter (Current is attenuated)



Surface Current Produces Magnetic Field In Ferrite

* Ferrite = LP Filter (depends on material)
* Ferromagnetic core acts like a flux concentrator



Magnetic Field In Ferrite Produces Current in Coil




Current in Coil produces Vemf

» Toroid = HP Filter (Vemf ~ dB/dt)
* Nturns = Higher Vemf
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Evanescent Near Fields
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3mm Wide Fault
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Hole = HP Filter (Current
IS HP Version of Incident
Signal)

Line is LP Filter (Current
IS attenuated)

Ferrite = LP Filter
(depends on material)

Toroid = HP Filter (Vemf ~
dB/dt)
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L#)) Velocity of Propagation - measured
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Network Analyzer
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Measurement Results

Sensor at 10ft, No Damage
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Characterization of Sensor
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« Characterize  Maximize Induced emf
Parameters
« Windings Vemf = —NAu(u' — ju
« Wire Gauge
« Geometry
 Materials

Signal
Generator

Digital
Oscilloscope




Effective Magnetic Length

2 In (30)
.
ID 0D

Il=




—3 Turns

——5Turns |
— 7 Turns
———89Turns
— 11 Turns ||




— 20 AWG

—=—=26 AWG
——30 AWG ||




— Small Magnetic Length

Large Magnetic Length




Small Cross Section
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Windings
— Keep Low

Wire Gauge
— Larger than 30AWG

Geometry

— Increase Area

— Minimize Magnetic Length
Materials

— N40 (Least Dispersion at 200 MHz)
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Fault Amplitude (mVy)
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* Need to localize and
characterize apertures <

In coaxial shielding

« Traditional
reflectometry not
suited for shield
apertures

« Accomplished with an
external inductive non-
contact sensor
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