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Abstract—This paper presents novel implementation of for-
ward and inverse methods for locating faults in the shields of
coaxial cable and other shielded lines. In accomplishing these
tasks, direct and probabilistic inversion methods are used to esti-
mate fault and wire parameters. Some numerical finite-difference
techniques are capable of modeling the characteristic impedance
of a chafe one frequency at a time or without consideration of
frequency dependence. Other more computationally expensive
software takes frequency into account. By simulating limited
number of points, we can use a curve fitting technique to predict
the chafe profile and thus save time in the long run. The ABCD
forward method also provides a quick and yet realistic solution
to the transmission modeling, making modeling a cascaded
transmission line system easily done by connecting the modulized
blocks. With the success of the forward modeling method, the
inversion can be benefited from it. Iterative inversion methods
are capable of recovering multiple unknown parameters (lengths
and impedances) by approaching the result gradually. Gradient
inversion and maximum a posteriori (MAP) inversion results for
fault location and size were found to be accurate. A simple
and yet effective wire fault profile building technique are also
presented. Finally, a novel method of external field measurement
from small chafe holes is presented. These new methods prove
highly useful for simulation and analysis of complex systems.
Thus, faults can be accurately identified, located, and diagnosed
with high precision, providing real solutions for greater safety and
reparability in aerospace wiring systems. Location and diagnosis
of faults in aging electrical wiring can enable their timely repair,
thus preventing costly and potentially hazardous post-failure
repairs.

I. INTRODUCTION AND BACKGROUND

Location and diagnosis of faults in aging electrical wiring
can enable their timely repair, thus preventing costly and
potentially hazardous post-failure repairs. This project focuses
on one of the most challenging problems in electrical fault
location—finding small chafes in the shields of shielded wires
(coax, twisted shielded pair, etc.). These small faults produce
such small reflection signatures that in many cases they are
undetectable against the background noise on aircraft. This
objective is attained using forward and inverse methods, along
with a new external field measurement method.

Hard wire faults (open/short) have been well studied. These
faults are easier to find and most of reflectometry measure-
ments have demonstrated to be effective. However, partial
faults (chafes) are more difficult to identify since the system
usually does not show any noticeable symptom until the fault
is too severe. Chafes are the result of improper workmanship,
abrasion or vibration against other wire or structural members.

Exposing the conductor in the air, the severity of chafes is
prone to worsen over time. Like human health, early detection
in aircraft wiring fault typically has a much better chance
of curing the problem and can possibly prevent catastrophic
disasters.

II. FORWARD METHODS

Detailed models of the faults and a method to integrate
multiple fault models (including measured data) were devel-
oped in a unified forward model that describes effects of the
fault and its surrounding system. Models were produced of
shielded cables, where the external environment has little or
no impact on the cable, and thus potentially enable location
of much smaller faults than have previously been detectable.
Unique aspects of this model include its modularity (ability
to efficiently integrate data from multiple simulations and
measurements), detailed fault models (including frequency
dependence of the faults), and the ability to model small faults
with great precision while still incorporating them into a full
system model (which normally has lower precision for more
efficient computation).

Various techniques have been used to model chafes on
the wire. For simplicity, signal propagating in TEM mode
is typically assumed. However, a coaxial cable for example,
once the shield is damaged, the signal no longer propagates
entirely in TEM mode and the analysis can be much more
difficult once the higher order modes are involved. Although
higher order modes do not play a significant role if the fault
is small and the frequency is low, once the fault is severe
or the frequency is high enough, the effect can be noticeable.
Analytical electromagnetic modeling does not work effectively
on multiple modes/frequencies with arbitrarily geometric vari-
ations. Thus, modern techniques use numerical methods such
as the finite-difference methods discussed below to synthesize
the reflectometry results. A common drawback is the heavy
burden of the computational resources. This is especially true
when the fault is small, where fine resolution is needed. In such
cases, ABCD, S-parameter theory, and Computer Simulation
Technology (CST) can prove useful. Each of these methods
will be presented in this section.

A. Finite-Difference Method (FDM)

In order to characterize the damaged wire, the fault
impedance ZF must be obtained. The Finite Difference
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Method (FDM) can accomplish this task by modeling a
cross-section of damaged cable, as shown in Figure 1, and
numerically calculating the impedance ZF . FDM works by
“sampling the voltage potential within some finite simulation
domain and then approximating the derivative operation with
a finite-difference. When applied to a time-independent partial
differential equation, the net result is a linear system of
equations that may be readily solved via matrix inversion”
[1].

Fig. 1. left: Simulated damaged dielectric, where red represents the outer
jacket and cyan represents the inner wire dielectric. right: Leaking fields from
damaged shield, where white center wire is fixed at 1 V and black outer shield
is grounded.

To determine the characteristic impedance of a chafe, a
technique proposed in [2] is to utilize the two-dimensional
finite difference method to estimate the effective capacitance
of the cutaway section. The effective characteristic impedance
can be derived as

Zeff =
1

vpCeff
(1)

where vp is the velocity of propagation,

vp =
1
√
µ0ε

(2)

The reader is referred to [1] for a more complete descrip-
tion of FDM and [3] for an overview of how characteristic
impedance is simulated using finite difference methods.

B. Finite-Difference Time-Domain (FDTD) Method

Finite-Difference Time-Domain (FDTD) is a computational
electrodynamics modeling technique that solves Maxwell’s
equations [4]. Because it is a time domain method, solutions
can cover a wide frequency range with a single simulation run
[5].

One advantage of the FDTD method is that it can be used
for simulation of faults containing graded (gradual) impedance
changes along the line. Because many faults contain graded
changes in real life, these simulations provide a more re-
alistic method of determining the types of reflections and
signal changes that can be expected from such faults. A
discretized approach to adjusting the RLGC parameters can
be implemented in a cell-by-cell manner, where the resulting

characteristic impedance gradually changes across the length
of the fault.

C. ABCD Method

The ABCD method simulates the TDR response of cas-
caded transmission lines, as shown in the simple TDR setup
displayed in Figure 2. A TDR tester (ZS) is connected to the
transmission line as a signal source while a load (ZL) is at
the end of wire.

Fig. 2. A simple TDR setup.

The time domain response of TDR is then simply the inverse
Fourier transform,

TDR = F−1 {S(ω)HTDR(ω)} (3)

where S(ω) is the source signal in frequency domain and
HTDR is the transfer function of the TDR. Figure 3 shows a
multi-section setup with a reactive load of 1 nH and 47 pF in
series and the result is shown in Figure 4.

Fig. 3. A multi-section setup with a capacitive load.

Fig. 4. Multi-section setup with a reactive load.



D. S-Parameter Theory

S-parameter theory can also be used to simulate faulty wires
[6]. In order to simulate the response of the wire system
(the forward model), a system of S-parameter equations was
derived for the damaged wire case. This case included one
chafed section of length z2, located at a distance z1 along a
wire of total length zT .

Time-dependent voltage vM (t) is obtained by using the
inverse Fourier transform. The following equations outline
the steps taken to obtain vM (t), the simulated time-domain
reflectometry (TDR) response:

VS(ω) ⇔ vS(t) (4)
VM (ω) = H(ω) · VS(ω) (5)
vM (t) ⇔ VM (ω) (6)

The transfer function H(ω) is derived from S-parameter
theory. The forward voltage VM (ω) can then be obtained by
multiplying the frequency response VS(ω) of the input (source)
signal with the transfer function H(ω) of the system.

E. Computer Simulation Technology (CST)

CST Microwave Studio offers a powerful 3D Quasi-TEM
mode, in which the result takes both TEM and higher order
modes into account. Additionally, one can import virtually any
shape of the model from CAD software. However, like most
iteration-based algorithm (i.e. FDTD, FEM), CST is painfully
slow at high resolution or where the point of interest is small
while the wire is long. Relying entirely on CST/FDTD to
generate a wide range profile is not feasible.

Efficiency and precision are critical for inverse solution;
however, they are often mutually exclusive. Instead of running
the numerical modeling at every single possibility, we can
utilize the polynomial curve fitting algorithm to minimize the
points required.

1) Analysis: Once the shield is cut more than 60◦ as shown
in Figure 5, at frequency of 5 GHz, the field lines start to bend
and the characteristic impedance calculation is no longer as
simple.

Fig. 5. Electric field (left) and magnetic field (right) in coaxial cable with
60◦ cutaway.

CST’s Quasi-TEM mode simulation combines the effect
of both TEM and higher order modes. Instead of using

multi-stage processes (FDM to calculate effective capacitance
and derive the characteristic impedance), we can obtain the
characteristic impedance of the fault directly. As shown in
Figure 6, 13 points from 0 to 359 degrees were obtained
using CST. By utilizing polynomial curve fitting algorithm,
we can easily plot the profile that represents the properties
of the faulty shield. This profile represents the prediction of
the fault severity of the chafed RG58 coaxial cable. A 9th
order polynomial expression derived by Matlab Curve Fitting
Toolbox is revealed as:

Z(θ) = p0 + p1θ
1 + ...+ p8θ

8 + p9θ
9 =

9∑
n=0

pnθ
n (7)

where θ is the cutaway angle in degrees and p0–p9 are
constant coefficients.

Fig. 6. RG58 2D profile at 5 GHz.

Since characteristic impedances are frequency dependent,
we can generate a few more sets of data at different frequencies
of interest and use the similar polynomial surface fitting
algorithm in order to obtain the 3D frequency-dependent
characteristic impedance profile of the faulty coax, as shown
in Figure 7. Similarly, a characteristic impedance function
of cutaway angle and frequency can be obtained. Once this
fault profile is defined, it can be reused again and again
without further time-consuming simulations or calculations.
Additionally, the field technician can estimate the severity of
the fault based on the fault profile (or chart) of each type of
cable.

Fig. 7. RG58 3D profile from 1 MHz – 5 GHz.

2) Results: With the collaboration of the ABCD method,
the modeling of chafed wires can be made efficiently without



any numerical approach. Once the profile is defined, the
modeling and prediction of the chafe can be done within no
time. Finally, efficient and fast forward modeling is one of the
key elements for the success of inversion technique. With this
profile building technique, numerical iterations can be reduced
or possibly eliminated, where most of the inversion effort is
spent.

III. INVERSE METHODS

Inverse solutions were developed that determine the location
and nature of the fault, using the forward solutions developed,
perhaps in multiple simulations, to compare to the measured
data in some way. The inverse methods explored here include
Bayesian statistical analysis, gradient and iterative methods,
and the beginnings of a novel exterior-field measurement
approach. The important focus of these inversion schemes is
inversion of very small faults in a complex environment.

A. Maximum A Posteriori (MAP) Estimation

In Bayesian statistics, a maximum a posteriori probability
(MAP) estimate can be used to deduce original wire and
fault parameters from reflectometry measurements [6]. In this
way, faults can be detected, located, and diagnosed with much
greater accuracy than in previous methods. This is primarily
because not only the existence and location of the fault can be
detected, but also the nature of the fault and wire parameters,
such as fault size, dielectric permittivity of the insulation,
conductivity of the wire, and other factors. For instance,
permittivity may not be known in realistic test configurations.
This leads to uncertainty in velocity of propagation, wire
length, and thus in fault location. Probabilistic methods can
determine the permittivity and/or other wire parameters while
also finding the fault type and location.

Using the S-parameter forward model, an inversion scheme
using Bayesian probability can detect the location and pa-
rameters of an unknown wiring chafe using reflectometry
or S-parameter data. Model parameters m can include wire
properties such as dielectric constants, and fault parameters
such as location z1, width w, and length z2.

In this way, prior probability P (m) can be estimated for
each variable in the variable set m, either as a Gaussian
distribution with mean µ and standard deviation σM , or as
a uniform distribution of equal probability. In this case, the
location (z1) and size of the fault (w, z2) can be treated
as uniform probability distribution functions (pdfs) in order
to treat all locations and sizes as equally possible. This is
because location and fault size are unknown, whereas other
wire parameters such as permittivity or conductivity are gen-
erally known or presumed because more information regarding
wire parameters is available, and thus Gaussian distributions
centered at presumed valued can be used in prior probability.

The maximum likelihood method can be used to obtain the
solution set m0 which maximizes the conditional probability
P (m|d).

P (m|d) =
P (d|m)P (m)

P (d)
(8)

m = {z1, z2, zT , w, εr, ...} (9)
m0 ⇒ maximizeP (m|d) (10)

Measurements have been taken using several different wire
types, including RG58 cable. The accuracy of the MAP
algorithm can then be analyzed to determine the limits of
fault size and its detectability. Preliminary tests have verified
that the code could at least locate very large faults. Similarly,
smaller faults can be produced on other cable types, measured,
and analyzed using the algorithm.

B. Gradient Methods

Gradient inversion methods—such as steepest descent, con-
jugate gradient, or the Newton method—can be used in order
to minimize misfit error and calculate an optimal solution
[7]. In exploring these methods, the Newton method can be
evaluated, where the expression for A(m) can be defined using
S-parameter theory as in (6), where data d = A(m) = d(z).

The misfit functional between predicted data A(m) and
observed data dobs is then defined as

φ(m) = ‖r‖2 = ‖A(m)− dobs‖2 (11)

The Newton method involves linearization of the nonlinear
operator A by some vicinity of point m:

A(m+ ∆m) ≈ A(m) + F∆m (12)

where F is the Frechet derivative at the point m, and ∆m
is a variation of the model parameters. Here, the Frechet
derivative consists of the partial derivative:

F =

[
∂d

∂m

]
(13)

In matrix notation, the updating process occurs as:

rn = A(mn)− d (14)
∆mn = −(FT

mn
Fmn

)−1FT
mn
rn (15)

mn+1 = mn + ∆mn (16)

The function was programmed in an iterative process, where
the value for ∆m was continuously updated until a certain
convergence criterion was met, which was defined as in terms
of percent error (PE).

PE =
‖r‖
‖d‖
× 100% (17)

In this application, measured fault signature size is often
relatively very small, as shown in Figure 8. Because of the
tiny size of the measured fault signatures, ranging from 1 to
15 mV for a 1 V input signal in this case, it is necessary to
use extremely high levels of accuracy, otherwise the signature
can become lost in the noise or nuances of the system



measurements. In this case, the level of accuracy used as the
convergence criterion was a low PE = 0.01%. This level of
accuracy produced results inasmuch as the noise level did not
exceed the size of the chafe signature. Noise levels up to 0.1
mV were found to be acceptable with accuracy levels up to
PE = 0.1%.

When the noise level is too high, as shown in Figure 8, the
tiny signature becomes buried and much more difficult, if not
impossible, to detect.

Fig. 8. Chafe signature lost in noisy data.

It may be noted here that such low-noise measurements are
now increasingly possible because of the development of high-
precision instrumentation and the use of shielded coax, the
shield of which greatly reduces noise and interference levels.

C. Iterative Inversion Method

Trying to solve the inverse problems analytically is typically
not an option. However, with the advances in computing
technology, extensive studies have been done using numerical
approaches.

One of the key successes in the transmission line inverse
problems is the forward solver, in which the efficiency (speed)
and the fidelity often determine the outcome of the inverse
solution. For application of the iterative inverse method, we
have chosen the frequency-domain ABCD method [3] as our
forward solver due to its simplicity and the features that fit
well with numerous cascaded transmission line sections. The
inversion and reconstruction algorithm block diagram used in
this paper is shown in Figure 9.

1) Applying Steepest Descent Optimization: Although a
decent result can be achieved in only few tens of iterations
with an educated guess, had the initial estimation far off
the objective, the converging performance could be degraded
accordingly. Additionally, the L − Z profile was oscillating
especially toward the end of wire. This was due to the
limitation of the 1Ω resolution we set in the beginning of
the process. The impedances in the prior sections were not
matched properly, therefore, cause the multiple reflections at
the later sections. We can of course increase the Z resolution,

Fig. 9. Inversion and reconstruction algorithm block diagram.

however, at the cost of computational efficiency. In addition
to the fluctuation, the convergence of the previous method is
quite low. That is, we can only approach our objective linearly
by 1Ω per iteration. If the initial estimation was off by large,
it would take long time to converge. Furthermore, we may
never reach to the real profile since we are limited by the
preset resolution of 1ω.

A classical, but effective steepest/gradient descent optimiza-
tion method [8] can fit quite nicely in this inversion algorithm.
For a defined and real function F , in the neighborhood of a
point x in the direction of the negative gradient of x−∇F (x),
we can find an ideal γ, where the step size γ is a real number
that determines the speed of convergence. If is too small
(underestimated), this method converges slowly. On the other
hand, if γ is too large (overestimated), the convergence may
oscillate or may not converge at all. Therefore, choosing a
proper γ is critical for optimization. For TDR inversion, our
changing variable is the characteristic. Therefore, the steepest
descent function can be re-written as:

Zn+1 = Zn − γn∇Γ(Zn) (18)

Applying the steepest descent method with the step size
equals to 110, the converging efficiency has improved signifi-
cantly. After only 10 iterations, the L−Z profile has achieved a
result that is better than the previous method with 50 iterations.

2) Iterative Inversion on Chafes: Chafes on transmission
lines are more difficult to identify, producing very small reflec-
tion coefficients that might be buried in measurement noise,
and their short lengths also make the detection challenging. A
very high frequency TDR is usually required to identify frays.
Thus, we have to increase the resolution in our algorithm as
well. Figure 11 shows a partial fault of 5 cm long, 120◦ cut
on the shield of a 3.59 m RG58 coaxial cable.

Again, we start with an initial guess of uniform charac-
teristic impedance of 60Ω. After 10 iterations, the fault of 5
cm is identified at 1.9 m on the coaxial cable. The L − Z
profile reveals that the characteristic impedance of the fray is



Fig. 10. The measured vs. reconstructed result after 5 iterations using steepest
descent with converging constant = 110.

Fig. 11. A 5 cm, 120◦ shield cutaway on a 3.59 m long RG58 coaxial cable.

roughly 60Ω. This inversion method shows the characteristic
impedance, however, not the physical size or the nature of the
fault. Figure 12 shows the comparison between the measured
vs. reconstructed result. The results are closely matched even
with the small reflection coefficient in a noisy measured data.

Fig. 12. The measured vs. reconstructed result on the RG58 fray.

D. External Field Method

Finally, a novel approach is explored where the fields are
measured external to the cable. If the shield is intact, these
should be uncorrelated to those on the inside of the cable,
however if the shield is damaged sufficiently for fields to
escape, these external fields will be correlated with the internal
fields. Measuring the fields on the external surface of the
cable shield appears to be a promising method of locating
small faults on the cable. This method reduces the huge
dynamic range that was previously required to sense both large
reflections from normal connections within the system and
minute reflections from the damaged shield. This method may
prove to be even more effective than internal measurements
for these small faults in cable shielding.

E. External Field Theory and Simulation

Determining the fields on the outside of the cable due to
a fault in the shield will involve a process of simulation and
lab measurements. The type of wiring we are going to focus
on in this section is the standard coax cable, although the
concepts can be extended to twisted shielded pair (TSP) and
other shielded cable types. The question we are most interested
in is what fields propagate from the inside to the outside of
the cable when there is a hole in the shield

Bethe developed rigorous mathematical expressions to de-
scribe fields leaking through a small hole between two cavities
[9]. Bethe’s theory was applied to waveguides and validated
by additional studies [10]-[11]. Two waveguides were placed
parallel to each other with a small hole connecting the two.
Fields were shown to leak into the adjoining waveguide
through the small hole. Applying the theory to coax cables, if
a signal is traveling down the cable and there is a small hole
in the shield, then some fields could be leaking out and may
be detectable on the outside of the shield.

Visually these simulations indicated signals on the outside
of the cable that are propagating towards both ends of the
cable. These signals could potentially be picked up by a probe
on the outside of the wire. Their mere presence indicates
a hole. The phase shift between the incident signal on the
wire and that received from outside through the hole may be
able to tell us the location of the hole. The magnitude and/or
frequency spectra of these signals may be able to tell us the
size and nature of the hole.

These rudimentary simulations provide motivation to con-
tinue research and modeling of small faults to aid in the study
of the external fields. Improvements to the model to more
accurately reflect shield damage, size, signal excitation, and
expressions to describe these external fields will be further
studied.

1) Coil Receiver Technique: With a simple model of an
RG58 coax cable established we turn our attention to detecting
the external fields. One approach utilizes a coil (toroid) sensor.
The coax cable goes through the center of the coil, and
measurement devices connected to the coil receive signals.
The following subsections present a simulation and initial lab
results from such a setup.



2) Simulation: A simplistic CST model was simulated
using a basic coil. Building upon the RG58 coax model already
developed, a ferrite coil was added as illustrated in Figure 13.
This model was simulated with the same parameters defined
earlier in the paper.

Fig. 13. RG58 coax modeled in CST with coil sensor.

Although this CST model is fairly basic, the result helps
motivate the additional research and study needed to better
understand the fields leaking outside the cable and the potential
use of a coil sensor. The downside of this CST simulation is
the incredibly small response of the signal, with peak-to-peak
magnitude no greater than 1 µV/m. It will be very difficult to
measure and capture these signals. As the coil moves away
from being centered over the hole the signals are even smaller
and more difficult to detect. Still, our simple measurement
system has been able to detect the faults.

3) Experimental Measurements: The previous section pro-
vides motivation that measurable fields exist on the outside
of the cable. A few questions quickly arise; how far do the
fields extend, how large are the fields, and perhaps most
importantly can the fields be detected in practice? We know
that small faults are difficult to detect with common TDR
measurements, because the reflected signal becomes lost in the
noise. One advantage to the detection of holes in the shield
is that these types of faults are not intermittent. That means
we can look for them in relative leisure when the aircraft is
on the ground, in a quiet environment with no other signals
(other than environmental noise) on the cables being tested.

The experiment was executed in two steps. During the first
step measurements were taken with no damage to the shield.
The response from the ferrite coil alone is show in Figure 14.
Data collected from the network analyzer was in the frequency
domain. A basic inverse Fourier transform was used to convert
it to the time domain.

The second part of the test is to damage the shield (using an
xacto knife in this case) and retake the measurement. A 1 cm
chafe was made on the shield 10 ft from port 1. Measurements
in the frequency domain were Fourier transformed to give the
time domain response shown in Figure 14. The graph shows a
distinct spike caused by the signal leaking out of the cable and
being received by the toroid. The spike is not centered around

Fig. 14. Measurement before shield damage (top). Measurement after shield
damage (bottom). The fault appears at 14 ft because the signal starts at port
1 and travels 10 ft down the cable and leaks out the chafed shield. The coil
sensor pickups the sensor and travels 4 ft back to port 2 on the network
analyzer. The cable connected to the sensor is much smaller in length than
the RG58 coax cable.

10 ft, however, because the signal leaves port 1, travels 10 feet
down the cable, out of the hole, is picked up by the sensor, and
travels a few feet back through port 2. We are still working
out the details of the various velocities of propagation (inside
and outside of the cable are different), and the nature of the
external signal, to be able to use the measured signature to
determine the location of the fault.

IV. CONCLUSION

This paper presents novel implementation of forward and
inverse methods for locating faults in the shields of coaxial
cable and other shielded lines. In accomplishing these tasks,
direct and probabilistic inversion methods are used to estimate
fault and wire parameters.

ABCD method provides a quick and yet realistic solution
to the transmission modeling. This method simplifies the
transmission line by representing each line section with a
single ABCD matrix. Thus, modeling a cascaded transmission
line system is easily done by connecting the modulized blocks.

With the success of the forward modeling method, the
inversion can be benefited from it. The efficient ABCD method
makes the iterative inversion more capable of identifying the
nature of the fault.

A simple and yet effective wire fault profile building
technique was also presented. Although only RG58 was
demonstrated, this method can be applied to any geometric
shaped faults. Numerically modeling of multi-mode chafed



transmission lines is a slow process. The proposed method
provides a quick solution for building chafe or fault profile
that can be included in a forward and inverse library.

Initial coax simulations and lab measurements were also
presented regarding measurement of external fields from small
chafe holes. Computer simulations provided motivation that
external fields could be sensed by a rudimentary coil sensor.
Lab experiments provided initial data that these external
signals are detectable.

These new methods prove highly useful for simulation and
analysis of complex systems. Results can be obtained by
using detailed models of the faults and a method to integrate
multiple fault models (which can include measured data) in
a unified forward model that describes effects of the fault
and its surrounding system. Models of shielded cables can be
used, where the external environment has little or no impact
on the cable, and thus potentially enable location of much
smaller faults than have previously been detectable. Thus,
faults can be accurately identified, located, and diagnosed
with high precision, providing real solutions for greater safety
and reparability in aerospace wiring systems. Location and
diagnosis of faults in aging electrical wiring can enable their
timely repair, thus preventing costly and potentially hazardous
post-failure repairs.
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