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The complex Hurwitz test for the analysis of

spontaneous self-excitation in induction

generators
Marc Bodson, Fellow, IEEE, and Oleh Kiselychnyk

Abstract—Spontaneous self-excitation in induction generators
is a fascinating phenomenon triggered by the instability of a zero
equilibrium state. Prediction of this condition for various values
of free parameters requires many computations of the eigenvalues
of a 6 × 6 matrix over a large space. The paper uses a novel
approach to stability using a transformation of the state-space
system and an extension of the Hurwitz test to polynomials with
complex coefficients. The analytic formulas that are obtained
give the values of the minimum load resistance, the range of
capacitor values, and the range of speeds for which spontaneous
self-excitation appears. The paper concludes with an illustration
of the results on an example.
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I. INTRODUCTION

The paper discusses the Hurwitz test for polynomials with

complex coefficients and its application to the stability analysis

of a class of linear systems. The complex Hurwitz test is an

old result of the literature [8], possibly not well-known due to

the lack of recognized applications. Indeed, the characteristic

polynomials of real systems have real coefficients. However,

the paper shows that a limited class of linear systems can be

analyzed as complex systems having half the dimension of the

original system. In such cases, the order of the characteristic

polynomial can be cut in half and the complexity of the

Hurwitz test can be significantly reduced, despite the increase

in difficulty associated with the complex coefficients. In partic-

ular, the method is applicable to general symmetrical electric

machines, including squirrel-cage and wound-rotor induction

machines.

To illustrate the result, the paper considers the specific

application to self-excited induction generators. Induction

generators have gained interest in recent years because of

their ruggedness and low-cost, and applicability in renewable

energy applications [10], [13]. The understanding of self-

excitation is important for squirrel-cage induction generators

operated off-grid, but also for those connected to the grid, due

to the need to protect the machines from overspeeding and

overvoltages when accidentally disconnected [7].

Self-excitation of induction generators is an unusual phe-

nomenon in electric machines. There always exists a zero
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equilibrium state that generates no power. Often, this state

is stable, so that transfer to a non-zero steady-state requires

triggering through pre-charged capacitors. In some fortunate

cases, instability of the zero state triggers a departure towards

a non-zero state of operation. We refer to such situation as

spontaneous self-excitation. It is an unusual problem, where

instability is wanted to achieve the desired result. The transient

phenomenon of spontaneous self-excitation is nicely described

in [9], where it is shown that the condition is related to the

existence of unstable eigenvalues in a 6 × 6 matrix. Due

to the size of the matrix, analytic conditions for stability

are not found in [9], and the determination of stability has

been performed numerically. While the computations can be

performed rapidly with modern computers, the search may

span a large space, with various parameters such as load

resistance, capacitor values, and speed to be varied, and no

a priori knowledge of the location, shape and number of the

possible unstable regions. The contribution of this paper is to

show that, by using the novel approach, analytic conditions for

stability can be obtained. As a result, self-contained formulas

give an understanding of exactly when spontaneous self-

excitation occurs, and how it is affected by various parameters.

The paper builds on the original results of [4], adding a more

general presentation of systems for which the results can

be applied, fixing some small errors, and providing further

explanations.

II. THE COMPLEX HURWITZ TEST AND ITS APPLICATION

FOR STABILITY ANALYSIS

The classical Hurwitz test is a fundamental result that is

well known to control engineers in the form of the Routh-

Hurwitz criterion. The extension of the test to polynomials

with complex coefficients is not as well known, and is given

below [8].

Lemma 1 - Complex Hurwitz test: The roots of the poly-

nomial

P (s) = sn + c1s
n−1 + c2s

n−2 + ...+ cn (1)

with complex coefficients

ck = ak + jbk, k = 1, . . . , n (2)

are in the open left-half plane if and only if ∆k > 0 for
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k = 1, ..., n, where

∆k =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1, a3, a5, . . . , a2k−1,
1, a2, a4, . . . , a2k−2,

. . . ,
0, . . . , ak,
0, b2, b4, . . . , b2k−2,
0, b1, b3, . . . , b2k−3,

. . . ,
0, . . . , bk,

−b2, −b4, . . . , −b2k−2
−b1, −b3, . . . , −b2k−3

. . . ,
0, . . . , −bk−1
a1, a3, . . . , a2k−3
1, a2, . . . , a2k−4

. . . ,
0, . . . , ak−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(3)

and ar = br = 0 for r > n.�

Although systems with complex coefficients are not typi-

cally encountered in control engineering, some real systems

can be transformed into smaller systems with complex co-

efficients where the application of the lemma has certain

advantages. Indeed, consider the state-space system

Eẋ = Fx (4)

whose stability is determined by the location of the roots of

det (AR(s)) = det (Es− F ) (5)

Assume that AR(s) has the specific structure

AR(s) =

(
A11(s) −A21(s)
A21(s) A11(s)

)
(6)

and define the matrix

TC =
(
I jI

)
(7)

where I is the identity matrix with dimension n and 2n is the

dimension of the state-space system. One has that

TCAR(s) =
(
AC(s) jAC(s)

)
(8)

where

AC(s) = A11(s) + jA21(s) (9)

Note that the polynomial det (AR(s)) has 2n roots and,

because its coefficients are real, the roots must either be real,

or appear as complex pairs. On the other hand, the polynomial

with complex coefficients det (AC(s)) has degree n, but its

roots can lie anywhere in the complex plane. The following

fact shows that the roots of the two polynomials are closely

connected.

Fact 1: Any root of det (AC(s)) = 0 is a root of

det (AR(s)) = 0. On the other hand, if s0 is a root of

det (AR(s)) = 0, then either s0 or its complex conjugate s∗0
is a root of det (AC(s)) = 0.

Proof of Fact 1:

Part 1: If det (AC(s0)) = 0, there exists zA ∈ Cn, such

that zA �= 0 and zTAAC(s0) = 0. Letting zT
0
= zTATC =

(
zTA jzTA

)
, (8) shows that z0 �= 0 and zT

0
AR(s0) = 0.

Therefore, det (AR(s0)) = 0.
Part 2: If det (AR(s0)) = 0, there exists z0 ∈ C2n, such that

z0 �= 0 and AR(s0)z0 = 0. Let zA ∈ Cn, zB ∈ Cn such that

zT0 = (z
T
A, zTB). Then, (8) implies that AC(s0)(zA+jzB) = 0.

If zA + jzB �= 0, it follows that det (AC(s0)) = 0. On the

other hand, if zA+ jzB = 0, one must have zA− jzB �= 0, or

else z0 = 0. If zA− jzB �= 0, AC(s∗0)(zA− jzB) = 0, which

implies that det (AC(s
∗

0
)) = 0. �

The proof of Fact 1 can also be derived from the property

that the eigenvalues of a matrix [A −B; B A] are the same

as those of the matrix [A+ jB 0; 0 A− jB], which was used

in [1]. A consequence of the special structure of (6) is that

the roots of det(AR(s)) = 0 must be either complex pairs

or double real pairs. In other words, there cannot be single

real roots. Further, each root of det (AC(s)) = 0 is one of

the roots in a pair of roots of det (AR(s)) = 0. Thus, AC(s)
contains the full information about the dynamics of the original

system: all the poles of the original system can be obtained for

the roots of det (AC(s)). Also, the roots of det(AR(s)) are in

the open left-half plane if and only if the roots of det(AC(s))
are in the open left-half plane.

Given these properties, the stability of the original state-

space system can be determined by using either the real

Hurwitz test on det(AR(s)) or the complex Hurwitz test on

det(AC(s)). In general, the complex Hurwitz test is more

complicated for an nth order polynomial than the real Hurwitz

test for an nth order polynomial, but simpler than the real Hur-

witz test for a 2nth order polynomial. Therefore, the approach

can have advantages for systems that satisfy the symmetry

properties (6) and are of sufficiently low order to be tractable.

Although such systems are rare, several examples have been

found in the analysis of induction machines. We focus here

on spontaneous self-excitation in induction generators.

III. APPLICATION TO SPONTANEOUS SELF-EXCITATION

A. Model and problem formulation

Consider the following model of a two-phase induction

generator

LS
diSA
dt

+RSiSA +M
diRA
dt

= vSA

LS
diSB
dt

+RSiSB +M
diRB
dt

= vSB

M
diSA
dt

+ nPωMiSB + LR
diRA
dt

+RRiRA + nPωLRiRB = 0

−nPωMiSA +M
diSB
dt

− nPωLRiRA

+LR
diRB
dt

+RRiRB = 0 (10)

where vSA, vSB are the stator voltages, iSA, iSB are the stator

currents, iRA, iRB are the rotor currents transformed into the

stator frame of reference (or equivalent rotor currents in the

case of a squirrel-cage generator), and ω is the speed of the

generator. For the purpose of the analysis of this paper, the

speed is assumed constant. The parameters of the generator

are LS , the stator inductance, LR, the rotor inductance, M ,
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the mutual inductance between the stator and rotor windings,

RS , the stator resistance, RR, the rotor resistance, and nP ,

the number of pole pairs. In the case of a three-phase motor,

a three-phase to two-phase transformation should be used first

to apply the results.

Attached to each stator winding is a load, as well as a

capacitor C that is added to provide the required reactive

power. The load is assumed to be purely resistive, with

resistance RL. The capacitor C is placed in parallel with the

load. For convenience, we derive the results in terms of the

admittance YL = 1/RL. This is simply so that the no-load

case corresponds to YL = 0 instead of RL =∞. We have

C
dvSA
dt

+ iSA + YLvSA = 0

C
dvSB
dt

+ iSB + YLvSB = 0 (11)

As was observed in [9], it is possible for one or more

poles of the system to lie in the right-half plane. In this

case, although a zero solution exists, it is unstable. Then,

a non-zero initial state of arbitrary value will result in a

growth of the voltages and currents, until magnetic saturation

is encountered. A limit cycle of the nonlinear system results,

and production of AC power is possible. The analysis of the

complete self-excitation phenomenon requires a complicated

nonlinear model with inductances depending on the current

vector. However, the onset of instability discussed in this

paper can be analyzed with the model of the system linearized

around the zero state. This model is described by (10), with

the inductances corresponding to zero currents.

The prediction of spontaneous self-excitation can be

achieved by computing the roots of the determinant of the 6×6
matrix. This computation can be brought into an equivalent

eigenvalue problem. The limitation of the approach, however,

is that the result can only be obtained numerically. The

computation may have to be performed for various capacitor

values and speeds, as well as load resistance if it is a

free parameter. Whether one or more regions are possible is

unknown. In theory, stability conditions could be derived by

applying the Routh-Hurwitz test to the characteristic polyno-

mial det (AR(s)). Such task, however, is very complicated,

given the dimension of the problem (6 × 6 matrix and 6th

order polynomial).

B. Self-excitation conditions based on the complex Hurwitz

test

The application of the complex Hurwitz test requires con-

sideration of the equivalent complex matrix AC(s) given by

AC(s) =




sLS +RS

sM − jnPωM
1

sM −1
sLR +RR − jnPωLR 0

0 sC + YL



 (12)

Specifically, the matrix AR(s) has the structure (6) with

A11(s) = Re(AC(s)) and A21(s) = Im(AC(s)). The poles

are the roots of the third-order polynomial with complex

coefficients

det (AC(s)) = a0s
3 + (a1 − jnPωd1)s

2

+(a2 − jnpωd2)s+ (a3 − jnPωd3) (13)

where

a0 = C(LSLR −M2)

a1 = YL(LSLR −M2) +C(LSRR + LRRS)

a2 = YL(LSRR + LRRS) + (CRSRR + LR)

a3 = RR(YLRS + 1)

d1 = a0

d2 = YL(LSLR −M2) +CLRRS

d3 = LR(YLRS + 1) (14)

The machine parameters are all positive and the leakage factor

σ =
LSLR −M2

LSLR
(15)

is such that 1 > σ > 0. It follows that ai > 0 and dj > 0 for

all applicable i and j. Although a0 �= 1, since a0 > 0, lemma

1 can be applied by replacing the entries equal to 1 in (3) by

a0. Further, the first test variable of the complex Hurwitz test

is ∆1 = a1 > 0. Therefore, it can be shown that the complex

Hurwitz test reduces to the following two conditions

∆2 = a1(a1a2 − a3d1)

+d1d2(a1 − d2)(nPω)
2

∆3 = α(nPω)
4 + β(nPω)

2 + γ (16)

where

α = (a1 − d2)d1d
2

2
d3

β = a21a2d2d3 − a31d
2

3 − 3a1a3d1d2d3
+2a2

1
a3d1d3 + a1a2a3d1d2 − a1a

2

3
d2
1

−a2a3d1d22 + a23d
2

1d2

γ = a3(a1a2 − a3d1)
2 (17)

With these preliminaries, the following fact can be derived.

Fact 2: Spontaneous self-excitation occurs if and only if the

parameters of the induction generator satisfy

β < −2√αγ (18)

In this case, spontaneous self-excitation occurs for a single

range of speeds ω ∈ (ωmin, ωmax), such that

ωmin =
1

nP

√
−β −

√
β2 − 4αγ
2α

ωmax =
1

nP

√
−β +

√
β2 − 4αγ
2α

(19)

and the system can only have one pair of unstable poles in the

self-excitation region.

Proof of Fact 2: Since

a1 − d2 = CLSRR (20)
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the second term of ∆2 is positive. As for the first term of ∆2,
one obtains, after simplifications

a1a2 − a3d1 =

Y 2L(LSLR −M2)(LSRR + LRRS)

+ YL(LSLR −M2)LR

+CYL(LSRR + LRRS)
2

+C2RSRR(LSRR + LRRS)

+CL2RRS +CRRM
2 (21)

which is positive. One may conclude that∆2 is always positive

and that the stability of the generator is determined solely

by the condition ∆3 > 0. Given that a1 − d2 > 0, α > 0
and γ > 0, a necessary condition for instability is that the

parameter β must be negative. If it is the case, one also needs

to find a speed such that ∆3 < 0. Note that ∆3 is a quadratic

function of (nPω)
2, which is positive for ω2 = 0 and for

large ω2. Therefore, there must be two real positive roots of

∆3
(
(nPω)

2
)
= 0, in order to have a range of speeds for

which ∆3 < 0. The condition on β (18) is necessary and

sufficient for this to be the case.

The speed range is obtained from the solutions of the

quadratic equality ∆3 = 0. The number of unstable roots

can be predicted because the Hurwitz array, whose leading

column is composed of ∆1, ∆2, ∆3, specifies the number of

right-half plane roots as for the classical Hurwitz test. Since

there can only be one sign change, the system with complex

poles can only have one unstable pole. Therefore, the original

system can only have one pair of unstable complex poles or

two identical real poles. In practice, the case with two real

poles is not encountered. �

The result of Fact 2 is enlightening, because it shows that the

origin of spontaneous self-excitation is a growing oscillation

whose rate of growth is determined by the real part of a

complex pole, and whose frequency is determined by the

imaginary part of the pole. There cannot be two competing

oscillations of different frequencies. The overall power of the

result is that it gives a direct computation of the speed range

for which spontaneous self-excitation will occur. The critical

speeds are obtained by solving a single quartic equation, rather

than computing the eigenvalues of a 6× 6 matrix for a large

number of speeds. The effect of various parameters can more

easily and rapidly be assessed. However, it should be noted

that, as with numerical approach, the analysis assumes that the

speed is constant.

C. Self-excitation conditions based on singularity

Since instability is caused by the crossing of a single root

of the complex polynomial det(AC(s)) across the imaginary

axis, a condition for spontaneous self-excitation is that, for

some ωe,

det (AC(jωe)) = 0 (22)

The real and imaginary parts of (22) yield the following two

conditions

YLRSRR − ω2eCRRLS +RR =

(ωe − nPω)ωe
(
YL(LSLR −M2) +RSLRC

)
,

ωe (RRLSYL +CRSRR) = (ωe − nPω)(
ω2eC(LSLR −M2)−RSLRYL − LR

)
(23)

Therefore, stability boundaries can be obtained from the

solutions of these equations, as stated in the following fact.

Fact 3: Spontaneous self-excitation is possible if and only if

RL >
4
√
σ

(
√
σ − 1)2

RS (24)

If RL satisfies (24), the range of capacitor values for which

self-excitation occurs is given by the limits

Cmin =
−g2 −

√
g2
2
− 4g1g3

2g1
,

Cmax =
−g2 +

√
g2
2
− 4g1g3

2g1
(25)

where

g1 = R2S
g2 = 2LS(RSYL + 1)

√
σ − (σ + 1)LS

g3 = σL2SY
2

L (26)

For any value of C in the range defined by (25), the range of

electrical frequencies for which self-excitation occurs is given

by the limits

ωe,min =

√
−f2 −

√
f2
2
− 4f1f3

2f1

ωe,max =

√
−f2 +

√
f2
2
− 4f1f3

2f1
(27)

where

f1 = C2LS(LSLR −M2)

f2 = Y 2LLS(LSLR −M2) +C2R2SLR

−C(2LSLR −M2)

f3 = LR(YLRS + 1)
2 (28)

The range of mechanical speeds for which self-excitation

occurs is obtained by replacing ωe by ωe,min and ωe,max in

the following equation

ω = h1ωe − h2/ωe (29)

where

h1 =
YL(LSLR −M2) +C(RSLR +RRLS)

nP (YL(LSLR −M2) +CRSLR)

h2 =
RR(1 + YLRS)

nP (YL(LSLR −M2) +CRSLR)
(30)

Proof of Fact 3: The first equation of (23) leads to (29).

Eliminating ωe − nPω from the two equations gives, after

simplifications, the quartic equation in ωe

f1ω
4

e + f2ω
2

e + f3 = 0 (31)
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where f1, f2, and f3 are given by (28), and f1 and f3 are both

positive. The quartic equation is a quadratic equation in ω2e,
which has a positive real root if and only if it has two positive

real roots (given that f1 > 0 and f3 > 0). Thus, a solution

exists for ωe if and only if

f2 < −2
√
f1f3 (32)

If the condition is satisfied, the solutions for ωe are given by

(27). The speed ω is related to the electrical frequency ωe
by either equation of (23). The first equation gives (29), with

h1 > 0, h2 > 0. Therefore, ω increases monotonically with

ωe, and limits for ω can be obtained from limits for ωe using

(29). The fact that the interval between the limits corresponds

to self-excitation is known from Fact 2.

After simplifications, (32) gives the following inequality

g1C
2 + g2C + g3 < 0 (33)

where the parameters g1, g2, and g3 are given by (26). Given

that g1 > 0 and g3 > 0, we again find ouselves in a situation

where the inequality can have a solution if and only if the

quadratic equality has two positive real roots, which requires

that

g2 < −2
√
g1g3 (34)

If the condition is sastisfied, the roots of the quadratic equality

associated with (33) are given by (25) and specify the range

of capacitor values. After simplifications, (34) gives

σ + 1− 2√σ
4
√
σ

> RSYL (35)

which yields (24). It is interesting to note that the minimum

load resistance is only dependent on two parameters: the stator

resistance and the leakage factor. �

D. Comparison between the stability and singularity analyses

The approach using the singularity condition (22) is similar

to the derivation of steady-state conditions for self-excited

induction generators except that, in the latter case, the differ-

ential equations are those obtained from linearization around

some equilibrium state in the magnetic saturation region. The

singularity approach is simpler and gives useful results that are

not directly available from the stability approach. However, the

regions of stability cannot be unambiguously determined from

the boundaries for stability. Even knowing that the system is

stable at low speeds, it could be possible for one pole to cross

the imaginary axis at the lower speed while, at the higher

speed, either a second pole would become unstable, or the

first would become stable again. The fact that instability occurs

between the speeds is only known from the stability analysis.

It is also interesting to note that the equations do not

naturally develop in identical forms, and provide answers to

different questions. In the stability approach, the speed range

is obtained as (19). In the singularity approach, the electrical

frequencies are first obtained, and then the speed range is

determined using (29). However, the results are equivalent,

a fact that can be verified as follows. The two equations of

(23) are identical to

a1ω
2

e − nPωd2ωe − a3 = 0

d1ω
3

e − nPωd1ω
2

e − a2ωe + nPωd3 = 0

(36)

The two polynomials have a common root if and only if their

resultant (i.e., the determininant of the associated Sylvester

matrix of dimension 5) is equal to zero. Symbolic compu-

tations performed by the authors and not reproduced here

show that the resultant gives the same polynomial as ∆3 in

(16). Based on this result, one can also expect that (32) must

be equivalent to (18), although the fact is not immediately

obvious.

Note that both approaches only address the onset of self-

excitation from the zero state. To understand the steady-state

regimes, a more complicated model accounting for nonlinear

magnetic saturation must be used [5]. Unfortunately, the

stability of the power-producing operating regime cannot be

assessed using the stability approach of this paper because

the state-space model does not satisfy the required symmetry

conditions for a state vector other than zero. Interestingly,

the singularity approach can be used to determine non-zero

steady-states by replacing the fixed inductances with nonlinear

functions of the currents.

E. Example

Consider the generator of [12], with RS = 1.7Ω, RR =
2.7Ω, LS = LR = 191.4mH , and M = 180mH . Let RL =
∞ and C = 300µF . The stability conditions give ωmin = 66.7
rad/s and ωmax = 465.3 rad/s. The minimum speed of 640
rpm is consistent with Fig. 2 of the paper [12]. At ω = 100
rad/s, the roots of det (AC(s)) are given by −73.4− 377.9j,

−142.1+389.1j, and 16.6+188.7j. The roots of det (AR(s))
are given by −73.4 ± 377.9j, −142.1 ± 389.1j, and 16.6 ±
188.7j, with the last pair being the unstable pair of poles

leading to spontaneous self-excitation. For RL = 25Ω, the

range is reduced to 86.9− 265.2 rad/s and the range vanishes

for RL < 14.5Ω. Lower resistance values require a larger

capacitor although, for low enough resistance, no capacitor

produces spontaneous self-excitation.

Using the results, one may plot the combinations of speed

and capacitor values were spontaneous self-excitation occurs.

Fig. 1 shows the upper and lower limits of speed as functions

of the capacitor value, for several values of load resistance.

The figure is also consistent with the figures of [12].

The singularity conditions give a minimum value of RL =
5.3064Ω. For this extreme case, (25) gives both minimum and

maximum values of the capacitor as C = 7.2131mF . For

this value of capacitor, the range of electrical frequencies is

also a single frequency ωe = 53.04 rad/s, and the mechanical

frequency is ω = 47.27 rad/s. This is a limit case. Note that

the slip ωe − nPω (with nP = 2) is −41.5 rad/s, which is

negative, as must be for the generator mode. For RL = ∞,

(25) gives Cmin = 0 and Cmax = 28.9 mF. For Cmax, (27)

gives a single frequency ωe = 23.1 rad/s, and a mechanical

frequency ω = 23.64 rad/s. Again, this is a limit case. The
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Fig. 2. Critical speeds for self-excitation (expanded view)

results are shown on Fig. 2, which is an expanded view of Fig.

1. The region of spontaneous self-excitation for infinite load

resistance is delimited by the outside curve, while the region

for RL = 5.31Ω (which is slightly greater than the minimum

resistance) is inside the tiny spot under the Ω symbol on Fig. 2.
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V. CONCLUSIONS

The paper presented the complex Hurwitz test and its appli-

cation to a special class of linear systems. Using the approach,

analytic conditions were found for spontaneous self-excitation

in induction generators. The formula conveniently replace

the exhaustive numerical search that was required before,

and provided the justification for a second approach based

on the singularity test of a complex matrix. The singularity

approach provided other interesting results that were illustrated

on an example. Although the range of applications of the

stability approach is limited, other examples have been found

in the analysis of induction machines. Specifically, a closed-

loop control algorithm for doubly-fed induction generators

was considered, for which a proof was not previously found

possible [2]. The complex Hurwitz test approach provided a

simple formula that specified the relationship to be satisfied by

the PI gains for stability [6]. The application of the Hurwitz

test was also considered for another control law for doubly-

fed induction generators [11]. In this case, the derivations

were found tedious and better performed using a symbolic

computational engine [3]. Doing so with the Symbolic Toolbox

of Matlab, expressions for ∆2 and ∆3 were obtained having

all positive terms, confirming the results of [11] that used a

Lyapunov function. The Hurwitz test was not preferable to

the Lyapunov method: it simply eliminated the guesswork

in finding such a Lyapunov function. Note that the complex

representation of symmetric induction machines has often been

used in the literature, but without being used for stability

analysis. A contribution of this paper is to show that the

Hurwitz test, well-known but only in the real domain, can

in fact be used for such purpose.
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