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Abstract

The application of multivariable adaptive control techniques to flight control reconfiguration
is considered. The objective 1s to redesign automatically flight control laws to compensate
for actuator failures or surface damage. Three adaptive algorithms for multivariable model
reference control are compared. The availability of state measurements in this application leads
to relatively simple algorithms. The respective advantages and disadvantages of the adaptive
algorithms are discussed, considering their complexity and the assumptions that they require.
An equation-error based algorithm is found to be preferable. Simulations obtained using a
full nonlinear model of a twin-engine jet aircraft are presented. The results demonstrate the
ability of the adaptive algorithms to maintain trim after a failure, to restore tracking of the
pilot commands despite the loss of actuator effectiveness, and to coordinate the use of the
remaining active control surfaces in order to guarantee the decoupling of the rotational axes.
A new adaptive algorithm with a variable forgetting feature is also used and is found to yield
a useful alternative to covariance resetting as a solution to covariance wind-up in least-squares
algorithms.

1 Introduction

Reconfiguration is likely to be a feature of future generations of flight control systems. The main mo-

tivation for reconfiguration is greater survivability, attained through the ability of the feedback sys-
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tem to reorganize itself in the presence of actuator failures and surface damage. High-performance
aircrafts are often unstable to the point of exceeding the control capabilities of a human pilot.
Instability follows either from requirements of maneuverability, or from efficiency considerations,
and it is expected to become an increasingly common characteristic of future aircrafts. The need
for fault tolerant control methods is therefore critical. The benefits of reconfigurable flight con-
trol systems extend beyond the immediate considerations of safety. Indeed, reconfigurable systems
reduce the need for other forms of reliability, such as redundant actuators. Therefore, increased
maintainability and reduced costs are expected to result from this technology [5].

Two main approaches can be distinguished for flight control reconfiguration. This first is based
on the concept of failure detection and identification. The resulting system consists in a fast and
efficient method to detect the failure among a set of pre-planned conditions, and in procedures to
handle each of the cases. This approach works well in restricted cases, but suffers from significant
drawbacks. The first is that, as the number of failures grows, it becomes increasingly difficult
and time-consuming to carry out the detection and classification. Even with a large number of
pre-planned failures, there is also no reason to believe that a failure that has not been categorized
will not cause the whole system to fail. In the case of flight control, there are multiple possible
actuator failures (multiple actuators and multiple failure modes, such as locked or floating) and an
infinite variety of possible surface damages. In addition, because failure detection relies on models
of the unfailed system, any discrepancy between the model and reality can lead to false detection.
Because of the nonlinearity and complexity of aircraft dynamics (especially engine dynamics and
aerodynamics), this is a nontrivial problem in reconfigurable flight control.

A totally different approach to the problem of flight control reconfiguration consists in identi-
fying the dynamic behavior of the aircraft in real-time, and in designing a controller automatically.
Because such an approach does not rely on failure classification, it is expected that the resulting
system will tolerate a larger class of failures, including some that may not have been anticipated. In
this paper, we discuss several multivariable adaptive control algorithms that may be used with that
objective in mind. We make assumptions that are realistic in the flight control problem, yet allow
to considerably simplify the algorithms available in the literature. We also present the results of

a simulation study using a detailed nonlinear model of a twin-engine aircraft. The results demon-



strate the ability of the adaptive algorithms to maintain trim after a failure, to restore tracking
of the pilot commands despite the loss of actuator effectiveness, and to coordinate the use of the

remaining active control surfaces in order to guarantee the decoupling of the rotational axes.

1.1 Failure Detection and Classification

In 1984, the U.S. Air Force began a program called the Self-Repairing Flight Control System Pro-
gram [12]. The objectives of the program were to “improve the reliability, maintainability, sur-
vivability and life cycle cost” of aircraft. There were two main thrusts involved in achieving the
goals of the program. The first was the development of reconfigurable flight control systems (FCS),
meaning control systems that are modified to compensate for changing conditions. The chang-
ing conditions consisted in a failure of the airplane’s control surfaces or sensors, or in damage to
the aircraft. The second component of the program was the use of on-line diagnostics to identify
failures. Improvements would come as reductions in maintenance and repair costs.

In the reconfigurable FCS, the failure was identified through a Failure Detection and Isolation
(FDI) procedure. A local FDI algorithm was used to detect actuator failures, while a global FDI
algorithm determined surface damage. The global FDI used a model of the aircraft to compare
the measured output with the expected output. The error between the two was passed through
several filters. The output of each filter represented a likelihood that the failure represented by the
filter had occurred. These likelihoods were used by a Pseudo-Surface Resolver (PSR) to determine
how control of the aircraft could be maintained. The PSR used a “modified pseudo-inverse that
minimizes changes in control deflections after failure to maintain forces and moments” [12]. The
maintenance diagnostics worked in a similar manner. The approach proved successful in flight
tests and was capable of handling various types of failures of the right stabilator. Urnes, Yeager &
Stewart [28] concluded that “the test results of the Self-Repairing Flight Control System installed
on an I-15 aircraft indicate high potential for the concepts evaluated.”

Another major study of reconfigurable flight control systems was sponsored by NASA Langley
and carried out by Alphatech (¢f. [30]). The study considered the application of reconfiguration
strategies to stable, commercial aircraft (Boeing 737). A single flight condition was assumed but

a large variety of possible failures were simulated. The approach was the precursor of the SRFCS



approach described above, consisting of two main components: a failure detection & identifica-
tion module, and a control reconfiguration module. The control design in the NASA /Alphatech
study was not based on the approximation of the unimpaired control actions, but on a redesign of
the control law using linear quadratic (LQ) regulator theory. This approach is described in [17]
and consists in specifying weighting matrices in an L.Q problem so that the resulting closed-loop
system satisfies some bandwidth constraints. Only changes in the B matrix of the state-space
representation were considered, but the study included the possibility of incorporating knowledge
of uncertainties in the estimated B matrix in the design.

The Alphatech project also studied extensively the problem created by changes in trim condi-
tions, which act as constant disturbances to be added to the state-space model. An automatic trim
algorithm was developed, based on an optimization procedure, and is reported in [31]. Of related
interest is the work of Ostroff [23], which also considers the automatic control redesign for a Boeing
737 aircraft, but suggests the incorporation of integral action in the control law to solve the trim
problem (essentially considering it as a disturbance rejection problem). Simulations for a mildly
unstable aircraft model are also reported in this work.

Several other researchers have worked on design methods based on linear quadratic (LQ) tech-
niques, assuming that the detection problem was solved independently. Huang & Stengel [15]
presented an automatic redesign method based on implicit model following, incorporating integral
action. Moerder et al. [20] studied the application of LQ controllers, but assumed that control
gains were to be scheduled according to the decision of the failure detection and identification logic
(as opposed to being calculated in real-time).

Of related interest is the work of Maybeck & Stevens [18], which suggests a somewhat different
approach. While assuming that the possible failures have been categorized, the method relies on
a bank of Kalman filters to estimate the states of the system based on the different assumptions.
Residual errors are used to calculate the probabilities of individual failures and the control input
is the weighted average of the signals calculated under these respective assumptions. This is sig-
nificantly different from the SRFCS approach where the control input corresponding to the most
likely failure is chosen.

In [19], a multiple model adaptive estimation approach is used. Failures are represented as a



vector of unknown system parameters, related to the effectiveness of various actuators and sensors.
Fault detection is achieved through the use of filters, where each filter is essentially a model of
the VISTA F-16 in which a certain actuator or sensor has failed. How well the filter response and
the airplane response match gives an estimate of how likely it is that the particular failure has
occurred. If a partial failure has occurred, then the probability that the failure has occurred is
taken to represent the loss of effectiveness of the sensor or control surface. Each failure has a set of
control law gains associated with it. The controller combines the gains based on the probabilities
generated. One of the difficulties of this approach is that there must be a non-zero input to the
system. If not, false failures are sometimes detected, or real failures are not detected. Normally,
the commands necessary to perform a maneuver are sufflicient to excite the system. During steady
level flight, however, there is not sufficient excitation. The solution to this problem was to add a

small sinusoidal input to the system to ensure sufficient excitation.

1.2 Nonlinear and Adaptive Control

In contrast to the methods described above, several researchers have searched for methods that do
not depend on the identification of the failures before taking action. A variety of directions have
been pursued.

A logical first step consists in looking for a robust linear control law that would be satisfactory
for all possible impaired aircrafts, and would achieve the required performance for the unimpaired
aircraft. Schneider, Horowitz & Houpis [25] considered the use of quantitative feedback theory
for that purpose. However, Chandler [6] illustrated with several examples that it is generally not
possible to design a robust linear control law that guarantees stability for the impaired conditions
while providing satisfactory performance for the nominal unfailed conditions. He advocated the
design of a robust control law as a first line of defense to failures, giving time for the reconfigurable
control law to take action, but implied that some form of reconfiguration, for example nonlinear or
adaptive control, would be necessary.

Dittmar [10] investigated the use of an adaptive control approach based on hyperstability and

the algorithms developed by Landau [16]. A simulation study concluded that the performance



was equal or better than the SRFCS scheme, and could do so with less computer memory while
accommodating a larger number of failure modes.

Morse & Ossman [21] also considered an adaptive control approach for the AFTI/F-16, using
algorithms of Sobel & Kaufmann [26]. The authors developed their own design method for the
selection of the parameters of the algorithms and showed that the method was successful even in
the presence of multiple failures.

Gross & Migyanko [13] considered the use of “supercontroller” technology, which is a form of
nonlinear control based on polynomial networks. Coefficients of the polynomials were adjusted
using an optimization program and a data base of optimal responses. This method was further
developed in [1] and connected to recent work in neural networks. Sofge & White [27] also mention
efforts at McDonnell Douglas in the neural network area. It is interesting to note that while
the implementation of the controllers does not rely on explicit failure recognition, the training of
the networks does, so that this method can be considered a hybrid between the two approaches
discussed in this brief overview of the literature on reconfigurable flight control systems.

Research on the application of adaptive methods to reconfigurable control has also been recently
carried out at Wright-Patterson Air Force Base [7], [8], [9]. The emphasis of the research has been
on the use of constrained least-squares identification methods and model predictive control. The
studies have addressed the control of single-input single-output pitch axis models of an unstable
aircraft, and have successfully included actuator rate saturation in the design, as well as prior

information on the stability derivatives.
2 Adaptive Control Algorithms

2.1 Aircraft Model

The kinematic behavior of an airplane is governed by a set of nonlinear differential equations. For
flight control system design, these equations can be approximated effectively by a set of linear

differential equations.

z = Az + Bu+d



A disturbance term d is included to account for the trim values of the input necessary to maintain
steady flight at the operating point. By explicitly including this disturbance, the reconfigurable
flight control system can automatically calculate the trim, freeing the pilot from having to. Because
the trim values may change radically after a failure, such a feature is quite important.

The states of the aircraft are represented by 2. The longitudinal states are a (angle of attack),
q (pitch rate), h (altitude), and v (velocity). The lateral states are 3 (sideslip), p (roll rate), r (yaw
rate), ¢ (roll angle), and 1 (yaw angle). For the design of stability augmentation flight control
systems, the state vector can be reduced to only five states: «, g, 3, p, r. The slow dynamics
related to angular motions, and the actuator dynamics, constitute unmodelled dynamics against
which the control system must be robust. The control inputs u are also divided into lateral and
longitudinal inputs. The longitudinal inputs are dg (elevator command) and 67 (thrust command).
The lateral inputs are ¢4 (aileron command) and ér (rudder command). For stability augmentation
flight control system design, é7 is usually not considered.

There are several choices available for the control output y. The states ¢, p, and r are good
choices for low dynamic pressure and limited angle of attack (¢f. [14]). Generally, the problem
is that of a three-input, three-output, linear time-invariant system. Because of symmetry in the
unfailed aircraft, the longitudinal and lateral axes are usually decoupled. However, after a failure
the airplane is usually no longer symmetric. Therefore, the longitudinal and lateral axes cannot be

decoupled.

2.2 Adaptive Control Algorithms

Several adaptive algorithms can be used for reconfigurable flight control. The control objective
considered here is based on model reference control. A motivation is that this objective allows us
to easily incorporate considerations of tracking and decoupling in the design. Further, very simple
algorithms are obtained. Several adaptation mechanisms have been proposed in the literature (see
[24]). Those presented here are modified slightly to include the constant disturbance d, and to
exploit the fact that all the states and their derivatives are measured. State variable filters are not

needed to reconstruct the state and a state feedback control law can be used.



Assumptions and Reference Model

We consider the state-space model for the plant (1), where 2 € R", u € R™, y € R™, and d € R".
We assume that the whole state z is available for measurement, although only the output ¥ is to

be tracked. The objective is for y to match the output yp; of a reference model

uv = Avym + Bu r (2)

where yps € R™ and r € R™. The matrices Ay; and Bjys are arbitrary square matrices, with Aps
stable. For the model reference control problem to have a relatively simple solution, we assume:
Assumption 1: The plant has relative degree 1, i.e. det(C'B) # 0.

Assumption 2: The plant transfer function is minimum phase, i.e. the zeros of transmission of
the system are in the open left-half-plane.

The first assumption guarantees that the closed-loop transfer function of the plant can be made
to match the transfer function of the reference model (2) using a proper compensator. If the
assumption is not satisfied, the model reference control problem may still be solvable, but a more
complex reference model would have to be chosen, so as to match the so-called Hermite normal
form of the plant (¢f. [24]). When the first assumption is satisfied, this Hermite form is simply
H(s) = diag{1/s}, which means that the behavior of the plant at infinity is that of a multivariable
integrator. The matrix C'B is called the high-frequency gain matriz of the plant and is usually
denoted Kp in the adaptive control literature. It is a critical parameter for adaptive algorithms.

The second assumption is a necessary assumption to guarantee the internal stability of the
model reference control algorithm. The dimension of the state-space for the reference model is m,
while the dimension of the state-space for the plant is n. Therefore n — m modes must be made
unobservable or uncontrollable. It can be shown that the model reference control law places m
modes of the plant at the desired model reference locations, and makes the others unobservable by

placing them at the locations of the transmission zeros.

Model Reference Control Law

We consider the state feedback control law



yM= AYut Byl

X=Ax+Bu+d

0 y = Cx

Go

Figure 1: Model Reference Control Loop

u=Cor+ Goz + v (3)

where Cg € R™X™ Gy € R™*"™ v € R™ are free controller parameters. The control law is repre-

sented in Figure 1. The closed-loop dynamics are given by

2 = Ax+ BGox+ Bv+d
y = Cu (4)

or, in terms of the output y,

j = (CA+ CBGy)x+ CBCor + CBv + Cd (5)

(5) leads to the same input/output relationship as that of the reference model (2) for the so-called

nominal values of the controller parameters

Ce = (CB) 'By



Gi = (CB) Y (AyC — CA) (6)
v = —(CB)YY(Cd)

If the plant was known, these would be the controller parameters that one would use to achieve

the model reference control objective.

Indirect Adaptive Control Indirect adaptive control involves two stages. First, estimates of
the plant parameters A, B, and d are generated. Once the plant parameters have been estimated,
the estimates are used to generate controller parameters. If A, B, d are the estimates of A, B, d,

an error vector can be defined by

1= Az + Bu+d— 3 (7)

Given the assumptions, the error vector can also be expressed as

er=(A— Az +(B-Bu+(d—d) (8)

A least-squares algorithm can be used to find the estimates of A, B, and d which minimize the
sum of the norm of e; evaluated at several sampling instants. Each row of (7) can be treated
independently in this process. The algorithm requires the measurement of &. The derivative can
often be obtained by filtered differentiation of z. For flight control systems, differentiation is usually
not needed, as the derivatives can be reconstructed from accelerometer measurements.

Once the estimates are obtained, the controller parameters Cy, Gg, and v in (3) are obtained

from

Co = (CB)_IBM

Go = (CBY Y (AyC —CA) (9)

This is the same relationship as (6), replacing the plant parameters with their estimates. In addition

to the issue of stability, a major question must be resolved, namely what to do when CB is singular.
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There are few methods which satisfactorily address this problem, from a practical point-of-view,

but it has been a subject of recent research in the adaptive control field.

Direct Adaptive Control Instead of estimating the plant parameters, a direct adaptive control
algorithm estimates the controller parameters Cy, Gg, and v. We discuss two main approaches:

output error and input error.

Output Error The output error eg = y — yas is defined as the difference between the plant
output and the output from the reference model, when given the same input as the plant. Because
the system is assumed to have relative degree 1, there is no need for the so-called augmented error,
and a simple algorithm results. The following fact is used.

Fact 1: The output error eq satisfies

eo = (s8I — Ap) HCB)(Co— Co)r + (G — Gz + (v —v")] (10)

Proof: Define

iMIAM$M+BCST+BG8$M+BU*+d (11)

so that yas = C'zps for some appropriate choice of initial conditions for zs. Since ég = C'é —ynr =

Ci — ApCapr — By, along with (6), we find

o = (CA+(OB)Go)(x — am)(CB)[(Co — Cg)r + (Go = Go)z + (v —v7)] (12)

which leads to (10).

Equation (10) can be expressed compactly in the form

eo = (s8I — Ap) H(CB)[@-w] (13)

where

¢ = ((Co = C) (Go = Gp) (v—27)) (14)

11



is the mx(m + n + 1) matrix of parameter errors, and the regressor vector w! = (r7, 27, 1) has
dimension m + n+ 1. The product ® - w is carried out in the time domain, and the resulting signal
is applied to the linear time-invariant operator (s/ — Ap7)~1(CB).

Fact 2: The update law & = —Geow? leads to an adaptive system that is stable in the sense
of Lyapunov, with the property that ey tends to zero as ¢ — oo, provided that (s — Ap)™1 is a
strictly positive real transfer function matrix, and (C'B)TG_1 is a positive definite matrix.

Proof: follows from Kalman-Yacubovich-Popov lemma (e.g. [22]).

This algorithm is similar to other algorithms, such as the one available in [22], with some
adjustments needed because of the constant disturbance d and the state measurement. The strictly
positive real condition can be satisfied by choosing Aps so that Ays + AL, is negative definite. The
other condition requires prior knowledge of the high-frequency gain matrix C'B, and an appropriate

choice for the adaptive gain matrix G.

Input Error Another formulation of the direct adaptive algorithm uses the following fact.

Fact 3: The following identity is satisfied for all time.

u=C5By (5 — Amy) + Goa + v (15)

Proof: From (1), we find

y— Apyy =CAz +CBu+Cd— Ay Cx (16)

Using the nominal parameter values in (6), we get

§—Amy = (OB)(=Goz + u —v7) (17)

from which (15) follows.

A new error equation can be defined from (15).

es = CoByf (9 — Apy) + Gox + v — u (18)

We call e; the input error. An adaptive scheme based on this error belongs to the class of so-called

equation-error based schemes. Given the assumptions, (18) can be expressed as

12



e =02 (19)

where @ is the controller parameter error defined in (14), and z is a new regressor vector defined as

Byt (4 — Amy)
1

The main difference between the error equations (19) and (13) is the absence of the transfer
function between the parameter error and the error signal. This eliminates the strictly positive real
condition necessary for the stability of the algorithm, including the condition on the high-frequency

gain matrix. Also, it makes possible the use of least-squares algorithms.

Comparison The three algorithms presented above all achieve the same model reference control
objective, but with different structures and different assumptions. The following issues should be
considered:

Number of Parameters: Both direct methods estimate the controller parameters Cy, Gy,
and v. These have a total of m2 + mn + m elements. The indirect algorithm estimates A, B and d,
which have a total of n%2 + mn + n elements. Since m < n in general, the direct algorithms estimate
fewer parameters. For the reduced-order aircraft model, n = 5 and m = 3. The indirect algorithm
estimates 45 parameters, while the direct algorithms only estimate 27.

Prior Information: The direct output error algorithm requires the most restrictive assump-
tions, by imposing a positive definiteness condition on the product of the transpose of the high-
frequency gain matrix with the inverse of the adaptation gain matrix. There is no obvious way
to enforce this condition. For all practical purposes, this condition is a symmetry and positive
definiteness condition on the high-frequency gain matrix itself, and is not easily guaranteed. The
direct input error and indirect algorithms place less stringent conditions on the high-frequency gain
matrix. The indirect algorithm requires that the estimate of the high-frequency gain matrix be
nonsingular at all times. It can be shown that the direct input error algorithm requires that the
parameter C'p must be nonsingular at all times. In [11], it was shown that the stability of the overall

adaptive system could be guaranteed by incorporating a modification based on a sort of hysteresis
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into the algorithm with a least-squares update, and requires an upper bound on the norm of the
high-frequency gain matrix.

Adaptation Algorithms: The indirect and direct input error approaches can be used with
least-squares algorithms, in addition to gradient algorithms. The least-squares algorithms, which
are faster and more efficient, can be used in their batch or recursive forms. The batch forms lend
themselves to monitoring of the estimation quality [2].

Flexibility: The indirect algorithm is the most flexible of the three approaches. Other control
strategies than model reference can be used, such as model predictive control. The direct algorithms
are not easily modified away from the reference model formulation. The indirect algorithm also has
the flexibility to incorporate prior knowledge on the plant parameters [8].

Given these considerations, it was decided that the direct input error algorithm was best suited
to the problem of reconfigurable flight control. Given the large number of computations required,
it was felt that fewer parameters was a significant advantage. Also, the least-squares algorithms
are known to converge much faster than the gradient algorithms. This is especially important
considering that rapid reconfiguration may be critical. A positive definiteness condition on the
high-frequency gain matrix could also hardly be justified in this application. Therefore, the output
error algorithm was not further considered. For the remainder of this paper, it is implied that the

direct input error formulation of adaptive control is being used.

Least-Squares and Data Forgetting

Given a set of linear equations with unknown coefficients, the least-squares algorithm constitutes
a fast and efficient way to find the set of coefficients which most closely match the equations.
The direct input error algorithm is easily formulated so that least-squares estimation can be used.
Define the regressor vector z as in (20), and the parameter matrix 6 as

Co

0=\ Gt (21)

T

where C, Gy, and v are the control law parameters in (3). The input error e; can then be expressed

as

14



e =0"2—u (22)

where u is the system input.

For problems where parameters vary and adaptation is needed, a forgetting factor is usually
introduced. Unfortunately, the least-squares algorithm with forgetting factor becomes unstable if
there is insufficient excitation. This situation is expected to occur with aircraft, as steady level
flight does not provide adequate excitation for convergence of the parameters. The regressor vector
z must be persistently exciting in order to guarantee convergence of the parameters to the nominal
values [24]. Omne possible solution is to add a small perturbation to the controls, such as white
noise. However, it will affect the flight of the aircraft. Another solution is the use of covariance
resetting. This modification induces sharp discontinuities and transients in the responses of the
algorithm.

A stabilized version of the least-squares with forgetting factor was derived in [3], based on a
concept proposed in [29]. The algorithm was obtained by including an additional term in the error

function used by the least-squares

N
JO[N]) = D |67 [N]=[k] = ulk]PAY + al6[N] - [N — 1] (23)
k=1
The additional term penalizes changes in the parameter matrix, 8. Setting % = 0 yields

9[N] = (i 2[k) 2T [ AN R 4 al) _ (i 2[kJuT [E]ANF 4+ af[N — 1]) (24)

This is the equivalent of the batch solution of the least-squares, but it is not truly a batch solution,

because of the dependence on [N — 1]. The matrix

P[N] = (f: (k)T RN F al) _ (25)

k=1

is defined as the covariance matrix of this algorithm. A recursive form for the inverse of the

P7UN] = AP7YN — 1)+ 2[N]ZT[N] + a(1 = )1 (26)

15



with the initial condition P~[0] = al. The recursive formula for 6 is

O[N] = [N — 1] + P[N]2[N](uT[N] = zT[N]8[N — 1]) + aAP[N](6[N — 1] — [N —2]) (27)

One problem is to transform (26) into a recursion for P[N]. The recursive least-squares with

forgetting factor algorithm makes use of the matrix inversion lemma

(A+BC) ™ = A™'B(I+CAB) 'CA™! (28)

in the recursive update of P[N]. The inversion of the matrix (/ + C'AB) is simplified because the

product 2T [N]P[N — 1]2[N]is a scalar. For the update law (26), the matrix inversion lemma can

still be used, but with B = C7T defined as

B = <Z[N] (1 — /\)I) (29)

However the product BT P[N — 1]B is not a scalar, but a matrix whose dimension is one greater
than P[N]. It would be easier to update P7[N] and invert it than to update P[N].

An alternate solution is to replace a(1 — M) in the update law by pa(l — N)eel, where ¢; is

a vector of zeros, except for the i*" position which is one. p is the dimension of z, that is, the

number of parameters in each row of the parameter matrix. As time progresses, ¢ is incremented

and returned to one when the end of the vector is reached. The matrix B is given by

B = (2[]\7] pa(l — /\)ei) (30)

With this modification, the matrix BT P[N — 1]B is only 2x2, which is easily inverted. Averaging
analysis [3] shows that the averaged system responses are identical for both implementations.

The stabilized recursive least-squares with forgetting factor has the property that the covariance

matrix and its inverse are bounded [3]. The only condition is that z[N] must be bounded. The

approximate algorithm using (30) was used in this research, in part because it only required the

inversion of a matrix of size 2x2, while the dimension would otherwise have been 9x9.

16



3 Implementation

3.1 Aircraft Model, Assumptions, and Design Considerations

Simulations were carried out using a detailed simulation of a twin-engine aircraft, developed at
NASA-Dryden [4]. The model is a complete nonlinear aircraft simulation, including full envelope
aerodynamics, atmospheric model, detailed engine dynamics, and actuator dynamics. The recon-
figurable control system design, on the other hand, is based on the reduced-order model using the
five states a,q, 3, p, 7. The control inputs are denoted dg, 64, and 6. There is a cross-feed between
aileron command and elevator command. Specifically, the actual elevator command ég is the sum
of the symmetric deflection 6z and an antisymmetric deflection set to %6,4. For the reconfigurable
control law, there is nothing that forces the same reduction of the five independent control surfaces
to three control inputs (i.e., it is not necessary to keep the same coupling matrix). However, it was
found convenient to keep the same structure for compatibility with the original control law, and
because treating the five control surfaces as independent inputs would require that these surfaces
be actuated by linearly independent signals for the parameters of the B matrix to be identifiable.

The controlled outputs are chosen to be ¢, p, r. It was checked that this choice corresponded
to minimum phase zeros for the flight condition under consideration. In general, it is possible to
enforce minimum phase properties by replacing ¢ and r by ¢+ K, o and r— Kgf [14]. A justification
is that one has, approximately, @ = ¢ and ﬁ = —r (yet, the precise location of the transmission
zeros depend on the other coefficients in the A and B matrices). The choice of ¢, p, and r as tracked
outputs leads to a C'B matrix that is a 3x3 matrix whose elements are the 3 moments created by
each of the 3 control inputs. As long as the three vectors of moments are linearly independent (i.e.,
moments in all three directions can be independently created), the matrix C'B is nonsingular. This

is usually the case, so that the assumptions under which the algorithms were derived are satisfied.

3.2 Reference Model and Autopilot

The objective of the model reference control law is for the airplane with feedback to have dynamics

which approximate those of a chosen model. The reference model must have the same relative

degree as the plant, but is otherwise arbitrary. The reference model chosen for the reconfiguration
_a

application is H(s) = ;37 I3, where I3 is the identity matrix of dimension 3. We let a = 2.5 (cf.
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[14]). The input vector is u’ = (éy 64 ér) and the output vector y* = (¢ pr).

If we assume that the reference model is matched, an autopilot can also be designed around

that model. A choice for an autopilot is one that tracks the angles 6, ¢, and . Assuming that the

reference model is matched, we have

—2.5q + 2.5¢,
—2.5p + 2.5p, (31)

—2.51r 4+ 2.57,

where ¢., p., and r. are the elements of the reference input in (2). We can use the relationships

with the commands

qc

Pe

Te

= q
= p (32)
g(6. — 9)
9(¢c — ) (33)
g(¢c - ¢)

so that the angles track the desired angles with the transfer function

2.5¢

s2 4+ 2.5s+ 2.5¢

(34)

With the constant ¢ set to 1.6, the closed-loop poles are located at -1.25 £ 5 1.56. Note that an

outer loop could also be designed around the pitch angle command to regulate altitude in a similar

manner.

18



3.3 Batch LS Results

The first implementation of a model reference control law used a batch least-squares identification,
with data collected from the simulation. Both the indirect and direct input error methods were
used, and control performance was found to be similar. The results shown here and afterwards are
for the direct input error algorithm. The identifications were performed at the flight condition of
Mach 0.5 at altitude 9,800 feet. Identifications were performed for the original aircraft and for the
aircraft with a locked left horizontal tail surface. Ten seconds of data were used to perform the
identification.

The identified matrices Cy, G, v were used to control the airplane. In turn, each of the reference
inputs was given a series of step changes, while the other inputs were held at zero. The results for
the direct input error identification are shown in Figure 2. The expected output yas is represented
by the solid lines, and the actual output y is shown as dashed lines. The actual output closely
matches the expected output.

Figure 3 shows responses from tests with the aircraft after failure, using the matrices identified
for the unfailed aircraft. The pitch rate response to a pitch rate command is seen to be significantly
less than the desired response (less than 30%), due to the loss of pitching moment after the elevator
failure. The roll rate response to a roll rate command is also smaller than specified, because roll
control is partly achieved through the elevators in this aircraft. Finally, there is a very large cross-
coupling from the pitch rate command to roll rate (1.5 deg/s roll rate for a 1 deg/s pitch rate
command). This is due to the loss of symmetry in the elevator response and, as a consequence, to
the production of a large rolling moment. Figure 4 shows the responses with the matrices identified
from the failed system. The responses show that tracking of the commands was restored to the
desired values. The main cross-coupling that appeared after the failure, as a roll response to a pitch
rate command, was reduced by a factor of 2.

Fig. 5 shows the deflections of the right horizontal tail surface. On the left are the responses for
the unfailed aircraft, and on the right for the failed aircraft, using the reconfigured control law. As
expected, the deflections are about twice as large after the failure. However, they are well within
limits. It is sometimes believed that model reference control laws require large control activity.

However, this belief is rooted in early model reference control laws based on high-gain feedback and
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prefiltering of the control inputs. The control laws discussed in this paper do not rely on high-gain
feedback, and do not require large control actions as long as reasonable choices of the reference
model are made.

An interesting observation concerns the trim of the aircraft. The aircraft was trimmed at an
angle of attack of about 4.6 degrees, requiring a command déz; of approximately -2.86 degrees. The
identification procedure did not identify the trim value for éy explicitly, or have g, available.
However, the trim value for 6y can be calculated for the previous angle of attack to be v(1) +
Go(1,1) ayim which is equal to 0.02 — 0.64 % 4.6 = —2.92 and is remarkably close to the actual trim
value. The trim value is also observed on Fig. 5 as the average value of the actuator deviations.
The least-squares procedure is successful in determining the trim value required to maintain level

flight, without actually being told what that flight condition is.

3.4 Recursive LS with Forgetting Factor Results

The next implementation was a recursive least-squares with forgetting factor (RLSFF') algorithm.
Performance was tested in the same manner as it was tested for the off-line batch LS identification.
However, the control law was applied simulataneously in this case. Figures 6 and 7 compare the
results obtained with the batch LS algorithm (dashed lines) to those obtained from the RLSFF
algorithm (dash-dot lines). Figure 6 is for the aircraft without a failure and Figure 7 for the aircraft
with a failure. As can be seen in the figures, the system output for the recursive algorithm follows
the reference model output very well after a short transient. A notable difference with the batch
algorithm is that cross-couplings are significantly reduced, from 1.5 deg/s in the original control law
and 0.5 deg/s in the batch-redesigned control law to 0.1 deg/s in the recursive law. Over periods
of time longer than those shown on the plots, the couplings were found to be further reduced by

the recursive law, and to reach negligible values.

3.5 Stabilized RLSFF Results

The recursive least-squares with forgetting factor algorithm becomes unstable when there is insuffi-
cient excitation. Figure 8 shows the (1,1) elements of the parameter matrix Cy and the covariance
matrix P. During a period of insufficient excitation, such as during steady level flight, the matrices

become unbounded. This instability is the motivation for the stabilized RLSFF algorithm.
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In its unmodified form, the stabilized recursive least-squares with forgetting factor algorithm
requires the inverse of a pxp matrix, where p is the number of parameters that are identified per row.
In our case, p = 9. The modification proposed in equations (29) and (30) allows implementation
of the algorithm using the inverse of a 2x2 matrix. This reduced algorithm was implemented on
the airplane simulation. The test with the quiet period was performed again with the stabilized
RLSFF. Figure 9 shows that the covariance and parameter matrices remain stable. Figure 10 shows
the results of a similar test, but with a failure occurring in the middle of the quiet period. While in
the quiet period, the algorithm does not adapt to the failure, because there is no excitation which
can be used to identify the changes in the parameters. When there is excitation, the algorithm
correctly identifies the unknown parameter.

One issue that presented itself was that numerical errors caused the covariance matrix update
to become unstable. Enforcing the symmetry of P resolved this problem. Another solution would

consist in using a square-root algorithm. This was not found to be necessary, however.
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3.6 Autopilot Angle Tracking

An autopilot was described in section 3.2 that could be used to control the angles 6, ¢, and ¥
of the airplane. This autopilot was implemented with the batch LS identification matrices, for
demonstration of the concept. If the reference model is exactly matched, the transfer function
m describes the relationship from each angle command to the output angle.

The autopilot was tested by holding two of the angle commands constant, while making step
changes in the third command. Figure 11 shows some of the results from the tests. Note that there
is a constant command for 8 of 4.6 degrees. This is the angle of attack required to maintain trim

flight. These responses show that once an inner loop is closed for the tracking of roll, pitch, and

yaw rate commands, outer loops can easily be added for the control of other (slower) variables.

4 Conclusions

A reconfigurable flight control system is expected to perform three tasks. First, the system must
adjust the trim values for the inputs, as a failure may cause rapid changes in the control inputs

needed to maintain level flight. Second, the system is expected to decouple the inputs and outputs.
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In the aircraft without a failure, this is easily achieved, because of symmetry. Once a failure occurs,
however, the aircraft usually loses its symmetry, introducing strong cross-couplings. Finally, the
closed-loop system must ensure tracking of the pilot commands, despite a reduction in control
effectiveness. We have demonstrated that, with model reference adaptive control, it is feasible to
achieve all three of these goals with satisfactory results.

The input error direct algorithm has important advantages over other algorithms. The indirect
algorithm requires more parameters to be identified, 45 versus 27. Since there are a large number
of calculations in the identification algorithm, a large number of parameters is a handicap. The
output error direct algorithm estimates the same number of parameters as the input error direct
algorithm, but has more rigid stability conditions than either the indirect or input error direct
algorithms. Also, least-squares adaptation algorithms can be used with the indirect and input
error direct algorithms, but not with the output error direct algorithm. Least-squares algorithms
give faster convergence than gradient algorithms, a property which is critical for reconfiguration.

We investigated the use of a new algorithm, the stabilized recursive least-squares with forgetting
factor algorithm (SRLSFF). The SRLSFF achieves stability during periods of low excitation by
penalizing changes of the parameter matrix 6 in the error function. This change results in an
algorithm with relatively weak conditions for stability. At the same time, no sharp discontinuities
are introduced in the responses, and implementation is computationally feasible.

Several issues would deserve to be examined. The performance of the algorithms should be
tested when there is noise present in the system, as well as for other failures and at other flight
conditions throughout the operational envelope of the aircraft. At other flight conditions, other
output variables may be preferable. One such criterion might be control of the aircraft based on the
acceleration experienced by the pilot. No consideration was given here to input saturation, which
may be more restrictive at other flight conditions or for other maneuvers. The maneuvers considered
in this paper were small, and did not induce actuator saturation or rate saturation. One possibility
would be to incorporate the method proposed in [9], in order to handle the problem of input
saturation through an outer-loop design. Considering more complicated algorithms, one should
remember that computations must usually be performed at a rate of approximately 50-100 Hz. This

requirement severely limits the complexity of the algorithms that can be realistically implemented
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with current flight control computers. The algorithms studied in this work are probably the simplest

adaptive algorithms available that account for possible cross-couplings in a multivariable design.
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