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Abstract

The paper reviews available methods for the rejection of periodic disturbances. Such

disturbances are often encountered in active noise and vibration control, due to rotating

machinery. The emphasis of the paper is on feedback control problems where reference

sensors are not available. The case where the frequency of the disturbance is known is

considered first. Two sets of algorithms are discussed: one based on the internal model

principle of feedback control theory, and the second based on adaptive feedforward can-

cellation. An interesting observation is that algorithms originating from both approaches

can be shown to be equivalent under certain conditions. When the frequency of the

disturbance is unknown, an intuitive approach consists in combining a method for the re-

jection of disturbances of known frequency with a frequency estimator. Alternatively, one

may seek to develop a stable adaptation mechanism so that the disturbance is cancelled

asymptotically. While algorithms can be designed to adapt to plant and disturbance

parameters, the most successful approaches use some limited plant information to adapt

the magnitude, frequency, and phase parameters of the control signal. Applications are

discussed throughout the paper.
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1 Introduction

The rejection of disturbances is a major objective of control system design. In active

noise control, disturbance rejection is actually the sole purpose of the feedback system

[25], [33]. For active vibration suppression, tracking of a reference position is important,

but the need to reject persistent disturbances is the source of most of the difficulty. Often,

disturbances affecting control systems are periodic. For example, in a computer disk drive,

the eccentricity of the track on the disk requires a periodic movement of the read/write

head at the frequency of rotation of the disk [39]. Similarly, the rotating engine of a

helicopter causes periodic noise and vibration [5]. In space, cryogenic coolers produce

periodic vibrations that transmit through flexible structures, and must be isolated if

precise pointing of instruments is to be achieved [41]. Altogether, periodic disturbances

are encountered in a surprisingly large number of applications, spreading across the whole

field of engineering. The paper begins with an overview of methods that are applicable

when the frequency of the disturbance is known exactly, or with reasonable accuracy.

Next, the more complicated problem with unknown frequency is considered.

2 Disturbance rejection

2.1 Periodic disturbances

We consider the standard feedback system of Fig. 1, where r is the reference input, u

is the control input, d is the disturbance, n is the measurement noise, P is the system

to be controlled or plant, and C is the control law. We assume that the reference input

r = 0 (pure disturbance rejection problem), n = 0 (noise-free case), and the plant is

linear time-invariant. Then, the system is described by

y(s) = P (s) (u(s)− d(s)) (1)

where P (s) is the transfer function of the plant and y(s), u(s), and d(s) are the Laplace

transforms of the plant output, control input, and disturbance signal, respectively. The

goal of the control system is to generate a control input u(t) such that y(t)→ 0 as t→∞.
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Figure 1: Standard feedback system

The disturbance is assumed to contain one or more sinusoidal components, i.e.,

d(t) =
nX
k=1

dk cos(αd,k(t)),
dαd,k(t)

dt
= ωd,k (2)

where ωd,k (k = 1, ..., n) are the frequencies of the sinusoidal components of the distur-

bance. Two special cases arise when:

• n = 1, i.e., the disturbance is sinusoidal;

• ωd,k = k ·ωd, i.e., the disturbance is periodic with a fundamental period T = 2π/ωd.

The disturbance d(t) is not known or measured, except through its effect at the output

of the system.

In this paper, the plant will typically be assumed to be stable. Then, the objective

can be achieved with u(t) = d(t), regardless of any initial conditions in the plant. If

the plant is unstable, a stabilizing controller can be designed and the techniques can be

applied to the closed-loop system. Similarly, if the reference input is different from zero,

an inner feedback loop can be constructed, and the techniques of the paper can be applied

by subtracting PCL(s)r(s) from the plant output, where PCL(s) is the transfer function

of the inner loop. The disturbance cancelling signal can be added to the reference input

or to the plant input.

2.2 Input vs. output disturbances

In active noise control problems, it is typical to represent the disturbance as an output dis-

turbance, appearing at the location of the signal n in Fig. 1. Given an input disturbance
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d, one can always define an equivalent output disturbance n, with n(s) = −P (s)d(s).
The reverse is not true in general, but an equivalent input disturbance can be defined if

the disturbance is periodic and the system is single-input single-output. The frequency

response of the plant must be non-zero, but the problem cannot be solved unless the

condition is satisfied.

In the multi-input multi-output case with a square frequency response matrix, an

equivalent input disturbance can be defined as long as the matrix is full rank. If there

are more outputs than inputs, perfect disturbance cancellation may not be possible,

even if the matrix is full rank. Nevertheless, one can define an input disturbance that

represents the part of the output disturbance that can be cancelled, and a residual output

disturbance that lies outside the range of the plant operator [46]. In this paper, we assume

that the disturbance can be modelled as an input disturbance. The same algorithms can

be used in the general case, but analysis is more complicated.

2.3 Feedforward and feedback control

Adaptive algorithms for disturbance rejection can be found in the literature on active

noise and vibration control. Typically, they fall in the class of adaptive feedforward can-

cellation (AFC) algorithms. Their essential structure is shown in Fig. 2. In active noise

control, P (s) is the transfer function matrix from the speaker signals to the microphone

signals (including A/D’s, D/A’s, filters, amplifiers, and sound propagation effects). The

disturbance signal d(t) is assumed to originate from a noise process with input z(t) and

transfer functionH1(s). Further, a measurement x(t) of the variable z(t) is assumed to be

available through a second process with transfer function H2(s). In the signal processing

literature, the signal x(t) is called a reference signal, and should not be confused with

the reference input r(t) defined earlier. If the transfer function H1(s)H2(s)
−1 is causal

and stable, a simple compensator C(s) = H1(s)H2(s)
−1 can be effective at cancelling the

disturbance. Uncertainties in the transfer functions H1(s) and H2(s) make the adapta-

tion of this compensator imperative. However, a linear parameterization of C(s) as a

discrete-time finite-impulse-response filter is often used, which makes it possible to use

simple gradient techniques effectively.
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Figure 2: Feedforward cancellation of a disturbance

Although the assumption of a “preview” of the disturbance is unrealistic in typical

control problems, it is often acceptable in active noise and vibration control applications.

Either a sensor can be placed upstream in the transmission path of the noise or vibration,

or a position/velocity sensor can be mounted on the machine that causes the disturbance.

Nevertheless, there are applications where measurements are not feasible, or where they

are undesirable for reliability or economic considerations. The paper’s focus is on these

applications.

3 Periodic disturbances of known frequency

3.1 Adaptive feedforward cancellation (AFC)

We first consider the problem of disturbance rejection for a sinusoidal disturbance d(t)

of known frequency. The problem can be solved using adaptive feedforward cancellation

algorithms because an equivalent signal z(t) can be reconstructed, even if it cannot be

directly measured. Nevertheless, the adaptive feedforward cancellation algorithm is truly

and purely a feedback control law.

For convenience, the disturbance is expressed in terms of its cos and sin components

as

d(t) = θ∗c cos(αd(t)) + θ∗s sin(αd(t)),
dαd(t)

dt
= ωd (3)
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Figure 3: Feedforward cancellation of a sinusoidal disturbance of known frequency

The control input can be chosen to cancel the disturbance by setting

u(t) = θc(t) cos(αd(t)) + θs(t) sin(αd(t)) (4)

where θc(t) and θs(t) are adaptive parameters. Exact cancellation occurs for θc(t) = θ∗c ,

θs(t) = θ∗s . The approach is shown schematically on Fig. 3. If the disturbance is not

sinusoidal, but nevertheless periodic, the control input may be replaced by

u(t) =
nX
k=1

θc,k(t) cos(kαd(t)) + θs,k(t) sin(kαd(t)),
dαd(t)

dt
= ωd (5)

For simplicity, the presentation will focus on a sinusoidal disturbance, although extension

to multiple frequencies is possible.

The problem of adapting the parameters can be formulated in vector notation by

defining

θ(t) =

Ã
θc(t)
θs(t)

!
, θ∗ =

Ã
θ∗c
θ∗s

!
, w(t) =

Ã
cos(αd(t))
sin(αd(t))

!
(6)

so that

u(t) = θT (t)w(t), d(t) = θ∗Tw(t) (7)

where the vector w(t) is called the regressor vector. Then

y(t) = P (s)[(θ(t)− θ∗)Tw(t)] (8)

The plant P (s) is assumed to be a stable system. Note that we used a special notation that

is convenient for adaptive control problems. Specifically, P (s)[x(t)] is the time-domain

output of the linear time-invariant system P (s) with input x(t).
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Equation (8) provides the basis for the application of standard adaptive control theory

[2], [35], [40]. The pseudo-gradient algorithm is the simplest algorithm, and is given by

the differential equation
dθ(t)

dt
= −gy(t)w(t) (9)

where g > 0 is a parameter called the adaptation gain. The regressor vector w(t) is per-

sistently exciting, so that the algorithm provides exponential convergence of the adaptive

parameters to their nominal values if the transfer function of the plant is strictly positive

real.

In contrast, the gradient algorithm is given by

dθ(t)

dt
= −gy(t)wF (t), wF (t) = P̂ (s)[w(t)] (10)

where P̂ (s) is an estimate of the plant transfer function. Because of the sinusoidal nature

of w(t), P̂ (s)[w] may be implemented using measured frequency response data, rather

than a transfer function estimate. Considering the steady-state response only, one has

that

P (s)[w(t)] =

Ã
P̂R(ωd) −P̂I(ωd)
P̂I(ωd) P̂R(ωd)

!
·w(t) (11)

where P̂R(ωd) and P̂I(ωd) are the real part and the imaginary part of P̂ (jωd), the estimate

of the frequency response of the plant evaluated at the frequency ωd.

The gradient algorithm has not been much appreciated by the adaptive control com-

munity, mainly because of its instability for large adaptation gain. However, the adaptive

signal processing community has used it extensively under the name of filtered-X LMS

algorithm. If one accepts the restriction of sufficiently small adaptive gain, the algorithm

provides exponential stability without a strict positive real condition on the plant (see [7]

for a comparison of the stability properties of various algorithms using averaging theory).

3.2 Internal model principle (IMP)

The rejection of disturbances of known frequency is a classical problem of control theory.

The internal model principle [19] prescribes that the controller should include a model

of the disturbance and, therefore, have poles on the jω-axis at locations corresponding
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Figure 4: Controller based on the internal model principle

to the disturbance frequency ωd. Fig. 4 shows the structure of the feedback loop. The

compensator C1(s) should be designed to ensure a stable closed-loop system.

For a periodic disturbance with multiple harmonics, additional poles at 2ωd, 3ωd, ...

can be added. A special case is the compensator based on the concept of repetitive control

[42], as shown in Fig. 5. Note that

u(t) = u(t− T ) + ec(t) (12)

so that the control signal repeats itself every T seconds, except for a correction term ec(t)

based on the error signal. For a disturbance with frequency ωd, the period T is adjusted

to be equal to the period of the signal, T = 2π/ωd. The overall compensator has transfer

function

C(s) =
C1(s)

1− e−sT (13)

and has poles at s = ±jωd, ±j2ωd, .... Therefore, repetitive control is closely related to
IMP control. The fundamental component of the disturbance and all its harmonics are

rejected asymptotically, so that a periodic disturbance can be cancelled exactly.

3.3 Equivalence between IMP and AFC controllers

Surprisingly, the pseudo-gradient and gradient algorithms discussed earlier are exactly

equivalent to linear time-invariant (LTI) operators. The LTI system equivalence applies

for a single sinusoid, as well as for multiple frequencies. In particular, it can be shown

that the AFC system with pseudo-gradient algorithm is equivalent to the IMP controller

with

C1(s) = gs (14)
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Figure 6: Equivalence between AFC and IMP controllers

The equivalence is also shown on Fig. 6. The result can be proved using well-known

properties of the Laplace transform [12]. The comparable result for discrete-time algo-

rithms can also be found in the signal processing literature [17] (with some preliminary

results in [20]).

The equivalence can be used for a number of purposes. Stability properties can

be determined for plants that are not strictly positive real. In [12], the equivalence

was used to explain results obtained when an algorithm designed for a single sinusoidal

component was applied to a system with multiple harmonic components. The reduction

or amplification of the harmonics could be predicted exactly using the LTI equivalence.

In the same manner, the gradient algorithm can be shown to be equivalent to an IMP

controller with

C1(s) = g
³
P̂R(ωd)s+ P̂I(ωd)ωd

´
(15)

The compensator again embodies the internal model principle, although with a different
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Figure 7: Paper machine testbed (University of Strasbourg)

zero in the transfer function. Interestingly, this zero is non-minimum phase for typical

systems, including for a first-order system. This feature and related design principles

were discussed in [32]. An equivalent LTI system was derived for an adaptive algorithm

using an augmented error in [3], where a modified algorithm called the filtered augmented

error (FAE) was also proposed. The purpose of the FAE algorithm was to enhance the

convergence and robustness of the algorithm for plants with resonant modes. In [4],

general conditions were obtained under which the LTI system equivalence applies.

3.4 Disturbances of known but varying frequency

In some applications, the frequency of the disturbance is known, but varies significantly

over time. For example, researchers at the University of Strasbourg [48] have considered

the problem of regulating the tension in a paper rolling maching. A picture of their

testbed is shown in Fig. 7. Note that this testbed exhibits problems encountered in

other, similar applications such as rolling machines for steel and magnetic tape drives.

Experiments on the paper machine testbed indicate that, when a simple controller is

used, the spectrum of the tension has large components at the frequencies of rotation of

the winding and unwinding rolls. The periodic disturbances are due to the eccentricity

and to the non-circularity of the rolls. Fig. 8, which was derived from the spectrograms

of [48], shows the frequencies of the sinusoidal components, as functions of time. The fre-

quency f1 is the fundamental component associated with the unwinding roll. It increases
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Figure 8: Frequencies of the components of the web tension

with time due to the decreasing radius. Conversely, the frequency f2 is associated with

the winding roll and decreases over time. Second harmonics are also present. Note that

the frequencies can be obtained through measurements of the angular positions of the

rolls (using encoders), but there is a significant variation with time.

Other problems with eccentricity compensation were considered in [15], while [14]

discussed a problem with similar characteristics in stepper motors. Specifically, an adap-

tive algorithm was applied to reduce torque pulsations having a fundamental component

related to the frequency of rotation of the motor. In all these applications, one may

assume that an angular measurement of the position of the motor provides direct knowl-

edge of the frequency of the disturbance, which may vary rapidly. The AFC algorithms

are attractive, because their theory as well as their implementation does not depend on

the frequency being constant. In fact, when the angle αd is available, it can be directly

incorporated in the algorithms (see Fig. 6) without reconstructing the frequency ωd [14].

The IMP algorithms can also be implemented for time-varying frequency, provided

that a state-space realization of Fig. 4 is chosen. For example, one may pickÃ
ẋ1
ẋ2

!
=

Ã
0 1
−ω2d 0

!Ã
x1
x2

!
+

Ã
0
1

!
y, u =

³
0 −g

´Ã x1
x2

!
(16)

This implementation works well if the frequency of the disturbance is slowly-varying,

but errors occur if the variation is rapid compared to ωd. Indeed, consider simulations
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Figure 9: Comparison of adaptive feedforward cancellation (AFC) and internal model principle
(IMP) with fixed and linearly varying frequency

performed with the AFC and IMP algorithms for a plant P (s) = 100/(s + 100). The

disturbance has magnitude equal to 1. The two figures on the top of Fig. 9 show the

plant output for a fixed disturbance frequency at 30Hz. The AFC and IMP responses

are identical (as predicted by the LTI equivalence of [12]). The bottom figures show the

results when the frequency varies from 30Hz to 60Hz. Note that the error goes to zero

for the AFC, but not for the IMP controller.

An explanation for this phenomenon can be found in the work of [47], which addresses

a similar problem in the case of time-varying notch filters. Translated into continuous-

time, their observation is that the differential equation for x(t) = A cos(αd(t)) has an
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additional term when the frequency varies

d2x

dt2
= −ω2dx+

dωd
dt

1

ωd

dx

dt
(17)

Therefore, the state-space system (16) needs to be corrected so that the (2, 2) element

of the matrix is replaced by (dωd/dt)/ωd when the rate of variation of the frequency is

high. Interestingly, this correction is not needed if the state-space representationÃ
ẋ1
ẋ2

!
=

Ã
0 ωd
−ωd 0

!Ã
x1
x2

!
+

Ã
0
1

!
y, u =

³
0 −g

´Ã x1
x2

!
(18)

is used instead [8]. The paper [8] also shows how the LTI equivalence result can be

extended to time-varying systems. Design of the feedback controller can be performed

based on linear parameter-varying (LPV) control theory [48], where ωd is the parameter

appearing linearly in the system description.

4 Rejection of disturbances of unknown frequency

4.1 Adaptive internal model principle

A natural approach to the rejection of periodic disturbances of unknown frequency is the

adaptive internal model principle scheme shown in Fig. 10. To make sense of the diagram,

a state-space realization of the compensator (such as (16) or (18)) must be chosen for the

adaptation of the parameters. In general, both the frequency ωd and the compensator

C1(s) need to be adjusted, although a fixed compensator C1(s) can sometimes be used.
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Researchers have considered the application of adaptive control theory for the ambi-

tious goal of adapting compensators to unknown disturbance parameters as well as to

unknown plants [18], [35]. Typically, the algorithms implement some form of adaptive

pole placement where two poles of the compensator are forced to lie on the jω-axis (or

on the unit circle in discrete-time). For example, Fig. 11 shows the structure of a model

reference adaptive control algorithm found in Narendra & Annaswamy’s book [35]. The

plant is a first-order system and the disturbance is sinusoidal. The parameters k, c2, d1,

d2, and θ are updated according to a gradient algorithm, while the constraint c1 = a1 is

applied so that the feedback loop has a pair of poles on the jω-axis (for fixed parameters,

the inner loop with c1 = a1 has poles determined by s
2 + a2 − c2 = 0).

While such an adaptive algorithm solves a far more general problem than has been

considered in this paper, the control laws are difficult to implement in practice and are

easily destabilized in the presence of unmodelled dynamics [9], [49]. Indeed, Fig. 12, shows

the plant output resulting from a simulation of the example of Fig. 11. The conditions are

the same as those of [35], and Fig. 12 is essentially a replica of a figure found on p. 302

of [35]. The dashed line shows the output of the reference model, which the plant output

is supposed to follow. Note that the plant is unstable, so that both stabilization of the

unknown plant and tracking of the reference input are achieved. However, rejection of the
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Figure 12: Plant output for Narendra & Annaswamy’s example

disturbance is not obtained, with a large oscillation remaining after 6 seconds. While the

theoretical results guarantee the stability of the adaptive system and the convergence of

the error to zero, the actual convergence is extremely slow. It was found that convergence

of the amplitude of the error was approximately of the order of 1/
√
t, and remained very

slow even when the adaptive gain was multiplied by 10.

The lack of good convergence properties for this scheme can be expected to lead to

poor robustness properties. Indeed, Fig. 13 shows the result of a simulation with the

plant replaced by

P (s) = Pnom(s) · 229

s2 + 30s+ 229
. (19)

where Pnom(s) = 2/(s−1) is the nominal transfer function used in the previous simulation.
The unmodelled dynamics in (19) are those of the well-known “Rohrs examples” ([38],

[40]) and constitute relatively mild modifications to the original plant. Yet, the output

of the plant, shown on Fig. 13, rapidly diverges. As in the Rohrs examples, the weak

stability properties of the system in ideal conditions mean that the system can be easily

destabilized.

The adaptive internal model principle approach is not hopeless, but it is likely that

successful approaches will rely on information about the plant. For example, recent
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Figure 13: Plant output for Narendra & Annaswamy’s example with unmodelled dynamics

algorithms [29], [36] use a direct adaptive control approach where the plant parameters

are assumed to be known.

4.2 Direct approach to disturbance cancellation

A class of algorithms for the cancellation of periodic disturbances is based on the concept

shown in Fig. 14. The idea, for a single harmonic component, is to generate a sinusoidal

control signal and to adapt its parameters so that the disturbance is cancelled. The

parameters of the signal are its magnitude, frequency, and phase, with the third parameter

determined as the integral of the second. This concept was proposed in [11], under the

name of direct approach.

The direct algorithm proposed in [11] is remarkably simple, and consists of the fol-

lowing equationsÃ
x1(t)
x2(t)

!
= 2

Ã
P̂R(ωd) −P̂I(ωd)
P̂I(ωd) P̂R(ωd)

!−1Ã
y(t) cos(α(t))
−y(t) sin(α(t))

!
Ã

θ1(s)
θ2(s)

!
= −1

s

Ã
g1 0
0 g2(s+ a)/(s+ b)

!Ã
x1(s)
x2(s)

!

α(s) =
1

s
θ2(s) (20)

16



u
d 

P(s)
y

1
s

θ

θ
cos(α)

α Adaptation
1

2

Figure 14: Direct approach to sinusoidal disturbance cancellation

where P̂R(ωd) and P̂I(ωd) are the estimated real and imaginary parts of the frequency

response of the plant at the disturbance frequency. The frequency response values do not

have to be very precise and, if ωd varies over a significant range, the frequency response

may be evaluated at the estimate of the frequency θ2. Implementation of the control

law requires estimates of the frequency response and of the disturbance magnitude d1 for

tuning of the parameters (an upper bound on d1 is sufficient).

Despite the simplicity of the adaptive algorithm, it is quite nonlinear. In fact, the

closed-loop system can be shown to be similar to a phase-locked loop (PLL). Yet, a main

difference with a PLL is that the feedback system locks both the phase and the magnitude

of the signal to those of the exogeneous signal.

A most interesting aspect of the algorithm is that an accurate approximation of the

system has been found, which is useful for analysis and design. Specifically, the approxi-

mation is given byÃ
x1(t)
x2(t)

!
'
Ã

θ1(t)− d1 cos(α(t)− αd(t))
d1 sin(α(t)− αd(t))

!
'
Ã

θ1(t)− d1
d1(α(t)− αd(t))

!
(21)

where d1 and αd are the magnitude and angle corresponding to the sinusoidal distur-

bance, and it was assumed that P̂ = P . The first approximation in (21) retains the

essential nonlinearity of the system, while the second approximation is a linearization of

the first. The linear approximation, together with the update for θ1, θ2 in (20) and the

plant description (1), provide a linear time-invariant approximation of the whole adaptive

system.
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A representative simulation result is shown in Fig. 15. The solid line gives the response

of the adaptive parameter estimating the magnitude of the disturbance, θ1. The two

dashed lines are the results of the nonlinear and linear approximations. The nonlinear

approximation is very accurate, and follows the “capture” portion of the response during

which the frequency of disturbance is acquired. The linear approximation is poorer, but

is indicative of the asymptotic convergence of the algorithm. It is very useful for design,

in order to set the parameter gains. Note that the direct algorithm can be designed to

achieve specific targets for asymptotic convergence rates, as well as for noise rejection

properties [10].

The direct approach of [11] was extended to multi-input multi-output systems and

to periodic disturbances [44]. Active noise control experiments were performed in a

small room, which is a more difficult problem than either a duct (because of the three-

dimensional sound distribution) or open space (because of reflections on the walls of the

room). Fig. 16 shows the power spectra of two microphone signals in an experiment

with two microphones, two speakers, and a disturbance with a fundamental and second

harmonic. The solid lines show the power spectra without compensation, and the dashed
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Figure 16: Spectra of the two output signals without cancellation (solid) and with cancellation
(dashed) using the direct approach

lines show the results obtained with the adaptive algorithm. Due to the sweeping of

the fundamental frequency from 130Hz to 150Hz, one finds a large component of the

uncompensated spectrum in that range as well as at the double of the range. Overall, the

adaptive controller was successful at significantly reducing the effects of the disturbance,

despite the lack of reference sensor, or knowledge of the frequency of the disturbance.

The concept proposed in [11] was also applied successfully for the rejection of periodic

disturbances in a 6 DOF Stewart platform at the University of Wyoming [27]. A variation

of the algorithm was applied to the paper rolling machine of Fig. 7 in [48]. Although the

frequency of the disturbance was known, a modification of the algorithm (20) was found

to be the most successful approach, among a few that were tried. The algorithm of [1]

is also similar in concept to the one proposed in [11]. It was applied to the vibration

control of smart structures, but no stability analysis was provided that would predict the

dynamic behavior of the adaptive system.

4.3 Indirect approach to disturbance cancellation

An alternate approach to the cancellation of sinusoidal disturbances of known frequency

is shown in Fig. 17. The concept was proposed in [11] under the name of indirect
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approach. This terminology was chosen in analogy to adaptive control, where an indirect

scheme is such that plant estimates are used in an inner control loop as if they were

the exact plant parameters. Here, the idea is to use an algorithm for the cancellation of

periodic disturbances of known frequency, and to replace the frequency parameter in the

algorithm by an estimate (denoted θf on the figure). The difference between the direct

and indirect approaches can be fuzzy, since a direct approach typically also includes a

frequency estimate. The distinction made here is basically between schemes that are

designed in an integrated fashion and schemes that are designed in a two-step procedure.

There is a subtlety in Fig. 17, in that the signal used for frequency estimation is not

the plant output, but a modified signal yd obtained using an estimate of the plant transfer

function. If P̂ (s) = P (s), the signal yd is equal to the plant output that would be observed

if no control signal was applied (i.e., if only the disturbance was present). Simulations in

[11] showed that an algorithm using the output signal y for frequency estimation suffered

from slow asymptotic convergence, due the disappearance of the output signal when

the disturbance was cancelled. In contrast, the alternate implementation of Fig. 17 was

found to work well even when the plant estimate P̂ (s) was a crude estimate of the transfer

function P (s). It turns out that the concept was proposed in a patent [13], although not

all papers taking an indirect approach adopt this useful modification.
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A significant advantage of the indirect approach is the flexibility that it gives in choos-

ing independently algorithms for disturbance cancellation and for frequency estimation.

A few papers have appeared that make various choices and testify to the broad range

of applications where periodic disturbances of unknown frequency must be rejected. For

example:

• [31] develops a new frequency estimator and combines it with a repetitive controller.
Application: periodic load disturbances in a continuous steel casting process.

• [21] uses an internal model controller for cancellation and an extended Kalman filter
for frequency estimation. Application: control of a voltage source inverter to reject

harmonic disturbances in a power network.

• [16] uses repetitive control and adaptive notch filtering. Application: compensation
of the eccentricity in a compact disc mechanism.

• [26] uses a k-incremental controller with recursive least-squares estimation for can-
cellation. The frequency is estimated off-line using a maximum entropy method.

Application: a shell-and-tube heat exchanger.

• [24] uses a filtered-x LMS algorithm for cancellation and an adaptive notch filter

for frequency estimation. Application: active control of noise in a passenger ship

and in a passenger vehicle.

Different types of cancellation and frequency estimation algorithms were compared

in [46]. In an active noise control experiment with two inputs and two outputs, the

frequency estimates were obtained using an adaptive notch filter, a phase-locked loop,

and the dual phase-locked loop described in the next section. In the dual phase-locked

loop, both output signals were used in the frequency estimator. Fig. 18 shows the

spectra of the output signals with and without cancellation. The indirect schemes with

the phase-locked loop and the dual phase-locked loop were the most effective overall.

The scheme with the dual phase-locked loop had somewhat better performance because

the fundamental became small at output #1 during the course of the experiment. The

experiments demonstrated the ability of the dual phase-locked loop to use multiple signals
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Figure 18: Spectra of two outputs with different algorithms using the indirect approach

in order to better estimate the fundamental frequency. As a result, better disturbance

cancellation was achieved.

Generally, an advantage of the indirect approach is that it is very flexible. The

modularity of the design allows one to select the cancellation and frequency estimation

algorithms independently, and each component can be selected from a large number of

possible choices. Testing can also be performed separately for both components, before

the whole system is put together. On the other hand, the stability properties of the

algorithms designed using a direct approach are better understood.

4.4 Frequency estimation

Motivated in part by applications requiring the rejection of periodic disturbances of

unknown frequency, there has been a renewed interest in frequency estimation methods,

especially those that enable the tracking of frequency in real-time. In [43], the classical

estimation of the power spectral density using the Fast Fourier Transform was applied in

an indirect adaptive cancellation scheme. Other established methods in signal processing

include adaptive notch filtering [34], [37] and extended Kalman filtering [6]. Some recent

work has also focused on deriving globally convergent algorithms for frequency estimation

22



α2g
s

Kf

1
s

2g
s

ω

y

y
Kf

α

αsin(

y1

αsin(

y2 2

1ω

2ω

2

1

2

11

PLL

)

)

Figure 19: Frequency estimation based on a dual PLL

[23], [28].

There is a close connection between disturbance rejection and frequency estimation.

Indeed, an algorithm with the structure of Fig. 14 can be used for the estimation of the

frequency of a signal d(t) by taking P (s) = 1. The resulting algorithm will not only be

useful for frequency estimation, but also for signal reconstruction. Conversely, methods

for signal reconstruction with a feedback structure can potentially be used for disturbance

rejection as well. The issue is whether their stability can be guaranteed when a non-unity

transfer function is inserted in the feedback path.

Based on these observations, a magnitude/phase-locked loop (MPLL) concept was

proposed in [45]. The algorithm enables the tracking of the magnitude, frequency, and

phase of a sinusoidal signal. In addition, a dual phase-locked loop was developed where

two separate components contributed to a single frequency estimate. The algorithm,

shown in Fig. 19, combines the fundamental components of two signals y1 and y2 for

frequency estimation (the scheme assumes that both signals contain information about

a single source). The figure shows a standard PLL in the dashed box. A dual path was

added and integrated for the use of the other signal.

The algorithm can be modified so that the fundamental component and the Nth

harmonic of a single signal can contribute to the frequency estimate. Fig. 20 shows

frequency tracking results of a basic PLL and of a dual PLL for a periodic signal having
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a fundamental and a 2nd harmonic. The fundamental frequency increases linearly from

148Hz to 176Hz in 3.5 seconds. The experiment was designed so that the fundamen-

tal component vanished from 1 sec. to 1.5 sec., resulting in a loss of tracking for the

basic PLL. However, the dual PLL was able to extract the frequency information from

both components and to maintain tracking throughout the experiment. Extensions of

the algorithm to arbitrary combinations of signals and/or harmonics may be derived. An

advantage of the modified PLL is that it is not necessary to know a priori which compo-

nents exist or which component is the most suitable to base the frequency estimation on

[45].

Recently, researchers have also considered problems where the frequencies of two

independent sinusoidal signals must be tracked, including cases where the two frequencies

are very close. For example, [30] describes a problem where a sensor must be developed

to measure mass flow in an agricultural machine. The spectrum of the sensor data shows

a peak at 13.2Hz, corresponding to the mass flow, together with a parasitic signal at

11.6Hz that corresponds to the resonance frequency of the sensor. In [50], the problem of

pitch tracking for automatic music transcription is considered. When multiple notes are

played together (polyphonic case), the algorithm must track more than one sinusoidal
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Figure 21: Parameter estimation for a signal with two independent sinusoidal components

component. The paper reports data for notes at 262Hz and 392Hz, but closer spacing

may be encountered.

An extension of the magnitude/phase-locked loop algorithm for the estimation of

two sinusoids with closely-spaced frequencies was proposed in [22]. The structure of the

algorithm is shown in Fig. 21. A discrete-time formulation was used in [22], in order to

implement the frequency update and separation block shown on the figure.

Fig. 21 shows two estimators placed in parallel. ω1 and ω2 are the two frequency

estimates, while m1 and m2 are the magnitude estimates. Note that the two sinusoidal

components of the signal are reconstructed as d̂1 and d̂2. The frequency separation block

prevents the frequency estimates from converging to the same value (for details, see [22]).

Fig. 22 shows results of an experiment with two closely-spaced frequencies (equal to the

11.6Hz and 13.2Hz of [30]). The figure shows that the estimator is able to determine

the two frequencies, even though the initial estimates of frequency are close, and smaller

than both true frequencies.
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5 Conclusions

To reject periodic disturbances of known frequency, control laws can be designed based

on the internal model principle, or using the closely-related repetitive control approach.

In addition, cancellation of a disturbance can be performed using adaptive algorithms.

The adaptive algorithms have advantages in some applications, although they can be

proved to be equivalent to controllers implementing the internal model principle under

certain conditions. When the frequency of the disturbance is unknown, the most intuitive

approach consists in combining a frequency estimator together with an algorithm for the

rejection of disturbances of known frequency. This approach gives a lot of flexibility in

the design of the feedback system. The rejection of periodic disturbances of unknown

frequency can also be achieved by direct adaptation of the frequency, magnitude, and

phase of the components of the control input. The dynamic properties of such feedback

systems are better understood, but their design and implementation is more difficult.

Adaptive algorithms have also been proposed to reject unknown disturbances affecting

unknown plants. However, existing methods have been found to lack the robustness

required for practical implementation.
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